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Abstract 

Multiplicative reasoning permeates many mathematical topics, for example 
fractions and functions. Hence there is consensus on the importance of ac-
quiring multiplicative reasoning. Multiplication is typically introduced as 
repeated addition, but when it is extended to include multi-digits and deci-
mals a more general view of multiplication is required. 

There are conflicting reports in previous research concerning students’ 
understandings of multiplication. For example, repeated addition has been 
suggested both to support students’ understanding of calculations and as a 
hindrance to students’ conceptualisation of the two-dimensionality of multi-
plication. The relative difficulty of commutativity and distributivity is also 
debated, and there is a possible conflict in how multiplicative reasoning is 
described and assessed. These inconsistencies are addressed in a study with 
the aim of understanding more about students’ understandings of multiplica-
tion when it is expanded to comprise multi-digits and decimals. 

Understanding is perceived as connections between representations of dif-
ferent types of knowledge, linked together by reasoning. Especially connec-
tions between three components of multiplication were investigated; models 
for multiplication, calculations and arithmetical properties. Explicit reason-
ing made the connections observable and externalised mental representa-
tions. 

Twenty-two students were recurrently interviewed during five semesters 
in grades five to seven to find answers to the overarching research question: 
What do students’ responses to different forms of multiplicative tasks in the 
domain of multi-digits and decimals reveal about their understandings of 
multiplication? The students were invited to solve different forms of tasks 
during clinical interviews, both individually and in pairs. The tasks involved 
story telling to given multiplications, explicit explanations of multiplication, 
calculation problems including explanations and justifications for the calcu-
lations and evaluation of suggested calculation strategies. Additionally the 
students were given written word problems to solve. 

The students’ understandings of multiplication were robustly rooted in re-
peated addition or equally sized groups. This was beneficial for their under-
standings of calculations and distributivity, but hindered them from fluent 
use of commutativity and to conceptualise decimal multiplication. The ro-
bustness of their views might be explained by the introduction to multiplica-
tion, which typically is by repeated addition and modelled by equally sized 



 

groups. The robustness is discussed in relation to previous research and the 
dilemma that more general models for multiplication, such as rectangular 
area, are harder to conceptualise than models that are only susceptible to 
natural numbers. 

The study indicated that to evaluate and explain others’ calculation strate-
gies elicited more reasoning and deeper mathematical thinking compared to 
evaluating and explaining calculations conducted by the students themselves. 
Furthermore, the different forms of tasks revealed various lines of reasoning 
and to get a richly composed picture of students’ multiplicative reasoning 
and understandings of multiplication, a wide variety of forms of tasks is 
suggested. 

 
Keywords: Multiplication; students’ understanding; connections; multiplica-
tive reasoning; models for multiplication; calculations; arithmetical proper-
ties 
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1 Introduction 

Multiplicative reasoning permeates many mathematical topics, for example 
fractions, ratio and functions (Vergnaud, 1994) and it forms a foundation for 
proportional reasoning, which is “the capstone of children’s elementary 
school arithmetic and the cornerstone of all that is to follow” (Lesh, Post, & 
Behr, 1988, p. 94). This quote emphasises the importance of multiplicative 
reasoning for success in mathematics and warrants investigations of stu-
dents’ development of multiplicative reasoning in many studies including 
this thesis. 

Multiplication is typically introduced as repeated addition of equally 
sized groups (Izsák, 2004; Watanabe, 2003), which is regarded as a natural 
way to introduce students to multiplication (Fischbein, Deir, Nello, & 
Marino, 1985). There are reports of students successfully exploiting this 
notion of multiplication to invent sophisticated calculation strategies under-
pinned by the three arithmetical properties, commutativity, distributivity and 
associativity (Ambrose, Baek, & Carpenter, 2003; Carpenter, Franke, & 
Levi, 2003; Lampert, 1986). However, the notion of multiplication as re-
peated addition of equally sized groups is insufficient, since it is not appli-
cable to multiplication beyond natural numbers; it is hard to conceptualise to 
add something for example exactly 3.17 times (Greer, 1992; Verschaffel, 
Greer, & De Corte, 2007). Furthermore, is it obscuring why commutativity 
is valid and it reduces multiplication to a one-dimensional operation, which 
might hinder the development of multiplicative reasoning (Barmby, Harries, 
Higgins, & Suggate, 2009; Confrey & Smith, 1995). The role of equal 
groups is an example of tensions in the research literature with respect to 
students’ understandings of multiplication. This and other tensions concern-
ing students’ understandings of multiplication, at the stage when multiplica-
tion is extended to multi-digit and decimal numbers, are addressed in this 
thesis. 

Understanding of multiplication is multi-faceted, for example, it involves 
not only the ability to reason multiplicatively, but also calculations, justify-
ing calculation strategies, explaining connections to other operations, em-
ploying arithmetical properties and knowing when to multiply and when to 
not (Carpenter et al., 2003; Clark & Kamii, 1996; Greer, 1992; Kilpatrick, 
Swafford, & Findell, 2001; Nunes et al., 2009; Park & Nunes, 2001; 
Siemon, Bleckly, & Neal, 2012; Van Dooren, De Bock, & Verschaffel, 
2010; Verschaffel et al., 2007; Young-Loveridge & Mills, 2009). 
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The aim for this thesis is to understand more about students’ understand-
ings of multiplication when the operation is expanded to comprise multi-
digits and decimals, specified as an overarching research question: What do 
students’ responses to different forms of multiplicative tasks in the domain 
of multi-digits and decimals reveal about their understandings of multiplica-
tion? 

Understanding of mathematics is often described as connections between 
pieces of knowledge, procedural knowledge, and conceptual knowledge 
(Baroody, Feil, & Johnson, 2007; Berthold, Eysink, & Renkl, 2009; Hiebert 
& Carpenter, 1992; Hiebert & Wearne, 1992). Mental representations of 
these concepts, or pieces of knowledge, are suggested to be connected by 
reasoning to form a person’s understanding of mathematical concepts 
(Barmby et al., 2009). Explicit reasoning and externalised representations 
are observable and it is suggested that understanding can be inferred from 
them. 

When this notion of understanding is applied to understanding of multi-
plication, it can be viewed as connections between three components and 
includes both procedural and conceptual knowledge. The three components 
are models for multiplication, such as equally sized groups; calculations, 
such as repeated addition; and arithmetical properties, such as commutativi-
ty. The connections can become discernable by reasoning, such as to reason 
that 3 · 5 must equal 5 · 3 since you can see that it is the same amount of 
cookies on a tray with three rows of cookies with five in each row even if 
you turn the tray 90°. This example shows how reasoning can connect com-
mutativity, an arithmetical property, to a model for multiplication, rectangu-
lar array. 

To investigate students’ understandings of multiplication by their  
responses to different forms of tasks, twenty-two students were recurrently 
interviewed, both individually and in pairs, during five semesters in grades 
five to seven. The first interviews took place the first semester in the fifth 
grade, which was before multi-digit and decimal multiplication was intro-
duced. During the interviews the students were given different forms of 
tasks, for example calculation tasks followed by prompts to explain how and 
why the calculation worked and story telling tasks, similar to problem pos-
ing to given multiplications. Additionally, the students were given written 
tests of multiplicative word problems during regular mathematics lessons. 

The results from the study, reported in this thesis, are organised in four 
papers, investigating four issues related to the overarching question and what 
the literature review had revealed as incongruent reports of students’ multi-
plicative understandings. The first paper investigates the possible incongru-
ence of descriptions of multiplicative reasoning as closely related to calcula-
tive acts (Clark & Kamii, 1996; Sowder et al., 1998; Steffe, 1994; Tzur et 
al., 2013) and testing it by interpretations of multiplicative comparison prob-
lems (Clark & Kamii, 1996; Fernandez, Llinares, Van Dooren, De Bock, & 
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Verschaffel, 2012; Van Dooren, De Bock, & Verschaffel, 2010; Van 
Dooren, De Bock, Vleugels, & Verschaffel, 2010). The second paper inves-
tigates what students’ evaluations of erroneous calculations of multi-digit 
multiplications can reveal about their understandings of distributivity. Dis-
tributivity has been reported both as and troublesome to understand 
(Carpenter, Levi, Franke, & Koehler, 2005; Ding & Li, 2014) and as some-
thing young students successfully can learn (Ambrose et al., 2003; Barmby 
et al., 2009; Carpenter et al., 2003; Izsák, 2004; Lampert, 1986; Young-
Loveridge & Mills, 2009). The third paper investigates the role of equal 
groups in relation to students’ understandings of distributivity, which is de-
bated, as mentioned earlier. In the fourth paper, two students’ understand-
ings of multiplication is investigated through what connections they demon-
strate over the five semesters of the study, thus allowing a description of 
how their understandings vary over time. 

After this brief introduction, relevant literature is reviewed in chapter 2, 
to clarify what is known about students’ understandings of multiplication. In 
chapter 3, aim and research questions for this thesis are presented as a con-
sequence of the literature review. In chapter 4, there is a review of how stu-
dents’ understanding of mathematics can be construed and investigated. In 
chapter 5, I present methods and methodological choices, including partici-
pants, data collections, tasks, analyses and ethical considerations with re-
spect to what is presented in this thesis. Chapter 6 consists of summaries of 
the four papers, which constitute the results. Finally, in chapter 7, I discuss 
the results, methodological choices for the study, implications for instruction 
and the contribution to the field including suggestions for further research. 
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2 Literature review 

In this chapter, I first review literature concerning multiplicative reasoning 
with focus on the transition from additive reasoning to multiplicative reason-
ing. When the multiplicative reasoning is extended to comprise multi-digits 
and decimals, three domains of special interest for students’ understandings 
of multiplication has emerged, models for multiplication, the arithmetical 
properties and calculations, each domain is reviewed in its own section. 

2.1 Multiplicative reasoning 
There is consensus on the pivotal role of multiplicative reasoning for math-
ematics in many domains (Barmby et al., 2009; Chandler & Kamii, 2009; 
Clark & Kamii, 1996; Confrey & Smith, 1995; Nunes et al., 2009; Park & 
Nunes, 2001; Sowder et al., 1998; Steffe, 1994; P. Thompson & Saldanha, 
2003; Van Dooren, De Bock, & Verschaffel, 2010). The ability to reason 
multiplicatively is considered as a significant conceptual leap of students’ 
understanding (Simon & Blume, 1994; Tzur et al., 2013) and it is a founda-
tion for all mathematics after primary school, hence essential to develop 
(Lesh et al., 1988). For example, multiplicative reasoning is the foundation 
for our place value system, fractions, ratio, proportionality and functions 
(Vergnaud, 1988, 1994), which warrants various types of studies in order to 
gain better understanding of how students understand multiplication. 

The transition from additive to multiplicative reasoning is a process 
stretched over several years (Clark & Kamii, 1996; Simon & Blume, 1994; 
P. Thompson & Saldanha, 2003) and supposedly requires instruction 
(Sowder et al., 1998). Multiplicative reasoning involves the ability to handle 
nested units on more levels of abstraction compared to additive reasoning 
(Clark & Kamii, 1996). This is also described as coordination of composite 
units (Sowder et al., 1998; Steffe, 1994; Tzur et al., 2013). To explain the 
notion of coordination of composite numbers, I use the example of 3 · 4. 
Both 3 and 4 are composite numbers, meaning that they both consist of more 
than one unit. If we think of 3 · 4 as representing 3 boxes with 4 toy cars in 
each, the coordination for a very young student can be to count four (one-
two-three-four) toy cars for each of the three (one-two-three) boxes to find 
the answer of how many toy cars in total. Thus composite numbers are coor-
dinated at three levels; the total composite number (12 toy cars) is comprised 
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of composite numbers (3 boxes) of composite numbers (4 in each box) 
(Clark & Kamii, 1996; Steffe, 1994). Even though 4 refers to toy cars per 
box, most young students think of 4 to represent toy cars, or only think of 
the number and ignore the quantity (Vergnaud, 1983). To keep track of the 
simultaneous count of two composite units and the resulting composite unit 
as well as the transformation of quantities, is considered to be a sign of mul-
tiplicative reasoning (Sowder et al., 1998; Steffe, 1994; Tzur et al., 2013). 
Another way to describe the coordination of composite units, as an indicator 
of multiplicative reasoning, is to perceive one bag of twelve marbles as re-
presenting both 1 and 12 simultaneously (Steffe, 1994). This ability under-
pins understanding of our enumeration system, where one hundred is one 
hundred, ten tens and one hundred ones at the same time (Chandler & 
Kamii, 2009; Nunes et al., 2009), which also can be described as one-to-
many correspondence (Anghileri, 2006; Bakker, Van den Heuvel-Panhuizen, 
& Robitzsch, 2014; Nunes & Bryant, 2010; Nunes, Bryant, Evans, & Barros, 
2015; Park & Nunes, 2001). Additionally, it has been suggested that multi-
plicative reasoning involves multiplication with expanded factors, such as 
20 + 6 (Izsák, 2004), which is regarded as more advanced, especially if two 
factors are expanded (Ambrose et al., 2003). 

Furthermore, multiplicative reasoning, in contrast to additive, involves 
coordination of dimensions and quantities (Schwartz, 1988; Simon & 
Blume, 1994). Multiplication transforms quantities, for example, multiplica-
tion of lengths is two-dimensional, and resulting in area, while addition of 
lengths is a linear, one-dimensional, operation resulting in length. Another 
example is that the number of cookies multiplied by the cost per cookie, is 
transformed to the cost for all cookies (Vergnaud, 1983, 1988). In the latter 
example the intensive quantity, cost per cookie, (Schwartz, 1988) is distinct-
ly different from the extensive quantities that are applicable to addition and 
subtraction (Piaget, 1952). Mass is an example of extensive quantity; the 
total weight of two boxes can be calculated by addition. Intensive quantities 
are most often a combination of two extensive quantities and their unit 
measure includes the word “per”, for example kronor per kg (Schwartz, 
1988). Thus, an intensive quantity forms a multiplicative relation, a ratio, 
between its two parts, which make intensive quantities more problematic to 
understand than extensive (Howe, Nunes, & Bryant, 2010; Nunes & Bryant, 
2010; Simon & Placa, 2012). 

One way to investigate students’ multiplicative reasoning is to invite 
them to solve multiplicative comparison problems, such as 3 times as many 
as 5 (see e.g. Clark & Kamii, 1996). Students in lower primary grades tend 
to reason additively to this type of problems, hence answering 8 after adding 
3 and 5. When students grow older they slowly learn to use multiplicative 
reasoning. Multiplicative comparison of two quantities involves ratio, which 
might explain the slow process of transition to multiplicative reasoning 
(Lamon, 1993, 2007; Sowder et al., 1998). However, in the process of learn-
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ing multiplicative reasoning there is evidence that students overuse it on 
additive problems (Fernandez et al., 2012; Van Dooren, De Bock, Janssens, 
& Verschaffel, 2008; Van Dooren, De Bock, & Verschaffel, 2010). In order 
to develop a robust ability to reason multiplicatively, one must be able to 
distinguish when multiplicative reasoning is appropriate and when not 
(Clark & Kamii, 1996; Confrey & Smith, 1995; Simon & Blume, 1994; Van 
Dooren et al., 2008; Van Dooren, De Bock, & Verschaffel, 2010; Van 
Dooren, De Bock, Vleugels, et al., 2010). 

In sum, literature has described multiplicative reasoning as ability to  
coordinate composite numbers at several levels of abstraction and research-
ers have investigated students’ multiplicative reasoning by their calculations 
(e.g. Steffe, 1994; Tzur et al., 2013). Others have tested students’ ability to 
reason multiplicatively by their ability to interpret proportional or multi-
plicative comparison problems (Clark & Kamii, 1996; Van Dooren, De 
Bock, & Verschaffel, 2010). However, it is not clear if the ability to reason 
multiplicatively is equally measured by these two forms of tasks. 

2.2 Models for multiplication 
Multiplicative situations occurring in real life can be described verbally. For 
example, if I buy 3 boxes of cookies with 6 cookies in each, it can be formu-
lated as a problem asking for how many cookies I bought. Such problems 
form a genre in school mathematics referred to as word problems, irrespec-
tive of the degree of realistic contextual content. A line of research has 
shown that students can engage in solving less realistic word problems even 
though they realise that that the solutions are unrealistic, which is referred to 
as playing the game of school mathematics (Verschaffel, Greer, & De Corte, 
2000, 2002). Even though this line of research is interesting and important 
for the overall understanding of students’ accomplishment, it is not further 
reviewed here, since it is not directly connected to the study of students’ 
understanding of multiplication, rather to socio-mathematical norms (Cobb 
& Yackel, 1998). Multiplicative word problems can be categorised as  
various models for multiplication, the cookie problem above is distinctly 
different from a question of how many different meals can be combined 
from 6 main courses and 3 side orders, even though both can be solved by 
the same multiplication. 

Research concerning students’ understanding can distinguish between 
models of and models for a concept (Van den Heuvel-Panhuizen, 2003; 
Verschaffel et al., 2007). When students solve word problems, they might 
construct a model of the problem, which typically is an illustration of the 
specific situation in the problem. To solve a word problem of how many 
cookies there are in 3 boxes with 6 cookies in each, a young student might 
draw a picture of 3 boxes with 6 cookies. The cookie drawing might not be 
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useful to a similar problem of bags with marbles, since the illustration is 
very close to the problem and hence the cookies are not exchangeable to 
marbles. A model for multiplication is more general and can be used as a 
thinking tool for a class of problems; therefore it is considered as a sign of a 
deeper understanding compared to a model of multiplication (Van den 
Heuvel-Panhuizen, 2003). Models for multiplication do not need to be 
drawn; they can for example be mental representations or verbal stories 
(Greer, 1992; Van den Heuvel-Panhuizen, 2003). Hereafter I use the term 
model for multiplication both when I refer to the mathematically and  
psychologically derived models for multiplication presented below and the 
models for multiplication that students have been found to use as thinking 
tools and explanations for multiplicative problems. In the following I review 
categorisations of models for multiplication, what properties various models 
have, and students’ understandings of models for multiplication. 

2.2.1 Categorisations of models for multiplication 
The formulation of word problems determines what situation is described. 
Hence some researchers (e.g. Mulligan, 1992; Mulligan & Mitchelmore, 
1997; Nesher, 1988) refer to models for multiplication as semantic struc-
tures. Even though there is less research concerning multiplicative models 
compared to additive models (Greer, 1992; Verschaffel et al., 2007), scho-
lars have categorised real world situations from different perspectives result-
ing in different taxonomies of models for multiplication. In order to under-
stand the significance of different models for multiplication the origin of 
classifications is reviewed. 

From a mathematical point of view, using dimension analysis, Vergnaud 
(1983, 1988, 1994) and Schwartz (1988) have both defined three multiplica-
tive situations, but their definitions differ. Vergnaud’s categories are iso-
morphism of measures, product of measures and multiple proportions.  
Multiplication is viewed as a relation between four measures, whereof one 
can be implicit. In Schwartz’ categories, multiplication is viewed as a rela-
tion between three measures, and based on the quantities involved. 

In Vergnaud’s (1983, 1988, 1994) classification, isomorphism of mea-
sures is a relation between two measure spaces, for instance the number of 
cookies and the cost of cookies. In a problem to find the cost for 12 cookies 
when 4 cookies cost 20 kronor the problem consists of two measure spaces, 
the number of cookies (4 and 12) and the cost (20 and x). In many multipli-
cative word problems there are only two numbers, with the number 1 impli–
cit. For example, to ask how much 6 cookies cost if the price is 5 kronor per 
cookie includes an implicit 1, which is hidden in the cost, since 1 cookie 
costs 5 kronor. Product of measures involves a transformation of dimen-
sions, where two dimensions are transformed into a third; for example the 
length and width of a rectangle are transformed into the area when multi-
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plied. Another example of product of measures is the combination of six 
main courses and three side orders resulting in eighteen meals, which often 
is denoted Cartesian product (Greer, 1992) and constitutes a basis for com-
binatorics. Finally, multiple proportional problems deal with (at least) three 
measure spaces, in which one is proportional to both the other measure  
spaces, which are independent from each other. For example, the consump-
tion of water is proportional both to the number of persons and the number 
of days. This type of problem can be broken down into two or more steps, 
for example one step of the water problem is to find out the consumption for 
one person for a number of days and the next step to multiply the product 
with the number of persons. Thus multiple proportional problems can be 
transformed to isomorphism of measures, or product of measures, in two or 
more steps. 

Schwartz’ (1988) dimensional analysis is based on whether the quantities 
are extensive or intensive, suggesting that extensive quantity times intensive 
quantity forms one category, extensive times extensive forms another, and 
intensive times intensive a third. An example of a problem with an extensive 
quantity multiplied by an intensive quantity is the 12 cookies (extensive 
quantity) at the cost of 5 kronor/cookie (intensive quantity), which corre-
sponds directly to isomorphism of measures. Problems in which extensive 
quantities are multiplied by extensive quantities are referent transforming 
and can be exemplified by rectangular area that corresponds to product of 
measures. Problems in which intensive quantities are multiplied by intensive 
quantities are more complex and mostly employed in science, but an exam-
ple given by Nesher (1988) is to multiply the average speed in km/h with 
number of hour/day to find the new intensive quantity of km/day. 

Other categorisations are based on the perspective of the learners’ con-
ceptualisation of different situations, real or in the format of a word problem 
(Carpenter, Fennema, & Franke, 1996; Greer, 1992). These categorisations 
typically involve more categories than the mathematically derived categori-
sations described above. In Greer’s review of categorisations of models for 
multiplication a list of ten different models is presented. Seven of these cor-
respond to isomorphism of measures in Vergnaud’s (1983) classification and 
the three other correspond to product of measures. For example, equal 
measures and equal groups, which both correspond to isomorphism of 
measures, are considered as different categories, since equal measures deals 
with continuous quantities, such as how many pieces of 3.5 metres can be 
cut off from 21 metres of fabric, while equal groups deals with discrete  
objects (Greer, 1992). Continuous and discrete measures are conceptualised 
differently by young learners. The remaining five categories corresponding 
to isomorphism of measures are multiplicative comparison, rate, measure 
conversion, part/whole and multiplicative change. The latter two are most 
often included in multiplicative comparison and not further described. 
Measure conversion, as for example how many centimetres are 4 inches, can 
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be viewed as a special case of rate (Bell, Greer, Grimison, & Mangan, 
1989), which as well as multiplicative comparison is further explained  
below. 

Rate is commonly described as an invariant relationship between two 
measures, for example, the price of 5 kronor/cookie, in the problem to find 
the total price for 4 cookies at the price of 5 kronor each (Bell et al., 1989; 
Mulligan & Mitchelmore, 1997). For younger students the distinction  
between countable objects and objects with a value warrants the need to 
categorise the word problems into different categories (Mulligan & 
Mitchelmore, 1997). Rate problems can be subcategorised into for example 
price-problems, as the cookie problem, speed-problems, as how far Martin 
walked if he walked at the average speed of 5 km/h for 3 hours, and conver-
sion-problems, such as how much is 4 euro worth in Swedish kronor if 
1 euro is worth 10 kronor (Bell, Fischbein, & Greer, 1984; Bell et al., 1989). 
Even though rate problems are more abstract than equal groups, since they 
do not describe actual groups of discrete objects, students might solve them 
in the same way (Carpenter, Fennema, Franke, Levi, & Empson, 1999), for 
example, by perceiving Martin’s 3 hours of walking as 3 groups and the 
speed of 5 km/h as the number of kilometres in each group. The rate model 
in price-problems can also be thought of as multiplicative comparison 
(Greer, 1992). Multiplicative comparison involves two different groups  
being compared to each other, if Sofia has 10 books and Martin 40, he has 4 
times as many, but can also involve price problems; if I buy 4 items I have to 
pay 4 times as much as for 1 item. In the literature on proportional reason-
ing, rate, ratio and proportional problems are central, and all three can be 
considered as types of multiplicative comparison of different kinds of quan-
tities with different units (Ben-Chaim, Fey, Fitzgerald, Benedetto, & Miller, 
1998; Shield & Dole, 2013). 

The three models in Greer’s (1992) list that correspond to Vergnaud’s 
(1988, 1994) product of measures are rectangular area, Cartesian product 
and product of measure. Rectangular area and Cartesian product are already 
explained and product of measure in this list is a generalisation of Cartesian 
product, combining pairs from two disjoint sets so that each object in one set 
is combined with each object in the other. Cartesian product transforms 
quantities; in the example above dishes are transformed to meals. 

As this review of categorisations demonstrates, the categorisation of 
models for multiplication can be conducted in different ways, leading to 
different taxonomies and “the categories can be extended, collapsed, or re-
fined depending on the purpose of the investigation” (Mulligan & 
Mitchelmore, 1997, p. 310). In the end of Greer’s (1992) review of categori-
sations, he suggests combining the ten categories into four different models 
for multiplication which often are used in research in the middle school 
years (Greer, 1992; Izsák, 2004; Mulligan & Mitchelmore, 1997): equal 
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groups (including equal measures and rate), multiplicative comparison,  
rectangular array/area, and Cartesian product. 

However, rectangular array involves discrete objects and hence might be 
considered as a separate category rather than unified with rectangular area, 
which involves continuous quantities. Cartesian product is rare in Swedish 
multiplicative instruction until combinatorics is introduced. Rate can both be 
viewed as equal groups and multiplicative comparison and the expression 
has no equivalent in Swedish. For the stage when multiplication is expanded 
to multi-digits and decimals, it seems adequate to include price problems in 
equal groups, and measure conversions and speed problems in multiplicative 
comparisons. Thus the following four categories of models for multiplica-
tion became important to my study: 

- Equal groups, including rate such as price per item 
- Rectangular array 
- Rectangular area 
- Multiplicative comparison, including rate such as measure conversion 

and speed 

It is worth noticing that these categories of models for multiplication are not 
distinctly different. For example, when equal groups of objects are placed in 
orthogonal rows and columns, the situation can simultaneously be perceived 
as a rectangular array and as equal groups. Similarly, a rectangle divided in 
area unit squares may be viewed both as array (of the squares) and as area 
(by the measures of the sides). 

2.2.2 Properties of models for multiplication 
Rectangular array and area are symmetrical; the factors have the same role, 
while equal groups and multiplicative comparison are asymmetrical (Bell et 
al., 1989; Carpenter et al., 1999; Greer, 1992). In asymmetrical models, for 
example equal groups, the multiplier (the number of groups) has a different 
role from the multiplicand (the number of objects in each group). This aspect 
makes a model more or less appropriate to demonstrate multiplicative com-
mutativity. That a · b equals b · a is visually perceivable in symmetrical 
models, which makes symmetrical models psychologically commutative 
(Verschaffel et al., 2007). A rectangular array, such as a box of 4 rows of  
7 soda cans, makes it observable that the total amount of soda cans has not 
changed when rotated 90°. It is not immediately obvious that 7 bags of  
4 marbles must be same amount of marbles as 4 bags of 7 marbles (Bell et 
al., 1989; Carpenter et al., 1999; Lo, Grant, & Flowers, 2008). 

Another property of a model for multiplication is what number types, 
such as decimals or integers, it is applicable to. The number type has been 
reported to affect students’ reasoning more in multiplicative operations than 
in additive, and therefore affects the categories of models (Greer, 1992). 
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Models with discrete objects, such as equal groups and rectangular array, are 
not suitable for decimals, which rectangular area and multiplicative compa-
rison are. For example, 3.8 bags of 4.9 marbles in each or 3.8 rows and 4.9 
columns of soda cans are hard to imagine. A room of 3.8 metres in width 
and 4.9 metres in length or that Sofia has 3.8 times as much money as her 
brother, who has 4.9 euro, is possible to conceptualise. However, equal 
groups can deal with continuous quantities and hence decimal numbers in 
the multiplicand, but the multiplier needs to be a positive integer. For exam-
ple, 3 books with the width of 2.7 cm would need 3 · 2.7 cm of space in the 
bookshelf. Also the rate-model for price problems (here included in equal 
groups) can make sense of decimal multiplication. It is possible to buy 
3.8 kg of potatoes for 4.9 kronor/kg. The potato-situation can also be viewed 
as a multiplicative comparison; each kg of potatoes has the value of  
4.9 kronor. The amount of potatoes and the cost in kronor form two quanti-
ties that are multiplicatively connected; the quantity of potatoes (in kg) can 
be measured by its value (in kronor/kg) and it is a proportional relation  
(P. Thompson & Saldanha, 2003). 

Multiplicative comparison can be considered conceptually different from 
the other three models, since comparisons typically involve two sets; for 
example, if Sofia has 10 books and Martin 40, he has four times as many, 
since 4 · 10 is 40, but in all there are 50 books. One set is (theoretically)  
divided into subsets of the other set’s magnitude, Martins 40 books are  
divided into 4 groups of 10 books. This can also be viewed as one set is used 
as a unit to measure the other set and thus the two sets are compared multi-
plicatively (Lamon, 1993; Sowder et al., 1998; P. Thompson, 1994). There-
fore multiplicative comparison is considered key to proportional reasoning 
(Lesh et al., 1988; P. Thompson & Saldanha, 2003). 

2.2.3 Students’ understandings of models for multiplication 
There is evidence from studies concerning prospective teachers’ understand-
ings of mathematical concepts that the same or similar misconceptions and 
lines of reasoning exist for them as for younger students (Lo et al., 2008; 
McClain, 2003). Hence, the review does not only relate to students in com-
pulsory school; also prospective teachers’ understandings of the models are 
included. 

To investigate the relative difficulty of different models for multiplica-
tion, students have been invited to solve word problems reflecting different 
models for multiplication and to pose word problems to match given calcula-
tions. Based on students’ success rates of solving word problems, a number 
of studies have demonstrated that equal groups and rectangular array and 
area problems are easier than multiplicative comparison and hardest are 
Cartesian product (Greer, 1992; Mulligan, 1992). These reports give a hint 
of what is easier even though students might solve a word problem of a  
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certain model for multiplication by means of another (Greer, 1992; Mulligan 
& Mitchelmore, 1997). For example, a student might solve a word problem 
presented as rectangular area as equal groups of area units. 

The prevalent explanation in the literature to larger success rates for some 
models is the frequent occurrence of these types of problems in instruction 
(Verschaffel et al., 2007); equal groups problems are frequent in primary 
school and a common model in the introduction of multiplication (Fischbein 
et al., 1985; Izsák, 2004; Watanabe, 2003). Another explanation is that the 
intuitive model for calculating multiplication is suggested to be repeated 
addition (Fischbein et al., 1985), which is easy to connect to equal groups 
and rectangular array (De Corte & Verschaffel, 1996; Simon & Blume, 
1994). The relative success of rectangular area problems might be a con-
sequence of rote learning of the area formula, which is activated by the use 
of key words like ‘area’ (De Corte, Verschaffel, & Van Coillie, 1988; Simon 
& Blume, 1994). 

Coincidently, studies have shown that to connect multiplication to rectan-
gular area and conceptually grasp the relation of multiplication and area 
have proved to be an obstacle both for students and prospective teachers 
(Izsák, 2005; Lo et al., 2008; Simon & Blume, 1994; Verschaffel et al., 
2007). If multiplication is conceptualised as a linear, one-dimensional opera-
tion, such as repeated addition, skip-counting or jumps on a number line, a 
rectangular area might not be regarded as a representation of multiplication. 
It is possible to learn the area formula, A = l · w, without connecting the mul-
tiplication to area (Simon & Blume, 1994). Similarly, an array of squares 
can be counted or viewed as equal groups without connection to multiplica-
tion and knowledge that area is found by multiplication (Izsák, 2005). 

Problem posing is directly linked to problem solving (Silver & Cai, 
1996), which recently has attracted more attention in mathematics education 
research (Cai, Hwang, Jiang, & Silber, 2015; Silver, 2013). Problem posing 
can be useful for uncovering how students conceptualise multiplication (De 
Corte & Verschaffel, 1996; Prediger, 2008). An individually construed 
meaning of a concept or operation is seen as “the key to analyse understand-
ing” (Prediger, 2008, p. 6). The type of problems students pose can reflect 
the instruction they have met as well as their conceptual understandings or 
misunderstandings (Cai et al., 2015; Tichá & Hošpesová, 2013). 

A variety of activities are viewed as problem posing, and in one suggest-
ed classification, five categories of problem posing prompts have been iden-
tified: a) free situations to pose a problem without constrictions, b) to pose a 
problem for a given answer, c) to use given information to pose a problem, 
d) to pose problem for a given situation, and e) to pose a problem for a given 
calculation (Pittalis, Christou, Mousoulides, & Pitta-Panzai, 2004). In this 
thesis problem posing refers solely to the last category, to pose a problem for 
a given multiplicative calculation, such as 23 · 39. Hence literature in this 
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line of problem posing is reviewed, but not the larger field of problem  
posing. 

The most frequent form of word problems that is generated among pro-
spective teachers and different ages of students is equal groups problems, 
including equal measures (De Corte & Verschaffel, 1996; Nesher, 1988). 
For example, more than 80 % of the correct word problems were equal 
groups in De Corte and Verschaffel’s study when the multiplications includ-
ed at least one integer. When both factors were decimal numbers, the most 
common model was rectangular area. However, there are cultural differences 
to what types of problems that are typically posed. Israeli 10–12 year old 
students posed 41 % multiplicative comparison problems and 34 % equal 
groups problems in a similar study as De Corte and Verschaffel’s, possibly 
since there is a short and often used Hebrew expression with the meaning of 
‘times as many’ (Nesher, 1988). The expression ‘P-five’ has the meaning of 
‘five times as many as’ (there is also an analogous short way to express ‘five 
more’ in Hebrew, ‘Bae-five’). 

The high frequency of equal groups problems can be explained by the  
intuitive models theory, which suggests that one model for each operation is 
more natural and hence easier (Fischbein et al., 1985). According to Fisch-
bein et al., repeated addition is the most natural and easy model for multipli-
cation and it is closely related to equal groups (De Corte & Verschaffel, 
1996; Simon & Blume, 1994). Note that in Fischbein et al.’s (1985) study, 
as well as in some other studies (e.g. Mulligan & Mitchelmore, 1997) the 
word ‘model’ is used to denote what calculation strategy students use rather 
than the structural level of a model for multiplication as reflecting a real 
world situation. 

The preference for equal groups can be explained by influence of instruc-
tion and everyday experiences (De Corte & Verschaffel, 1996; English, 
1998; Fischbein et al., 1985; Kinda, 2013). In initial instruction, students 
generally meet equal groups problems (and in Israel multiplicative compari-
son problems) (Fischbein et al., 1985; Izsák, 2004; Watanabe, 2003). In later 
instruction, multiplication is not explicitly connected to any model or real 
world situation, leaving the students with only the initially taught model for 
multiplication (De Corte & Verschaffel, 1996). This impact of instruction is 
partly what the intuitive model theory (Fischbein et al., 1985) predicts, even 
though De Corte and Verschaffel (1996) argue that the instructional implica-
tions in combination with “a tendency to reduce cognitive load” (p. 240), is a 
more plausible explanation than an innate inclination to use repeated addi-
tion, which the intuitive model theory suggests (Fischbein et al., 1985). 

Decimal numbers are known to create problems for students in many 
ways (Lamon, 2007). With respect to multiplication, decimals affect both 
problem solving and posing. Indeed, the number types are reported to have 
larger impact than the model for multiplication in relation to how difficult 
students find the task (De Corte & Verschaffel, 1996; Greer, 1992; 
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Verschaffel et al., 2007). One aspect of the difficulties is denoted the multi-
plier effect, since a decimal as multiplier makes the problem harder, while a 
decimal as the multiplicand has no or very small effect on the difficulty (Bell 
et al., 1989; De Corte & Verschaffel, 1996). Another aspect is whether the 
decimal number is less than or larger than 1, with the former violating the 
belief that multiplication makes bigger (Bell et al., 1989; Bell, Swan, & 
Taylor, 1981; Fischbein et al., 1985; Greer, 1992). These two obstacles for 
decimal multiplication are well established from a number of studies con-
cerning problem posing and solving (Greer, 1992). 

The multiplier effect challenge repeated addition as a calculation proce-
dure; it is not possible to add for example 3.8 exactly 4.6 times (Fischbein et 
al., 1985; Greer, 1992; P. Thompson & Saldanha, 2003; Verschaffel et al., 
2007). Also in problem posing to given multiplications, this effect is re-
ported to cause a decrease of appropriate problems (De Corte & Verschaffel, 
1996). However, De Corte and Verschaffel suggest that the multiplier effect 
should not be overgeneralised, since they found that decimals less than 1 had 
a greater impact on the number of posed word problems. For example, both 
5.3 · 0.6 and 7.4 · 3.8 violate the multiplier effect, but 5.3 · 0.6 also violates 
the multiplication makes bigger belief. Since there was a significant differ-
ence in the number of appropriate posed problems between these two given 
calculations, but no significant difference between 5.3 · 0.6 and 0.7 · 0.2, the 
presence of decimals less than 1 are suggested as more influential than the 
multiplier effect. 

Other effects of the multiplication makes bigger belief, and its analogous 
division makes smaller, have been reported to cause erroneous solutions to 
word problems such as to find the cost for 0.45 kg of potatoes at 6.90 
kronor/kg. Students typically suggest to divide 6.9 by 0.45, believing that 
division produces smaller and multiplication larger results (Bell et al., 1989; 
Bell et al., 1981). Similar findings were recently reported from a Chinese 
study, in which students were invited to solve and pose word problems to 
given calculations (Chen, Van Dooren, Jing, & Verschaffel, 2015). The tasks 
involved the same numbers and varied by decimals larger than and less than 
1 in one or both factors. In a post test, the students had to judge which opera-
tion would produce a smaller or larger result, for example, they were asked 
to choose whether multiplication or division by 0.7 would be less than 0.7. 
The post test also included to put smaller than or larger than signs in number 
sentences, such as if 0.6 · 0.49 were larger than or smaller than 0.6. The 
number of correct solutions was affected by decimals less than 1 in all types 
of problems, suggesting that decimals less than 1 affect students’ reasoning 
according to the belief that multiplication makes bigger. 

Solving a problem by its inverse operation, following the multiplication 
makes bigger belief, has been observed both when students choose from a 
list of expressions and when answering by making the calculation, even 
though students’ own solutions elicit a larger amount of correct answers than 
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choosing from a list (De Corte et al., 1988). This is probably depending on 
the opportunity to use informal strategies in combination with estimation of 
the magnitude of the answer. 

It is suggested that the root of the multiplication makes bigger rule lies in 
the ‘natural number bias’, meaning that rules and properties of natural num-
bers inappropriately is applied to rational numbers (Ni & Zhou, 2005; 
Vamvakoussi, Van Dooren, & Verschaffel, 2012). Since we initially learn 
arithmetic in the set of natural numbers, our experiences make us believe 
that addition and multiplication makes the result bigger and subtraction and 
division makes it smaller (Greer, 1992; Van Hoof, Vandewalle, Verschaffel, 
& Van Dooren, 2015). To overcome the problems concerning decimal  
multiplication, it is suggested that students need greater meta-cognitive 
awareness of how multiplication affects decimals, supported by models for 
multiplication that are susceptible to decimals (Greer, 1992; Verschaffel & 
De Corte, 1997). In a recent study among secondary students testing the 
natural number bias, the students were given algebraic statements concern-
ing the effect of operations that they should declare true or false (Van Hoof 
et al., 2015). The statements were either congruent to natural numbers, 
meaning that if the variable was exchanged by a natural number it led to a 
correct conclusion, or incongruent, exchanging the variable with a natural 
number led to an erroneous conclusion. The results indicate that the natural 
number bias is stronger for multiplication and division compared to addition 
and subtraction. In another study, it was suggested that secondary students 
had overcome the natural number bias as measured by correct answers to 
evaluate relative size of fractions (Van Hoof, Lijnen, Verschaffel, & Van 
Dooren, 2013). However, by using reaction time measurement it was found 
that they used significantly longer time to give correct answer to tasks that 
were incongruent to natural numbers compared to tasks that were congruent. 
In sum, the natural number bias affects both primary and secondary students, 
and the effect of the natural number bias can be observed even after students 
have learnt to bypass it. The multiplicative operations are more sensible to 
the effect than the additive. This has led to recommendations to be aware of 
undesirable effects of introducing multiplication by repeated addition since it 
may cause “later conceptual difficulties” (Van Hoof et al., 2015, p. 37). 

There seems to be a pedagogical dilemma in the literature concerning 
students’ understandings of models for multiplication and recommendations 
for teaching. On the one hand, there is consensus on the equal groups model 
as one of the most accessible models for young students. On the other hand, 
the introduction and extensive use of the equal groups model is reported to 
reduce multiplication to repeated addition, which is not supporting multipli-
cative reasoning. Hence it has been suggested that students should learn to 
use rectangular area and array, which emphasise the two-dimensionality of 
multiplication (Barmby et al., 2009; Fuson, 2003; Izsák, 2004; Young-
Loveridge & Mills, 2009). Coincidently, rectangular area and array have 
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been reported as hard to conceptualise as models for multiplication (Izsák, 
2005; Lo et al., 2008; Simon & Blume, 1994; Verschaffel et al., 2007). With 
respect to decimal multiplication, there are well-established findings  
concerning the multiplier effect and the multiplication makes bigger belief, 
explained by the natural number bias. However, there is a plea for more 
research of how “multiplicative concepts develop beyond the domain of 
positive integers” (Verschaffel et al., 2007, p. 588). 

2.3 Multiplication and arithmetical properties 
Three arithmetical properties, the commutative property, the distributive 
property and the associative property, underpin calculations and hence  
understanding of multiplication as well as forming a foundation for under-
standing algebra in later school years (Baek, 2008; Carpenter et al., 2003; 
Carpenter et al., 2005; Ding & Li, 2014; Schifter, Monk, Russel, & Bastable, 
2008). In this section I review what earlier research report concerning  
students’ understandings and use of each of the properties in relation to  
multiplication. 

2.3.1 The commutative property 
Commutativity is valid for addition and multiplication and states that the 
two numbers can change order: a + b = b + a and a · b = b · a. Most children 
discover the commutative property for addition without instruction (Canobi, 
Reeve, & Pattison, 2002), but not for multiplication (Ambrose et al., 2003; 
Schliemann, Araujo, Cassundé, Macedo, & Nicéas, 1998), even though 
some students discover commutativity when they memorise the number facts 
in the multiplication table (Anghileri, 2006; Baroody, 1999; Fuson, 2003). 

One explanation for the need of instruction is that the model of equal 
groups and to calculate by repeated addition do not emphasise commutativi-
ty (Greer, 1992; Schliemann et al., 1998). This was for example demonstrat-
ed in a Brazilian study comparing unschooled street sellers to school-
children. The street sellers more seldom solved a task such as to find the 
total cost of 60 items of 4 cruzeiros by exploiting commutativity and solved 
it as if it was 4 items of 60 cruzeiros (Schliemann et al., 1998). The school 
children had learnt to use commutativity and were not depending on repeat-
ed addition. In another study, English fourth grade students seemed to  
understand commutativity quite well (Squire, Davies, & Bryant, 2004). The 
students took a multiple-choice test with tasks concerning commutativity 
and distributivity in combination with cues formulated as three different 
models for multiplication: equal groups, rectangular area and Cartesian 
product. An example of a problem given with a cue with equal groups is 
“Christopher has 33 bags of coins, each with 18 coins in them. Altogether he 
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has 594 coins. James has 18 bags, each with 33 coins in them. How many 
coins does James have?” (Squire et al., 2004, p. 520). The students’ results 
suggest that they understood the commutative property, irrespective of  
model for multiplication. Even though commutativity is thought not to  
develop spontaneously this study asserts that the English nine- and ten-year 
old students had learnt to use commutativity irrespective of the model for 
multiplication. 

2.3.2 The distributive property 
Distributivity is defined for multiplication over addition and states that 
a · (b + c) = a · b + a · c, which underpins most multiplication algorithms. 
The distributive property is powerful, fundamental for understanding multi-
plication and forms the basis for algebra and generalisations, but considered 
problematic for students to learn (Carpenter et al., 2005; Ding & Li, 2014). 
Hence it is advocated that students should be given opportunity to learn  
distributivity “in the context of whole-number multiplication” (Izsák, 2004, 
p. 38). 

The difficulty of learning distributivity is supported by Squire et al. 
(2004), who assert that the students had “very poor understanding of distri-
butivity” (p. 515). The students were more successful in distributivity when 
the cue reflected equal groups compared to rectangular area or Cartesian 
product, which led Squire et al. to suggest that instruction about distributivi-
ty would benefit from use of the equal groups model. This suggestion is in 
line with a report of how American fourth grade students were successfully 
introduced to distributivity by stories and drawings of equal groups 
(Lampert, 1986). Other studies have shown that students employ distribu-
tivity when they develop repeated addition for multi-digit calculations and 
that implicit understanding of distributivity does not need instruction 
(Ambrose et al., 2003; Baek, 2008; Schifter et al., 2008; Schliemann et al., 
1998), indicating that distributivity is not difficult to learn, which is in con-
trast to what Squire et al. (2004) reported. 

Yet other studies, in which students were invited to calculate by using an 
array, have shown that the rectangular array model can support instruction 
about distributivity as measured by an increase of students’ correct calcula-
tions (Barmby et al., 2009; Izsák, 2004; Young-Loveridge & Mills, 2009). 
Hence, it is not yet clear whether equal groups or rectangular array serves 
best to support students’ understanding of distributivity or how difficult 
distributivity is for students to learn. 

2.3.3 The associative property 
Associativity is valid for addition and multiplication and states, when there 
are more than two numbers, the order of operations can be changed: 
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(a + b) + c = a + (b + c) and (a · b) · c = a ·  (b · c). This property can be used 
in flexible mental arithmetic such as to transform 16 · 25 to 4 · 4 · 25 by a 
factorisation and then apply the associative property to change the order of 
calculations, (4 · 4) · 25, to 4 ·  (4 · 25) = 4 · 100. 

Compared to commutativity and distributivity, there is not much research 
concerning students’ understandings of associativity (Ding, Li, & Capraro, 
2013; Robinson, Ninowski, & Gray, 2006). According to Schifter et al. 
(2008), this is not surprising, at least not in primary grades, since students 
seldom meet more than two factors in multiplication. Nevertheless, they 
report of students making sense of doubling-halving strategies by means of 
both equal groups and rectangular area, using concrete materials. Doubling 
and halving strategies are underpinned by associativity, for example 
12 · 3 = (6 · 2) · 3 = 6 · (2 · 3) = 6 · 6. Students may reason that if the number 
of groups is twice as many, the number of objects must be halved in each 
group, and that the area of a rectangle is not changed if it is half as long and 
twice as wide. In a Canadian study, it was asserted that sixth and eighth 
grade students did not apply associativity frequently when presented as a 
three term problem in the format a · b/c, thus not only testing associativity 
but also inverse relation of multiplication and division (Robinson et al., 
2006). A problem connected to associativity noticed in a study among pro-
spective primary teachers is that associativity and commutativity are con-
fused (Ding et al., 2013), probably since both are expressed as changing the 
order (Zaslavsky & Peled, 1996). The difference, that commutativity allows 
change of the order of the numbers and associativity the order of the opera-
tions, might not be clarified in instruction. Ding et al. (2013) explain the 
prospective teachers’ confusion by their own learning experiences from  
primary and secondary school. 

To summarise, in spite of the rare number of studies concerning the 
arithmetical properties, the literature review established the importance of 
understanding and using the properties both for arithmetic calculations and 
future studies in algebra. One possible reason for the rare number of studies 
concerning students’ understandings of the properties is the problematic in 
designing studies to investigate understanding of the properties (J. Torbeyns, 
personal communication, February 17, 2016). All studies in the review  
regarding students’ understandings of the arithmetical properties have made 
inference of understandings of the properties from tasks involving calcula-
tions. The literature suggests that distributivity is difficult to learn 
(Carpenter et al., 2005; Ding & Li, 2014) and harder to understand than 
commutativity (Squire et al., 2004). At the same time, other scholars suggest 
that commutativity is harder to understand than distributivity (e.g. 
Schliemann et al., 1998). It also suggests that well-organised instruction on 
distributivity underpinned by models of multiplication is fruitful, and that 
both equal groups and rectangular arrays and area can be used as models of 
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multiplication (Barmby et al., 2009; Izsák, 2004; Lampert, 1986; Young-
Loveridge & Mills, 2009). 

2.4 Calculations in multiplication 
In this section I review literature concerning multiplicative calculations of 
multi-digits. Compared to the first experiences with single-digit multiplica-
tion, this topic has attracted less research (Fuson, 2003; Izsák, 2004; 
Verschaffel et al., 2007). In the review I describe what types of problems the 
transition from single-digit multiplication of integers to multi-digits can 
entail. It is organised in three themes: the ambiguous role of repeated addi-
tion, overgeneralisations of addition strategies leading to erroneous reason-
ing and multiplicative calculations for multi-digits. 

Studies on recall of number facts in the multiplication table are omitted 
from this thesis, since they typically are conducted in the domain of single-
digits. This does not imply that I find procedural knowledge of calculations 
and number fact fluency as unimportant or uninteresting, on the contrary, but 
they are not within the scope of this thesis. 

2.4.1 Repeated addition 
As already mentioned, repeated addition is questioned with respect to multi-
plicative reasoning. Multiplicative reasoning involves calculative acts coor-
dinating composite units (Sowder et al., 1998), including expanded factors, 
such as 20 + 6 (Izsák, 2004), and is based on one-to-many correspondence, 
while addition has its roots in part-whole relations (Nunes et al., 2015; Park 
& Nunes, 2001; Vergnaud, 1983). Repeated addition is therefore sometimes 
described as linear or one-dimensional, in contrast to the two-dimensionality 
of multiplication (Barmby et al., 2009; Confrey & Smith, 1995). At the same 
time, there is evidence of repeated addition as a successful intermediate stra-
tegy among students who invent their own strategies (Ambrose et al., 2003; 
Baek, 2008). Fischbein et al. (1985) suggest that repeated addition is the 
intuitive model, and strategy, for multiplication. Some researchers question 
this and argue that one-to-many correspondence (Nunes & Bryant, 2010) or 
splitting (Confrey, 1994; Confrey & Smith, 1995) is separating multiplica-
tive reasoning from additive, and therefore the operations have different 
roots. Irrespective of the origin of multiplication, repeated addition trans-
forms multiplication into addition by ignoring the quantity transformation 
(P. Thompson & Saldanha, 2003). 

However, in the initial learning of multiplication, repeated addition is 
thought of as an intermediate stage; young students start by counting all 
objects, and move over repeated addition to multiplicative calculations 
(Fuson, 2003; Mulligan & Mitchelmore, 1997). In this initial stage, repeated 
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addition is considered more sophisticated than to count all, but when the 
multi-digit multiplication is introduced it becomes a cumbersome strategy 
and other multiplicative strategies are needed (Anghileri, 1999; Lo et al., 
2008; Mulligan & Watson, 1998; Verschaffel et al., 2007; Young-Loveridge 
& Mills, 2009). Repeated addition is closely associated with the equal 
groups model (De Corte & Verschaffel, 1996; Simon & Blume, 1994), pre-
serving the one-dimensionality of addition (Anghileri, 2000; Barmby et al., 
2009). On the other hand, repeated addition has proved to support students’ 
use of distributivity and associativity (Ambrose et al., 2003; Baek, 2008), 
thus repeated addition to multi-digit multiplication seems to be both dis-
advantageous and beneficial. 

2.4.2 Overgeneralisation of addition strategies 
Influence of additive reasoning, manifested in overgeneralisation of additive 
strategies to multiplication, can form a structural hindrance (Simon & 
Blume, 1994). For example, to calculate 19 + 26 as (10 + 20) + (9 + 6) is a 
sensible addition strategy (Beishuizen, 1993; Fuson et al., 1997), but to mul-
tiply only within ones and tens separately and then add the two products, 
such as to calculate 19 · 26 as (10 · 20) + (9 · 6) is not (Foxman & 
Beishuizen, 2002; Lo et al., 2008; Young-Loveridge & Mills, 2009). This 
mistake has been found both in mental arithmetic and in vertical algorithms, 
both among students and prospective teachers (Foxman & Beishuizen, 2002; 
Lo et al., 2008; Young-Loveridge & Mills, 2009). Some prospective teach-
ers claimed that it should be valid to use addition strategies to multiplication, 
since multiplication is repeated addition (Lo et al., 2008). 

Another influence of addition is to assume that an increase (or decrease) 
of 1 to one factor will increase (or decrease) the product by 1 (Squire et al., 
2004). For example, to believe that 5 · 19 can be calculated as 5 · 20 – 1, 
since 1 was added to 19, 1 should be subtracted. This type of error was most 
frequent to distributive tasks in their study; if the cue stated that 
26 · 21 = 546 and the problem was 27 · 21, most wrong answers were 547. 
Another way to explain these erroneous strategies for multiplication, is to 
refer them to misunderstandings of distributivity (Squire et al., 2004). 

2.4.3 Multiplicative strategies for multi-digits 
Multiplicative strategies for multi-digit multiplication are underpinned by 
commutativity, distributivity and associativity. Students’ understandings of 
the properties can be implicit, as in the reports of student-invented strategies 
starting by repeated addition and finding ways to simplify the additions 
(Ambrose et al., 2003; Baek, 2008; Lampert, 1986). 

An example of a multiplicative strategy using associativity for 16 · 25 is 
to group the 25s in four groups of 4, by dividing 16 by 4 thus transforming 
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the task to 4 · (4 · 25) = 4 · 100. An intermediate strategy is to successively 
double the multiplicand (Baek, 2008), for example to write 25 sixteen times 
make eight groups of 50, four groups of 100, two groups of 200 and finally 
one group of 400, see figure 1. 

 
Figure 1. Successive doubling strategy 

This strategy illustrates the transition from repeated addition to multiplica-
tive strategies, and the successive doubling can be regarded as a mix of  
repeated addition and multiplicative reasoning. A more sophisticated stra-
tegy would be to directly group the 25s in four groups as described earlier. 

Another multiplicative strategy using distributivity is to partition the mul-
tiplier in chunks that are easy to calculate; for example, to exploit that 10 
and 5 are easy to use as multipliers, 16 · 25 can be calculated as 
10 · 25 + 5 · 25 + 1 · 25 (Ambrose et al., 2003).  

A number of findings concerning students’ use of distributivity in their 
calculations are related to classroom studies imposing models for multiplica-
tion, both equal groups (Lampert, 1986) and rectangular array and area 
(Barmby et al., 2009; Izsák, 2004; Young-Loveridge & Mills, 2009) have 
been used. In Lampert’s study, American fourth grade students learnt to 
calculate multi-digit multiplication by distributivity through a series of les-
sons based on the model of equal groups and repeated addition represented 
by word problems and drawings. She claims, that by connecting the number 
sentences to stories and drawings, the students could avoid common mis-
takes, such as those described in section 2.4.2, since they kept in mind what 
the story was about. 

The three classroom studies, in which rectangular array was imposed as a 
thinking and calculation tool to foster multiplicative thinking based on dis-
tributivity, were conducted in England (Barmby et al., 2009), the USA 
(Izsák, 2004) and New Zealand (Young-Loveridge & Mills, 2009) with stu-
dents between 9 and 13 years old. The English study presented an array of 
dots on a computer screen, the New Zealand used dots on paper and the 
American used a series of material starting with an array of unit squares, 
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which gradually were transformed into rectangular area over rectangles of 
100s, 10s and 1s to illustrate the magnitudes. Both the American and the 
New Zealand study encouraged students to connect the array and distributiv-
ity by connections to numerical calculations, for example, by using the grid 
method. The English study emphasised to partitioning the factors in chunks 
that are easy to calculate. For example, the array of dots was organised in 
four 5 · 5 areas that were closer together forming visible 100s as well as 25s. 
Irrespective of these differences, they all reported that the majority of stu-
dents gained from the instruction material as measured by performance on 
multi-digit calculations. However, in all three studies there was a small 
group of students who did not make any connection between the array and 
the calculation. For example, students made the calculation first and then 
struggled to find a way to show the result in the array. Similar findings are 
reported for prospective teachers trying to use rectangular area as a represen-
tation for distributive calculations and struggling to connect their calcula-
tions to the picture (Lo et al., 2008). The difficulty to connect rectangular 
area and multiplication by distributivity might be explained by absence of 
connections between area and multiplication, rather than problems concern-
ing distributivity. To know the area formula does not necessarily imply that 
multiplication is viewed two-dimensionally and hence to connect the area to 
the operation is not self-evident if multiplication is viewed one-
dimensionally as in repeated addition (Izsák, 2005; Simon & Blume, 1994). 

Other instructional attempts for connecting distributive calculations to 
conceptual knowledge can be found in textbooks. In an analysis of Chinese 
textbooks it was reported that distributivity was typically explained by word 
problems in combination with two separate calculations (Ding & Li, 2014). 
For example, 5 jackets for 65 yuan and 5 trousers for 45 yuan, combined 
with two ways to calculate ((5 · 65) + (5 · 45) and 5 · (65 + 45)). This is  
another instance of using an asymmetrical model for multiplication, as in 
Lampert’s (1986) study, and also an explicit way to show that it does not 
matter in which order the calculations are performed. 
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3 Aim and research questions 

To sum up the literature review, three components, in addition to multiplica-
tive reasoning, have been identified in literature as important building blocks 
for understanding of multiplication in the stage when multiplication is  
extended to multi-digits and decimals: models for multiplication, the arith-
metical properties and calculations. 

Multiplicative reasoning is essential for mathematics after primary school 
and it has proved to be challenging for students to master. Multiplicative 
reasoning involves coordination of composite numbers at several levels, 
including expanded numbers such as 20 + 6, and to interpret and understand 
multiplicative comparison. However, most studies seem to use multiplicative 
comparison to investigate students’ multiplicative reasoning, not calcula-
tions. Therefore one question for further investigation is the relation between 
students’ understandings of multiplicative comparison problems and their 
calculations. 

Models for multiplication has been suggested as an important tool for  
development of conceptual understanding of properties of operations, but the 
theoretical suggestions are not always consistent with empirical findings. 
Especially the relations between understanding of distributivity and the 
models of equal groups, rectangular array and area have inconsistencies. The 
equal groups model has been suggested as less suitable than rectangular 
array to make sense of distributivity, but students have successfully  
employed the equal group model to learn distributivity. The array model has 
also proved to be useful for distributivity, even though some students had 
problems connecting the model to the multiplicative calculation. Rectangular 
area is suggested to support conceptualisation of decimal multiplication, but 
empirical studies have shown that area can be unconnected to multiplication, 
and then the model loses its explanatory function. There are also inconsistent 
claims in the literature concerning how difficult distributivity is to learn, 
both in comparison to commutativity and to calculations. These findings, in 
combination with the strong emphasis on how important distributivity is for 
calculations and algebra, raise the need to better understand the process of 
how students make sense of distributivity. 

The aim for this thesis is to understand more about students’ understand-
ings of multiplication when it is expanded to comprise multi-digits and  
decimals, specified as an overarching research question: 
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What do students’ responses to different forms of multiplicative 
tasks in the domain of multi-digits and decimals reveal about their 
understandings of multiplication? 

This question is operationalised in the following research questions, which 
are addressed in the four papers: 

1. What is the sufficiency of multiplicative comparison problems for 
uncovering students’ multiplicative reasoning? (paper 1) 

2. What do students’ evaluations of erroneous calculations of multi-
digit multiplicative problems reveal about their understandings of 
distributivity? (paper 2) 

3.  What is the role the of the equal groups model for multiplication for 
students’ understandings of the distributive property? (paper 3) 

4.  How do students’ connections between models for multiplication, 
calculations and the arithmetical properties vary over time? (paper 4) 

This thesis is problem-driven, meaning that questions were formulated be-
fore a suitable methodology was chosen. The overarching question, regard-
ing what students’ responses to different forms of multiplicative tasks in the 
domain of multi-digits and decimals reveal about their understandings of 
multiplication, places this thesis in the cognitive field of mathematics edu-
cation and signals that it is a descriptive study. 
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4 Students’ understandings 

The notion of students’ understandings is central in this thesis. In this  
chapter I review literature about students’ understandings and how this no-
tion can be investigated. 

4.1 Understanding of mathematical concepts 
Mathematical understanding has often been described as comprising both 
procedural and conceptual knowledge (Barmby et al., 2009; Baroody et al., 
2007; Kilpatrick et al., 2001; Rittle-Johnson, Schneider, & Star, 2015; Star, 
2005). According to Star and Stylianides (2013) the terms procedural and 
conceptual knowledge are a continuation of Skemp’s (1976/2006) distinc-
tion of instrumental and relational understanding and have been used since 
the 1980s. However, there is a discrepancy in what they are employed to 
denote; some literature describes procedural and conceptual knowledge as 
different types of knowledge, and some as different quality of knowledge 
(Maciejewski & Star, 2016). 

Procedural knowledge is defined as step-by-step knowledge, such as to 
perform a calculation in an algorithm (Maciejewski & Star, 2016; Rittle-
Johnson et al., 2015), while conceptual knowledge often is described as  
connected to other “units of knowledge” (Hiebert & Carpenter, 1992, p. 78) 
or as a “connected web of knowledge” (Hiebert & Lefevre, 1986, p. 3). This 
has led to a view of procedural knowledge as unconnected and hence of less 
quality. However, procedural knowledge can be richly connected both to 
other procedures and to conceptual knowledge (Baroody et al., 2007; 
Maciejewski & Star, 2016; Star, 2005). The quality of the knowledge would 
rather lie in more, stronger and well-organised connections (Baroody et al., 
2007; Star, 2005). 

Definitions of conceptual knowledge in the literature often refer to the 
definition from Hiebert and Lefevre above, describing it as well connected 
(Crooks & Alibali, 2014). The definition of conceptual knowledge and how 
it can be measured were investigated in Crooks and Alibali’s study and they 
report of three commonly used categories of definitions: general principled 
knowledge, knowledge of principles underlying procedures and connection 
knowledge. General principled knowledge is to know what principles regu-
late a domain, for example that division is the inversion to multiplication, 
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and might be abstract and implicit, thus not necessarily verbalisable (Crooks 
& Alibali, 2014; Rittle-Johnson et al., 2015). Knowledge of principles  
underlying procedures is similar as general principled knowledge, but expli-
citly explains and justifies a procedure. In contrast, connection knowledge 
links together knowledge, both conceptual and procedural, thus it is another 
type of knowledge (Crooks & Alibali, 2014). In the view of Star and his 
colleagues (Maciejewski & Star, 2016; Rittle-Johnson et al., 2015; Star, 
2005; Star & Stylianides, 2013), conceptual knowledge can be shallow, 
sparsely connected, or deep, well connected. An example of shallow concep-
tual knowledge can be to recite a definition, such as the formula for rectan-
gular area, which Hiebert and Carpenter (1992) denote as learnt without 
conceptual connections. The quality of the knowledge would rather lie in 
more, stronger and well-organised connections (Baroody et al., 2007; Star, 
2005). 

Several researchers argue that conceptual and procedural knowledge are 
complementary (Maciejewski & Star, 2016) and that there is a bidirectional 
relation between procedural and conceptual knowledge in mathematics 
(Rittle-Johnson et al., 2015). The bidirectional relation implies that proce-
dural and conceptual knowledge are dependent on each other to grow deep-
er. For example, by learning procedures, such as an algorithm, the under-
lying principles are strengthened, and reciprocally, by learning the underly-
ing principles the procedural knowledge grows. Consequently, well-
connected conceptual and procedural knowledge, compared to less connect-
ed, is described as a sign of deeper understanding in a number of frame-
works for students’ understanding in mathematics (Baroody et al., 2007; 
Star, 2005). Indeed, connectedness is suggested as central to a deep and 
strong understanding (Barmby et al., 2009; Baroody et al., 2007; Gray & 
Tall, 1994; Richland, Stigler, & Holyoak, 2012). 

This implies that to investigate understandings of multiplication, both 
procedural and conceptual knowledge, as well as connections between them, 
needs to be studied. Procedural knowledge may become observable in pro-
cedures, but conceptual knowledge and the connections need to be externally 
represented to become observable.  

4.1.1 Representations 
There are both theoretical assumptions and empirical evidence that represen-
tations, both external and internal, have an important function in the  
construction of conceptual understanding and in the communication about 
concepts and procedures (Barmby, Bolden, Raine, & Thompson, 2013; 
Hiebert & Carpenter, 1992). Internal representations are described as hidden 
within a persons mind, “as the way in which concepts are stored mentally” 
(Bolden, Barmby, Raine, & Gardner, 2014, p. 60) while external representa-
tions are what other persons can see and hear (Goldin & Shteingold, 2001). 
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To investigate external representations and infer understandings of a concept 
builds on the idea of “correspondence between the form of external re-
presentations with which students interact and the internal representations 
they create” (Hiebert & Carpenter, 1992, p. 90), which has been a basis for 
several studies (Berthold et al., 2009; Crooks & Alibali, 2014; Hiebert & 
Wearne, 1992; Rittle-Johnson & Alibali, 1999). 

External representations can be categorised according to mode: verbal, 
visual, symbolic or numerical (Selling, 2016). For example, a model for 
multiplication can be represented verbally, as a word problem, or visually, as 
a drawing. Representations in one mode, for example visual, can be sub-
categorised, for example as diagrams, concrete materials or drawings. Con-
crete objects, such as manipulatives placed in rows and columns or sketched 
drawings of a chocolate bar, are examples of representations of the model of 
rectangular array (Barmby et al., 2009). External representations can serve 
as thinking tools for the abstract mathematics they represent (Greeno & Hall, 
1997; Izsák, 2005; Pape & Tchoshanov, 2001; Selling, 2016). 

There are at least two roles of representations; as means to communicate, 
both with one self and others, and as means to construct understanding. 
Communication and understanding are not exclusive, but overlapping; the 
act of using representations as thinking tools is a way of communicating and 
it affects the conceptual understanding (Hiebert & Carpenter, 1992; Pape & 
Tchoshanov, 2001; Selling, 2016). 

In order to function as a representation that aids communication the re-
presentation needs to have a meaning that the communicators agree on 
(Greeno & Hall, 1997; Hall, 1998), which might need negotiating in the 
social setting of a classroom or a research interview (diSessa, 2004; Pape & 
Tchoshanov, 2001). To communicate by means of external representations 
may include creating representations (Greeno & Hall, 1997). In the creative 
act of inventing representations students might externalise their internal re-
presentations (Pape & Tchoshanov, 2001), which draws on the theoretical 
assumption of similarity of internal and external representations (Barmby et 
al., 2013; Hiebert & Carpenter, 1992). 

Representations as building blocks for construction of understanding are 
thought to be central in the learning of mathematics (Acevedo Nistal, Van 
Dooren, Clarebout, Elen, & Verschaffel, 2009; Goldin & Shteingold, 2001; 
Greeno & Hall, 1997; Hiebert & Carpenter, 1992; Izsák, 2005; Panasuk & 
Beyranevand, 2010). Furthermore, external representations can be used to 
“facilitate an argument and to support conclusions” (Pape & Tchoshanov, 
2001, p. 125). 

4.1.2 Connections 
Understanding can be viewed as connections between representations of 
different types of knowledge, and the nature of connections has been sug-
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gested to be reasoning (Barmby et al., 2009). Reasoning is a large research 
field in mathematics education and is described in several ways, for exam-
ple, as making generalisations and constructing arguments for generalisa-
tions being true or false (Stylianides, Stylianides, & Shilling-Traina, 2013) 
or as “the line of thought adopted to produce assertions and reach conclu-
sions in task solving” (Lithner, 2008, p. 257). In a broad sense, reasoning 
can be defined as “the process of drawing conclusions”, as a line of thought 
independent of specific tasks (Leighton, 2003). I choose to use this broad 
and unspecified definition of reasoning and accept reasoning as what consti-
tutes the connections as suggested by Barmby et al. (2009). This leads to the 
opportunity to view utterances, supported by drawings, gestures and other 
external representations, as reasoning connecting different representations of 
different types of knowledge. An example of reasoning connecting two re-
presentations in multiplication is to reason that adding sixteen 25s is the 
same as adding eight 50s since the result is the same. This reasoning is con-
necting the representation of multiplication as repeated addition to implicit 
knowledge of associativity. The same reasoning could be considered as 
stronger if it also links to a representation of the sixteen 25s as becoming 
half as many 25s but twice as large, since the 25s are put together two and 
two to 50s. This example demonstrates that connections, seen as reasoning, 
can be of different quality. 

In several studies external representations and connections between them 
are employed to infer students’ understanding. Two examples of studies are 
first graders understandings of place value (Hiebert & Wearne, 1992) and 
high school students’ understandings about probability (Berthold et al., 
2009), which illustrate the wide range of age groups it has been applied to. 
In this thesis I adhere to the assumption that the internal and the external 
representation for a concept can be similar, but not necessarily the same 
(Hiebert & Carpenter, 1992), and that it is possible to infer understanding by 
observing connections, in the form of reasoning, between these representa-
tions (Barmby et al., 2009). 

To have parallel representations, and connections between them, which 
enables to switch representation to what best fits the problem at hand, is 
viewed to indicate deeper understanding than having a single representation 
for a mathematical concept (Acevedo Nistal et al., 2009; Dreyfus, 1991; 
Panasuk & Beyranevand, 2010). I also agree with the body of research that 
suggests that the more and stronger connections between representations and 
between forms of knowledge, as well as the more structured the connections 
are, the deeper is the understanding (Barmby et al., 2009; Baroody et al., 
2007; Crooks & Alibali, 2014; Gray & Tall, 1994; Hiebert & Carpenter, 
1992; Hiebert & Wearne, 1992; Izsák, 2005; Maciejewski & Star, 2016; 
Rittle-Johnson & Alibali, 1999; Rittle-Johnson et al., 2015; Star, 2005; Star 
& Stylianides, 2013). 
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In this thesis a model for students’ understandings of multiplication has 
been drawn from the reviewed literature above, placing connections in the 
centre. The connections link procedural and conceptual knowledge, both 
viewed as representations of multiplication. The connections are seen as 
reasoning. 

4.2 Understandings of multiplication 
In this section I draw from the reviewed literature in section 4.1 to present a 
model for students’ understandings of multiplication. In chapter 2 central 
components for multiplication in the stage when multiplication is expanded 
to multi-digits and decimals were identified. In this section I put these com-
ponents together in a model for mapping connections between the compo-
nents in a simplified diagram in figure 2. 

 
Figure 2. The multiplicative cuboid 

The width reflects the dimension of models for multiplication, the height 
reflects the dimension of calculations and the depth the dimension of the 
arithmetical properties. The width can be divided into as many models of 
multiplication as one wishes to investigate, for example symmetrical and 
asymmetrical or finer grained by dividing it into more models, as in figure 2. 
The height can be divided in the number of distinctly different calculation 
strategies that are of interest, here repeated addition, addition influenced 
strategies and multiplicative strategies are chosen, and the depth in the 
arithmetical properties, commutativity, distributivity and associativity, 
which all are applicable to multiplication and underpin calculation strategies. 
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The components are not of the same type and they are illustrated as different 
dimensions of a cuboid. 

There is no clarified hierarchy of importance of different models, al-
though some models are assumed to be easier than other. More importantly, 
they have different properties and hence different feasibility to various pro-
perties and number sets, as was described in section 2.2. The arithmetical 
properties are mathematical laws, and hence not hierarchically ordered, even 
though commutativity and distributivity are suggested to be more central 
than associativity in the stage of expanding multiplication from single-digits 
(Schifter et al., 2008), and their importance for multiplicative reasoning was 
described in section 2.3. However, among the calculations there is a hierar-
chy. Repeated addition is a less sophisticated strategy than multiplicative 
strategies underpinned by the arithmetical properties. Between the repeated 
addition and multiplicative strategies are strategies reflecting overgeneralisa-
tion of addition, which implies that they generally yield erroneous answers 
as described in section 2.4. It could be argued that the erroneous answers 
should place additive reasoning strategies below repeated addition. But the 
effort of trying to use a more sophisticated strategy warrants its placement 
above repeated addition. 

The small cubes of the cuboid represent three-way connections. An  
example of a such a connection is to calculate 16 · 25 by use of the distribu-
tive property, as 10 · 25 + 6 · 25, and connecting it to the model of equal 
groups by explaining that one can first calculate 10 of the groups and then 
the remaining 6 groups, irrespective whether knowledge of distributivity is 
implicit or explicit. This example of connections would fit in the cube where 
all three dimensions meet. To calculate in the same manner without connect-
ing it to any model for multiplication would be in the two-dimensional 
square on the surface of the cuboid where the arithmetical properties and 
calculations meet. An example of unconnected understanding is to calculate 
16 · 25, for example by an algorithm, without explanation why it works  
neither from implicit knowledge of distributivity nor any model for multipli-
cation. This example would be placed on the one-dimensional edge of the 
calculation dimension. 

This model does not imply that to perform calculations without any re-
ference to models of multiplication or knowledge of what properties are used 
is a sign of less connected components and thus more shallow understand-
ing. When a calculation strategy has become familiar and is frequently used, 
there is no need to make connections to models or properties. But when 
asked to explain why the procedure works, the connections to properties and 
models can be a sign of deeper understanding. 

The cuboid gives opportunity to map a person’s demonstrated connec-
tions. The external representations, which a person creates by verbal utter-
ances, drawings and calculations that are related to any of the three compo-
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nents, can, potentially, comprise a connection to one of or both the other 
components, thus fit into one of the squares or cubes. 

4.2.1 Analytical tool 
To use the multiplicative cuboid for fine-grained analyses it needs to be 
transformed into two-dimensional shape. Since there are three dimensions of 
the cuboid, three matrices can be created, see figures 3–5. The matrices 
make it possible to record connections between two of the dimensions at a 
time and were presented and discussed in a slightly different layout at an 
international conference (Larsson, 2015). 

To demonstrate what can be recorded in the cells I show an example of a 
connection that a student, here called Erik, made between repeated addition 
and commutativity by calculating 5 · 19 as repeated addition by adding both 
five 19s and nineteen 5s, see figure 3. 

 Commutative 
property 

Distributive 
property 

Associative 
property 

Repeated addition Erik calculated 
5 · 19 as 
19 + 19 +… and as 
5 + 5 +… 

  

Addition influ-
enced strategies 

   

Multiplicative 
strategies 

   

Figure 3. Matrix for connections between arithmetical properties and calculations 

In figure 4 the connections between models for multiplication and the arith-
metical properties are focussed. An example of a possible connection can be 
to explain distributivity by referring to divide equal groups into two parts. 
 
 Commutative 

property 
Distributive 
property 

Associative 
property 

Equal groups questionable   

Rectangular area    

Rectangular array    

Multiplicative 
comparison 

questionable   

Figure 4. Matrix for connections between arithmetical properties and models for 
multiplication 

Note that it says “questionable” in two of the cells in figure 4; to connect 
commutativity to asymmetrical models of multiplication is questionable 
since asymmetrical models are thought to conceal commutativity (Bell et al., 
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1989; Greer, 1992; Lo et al., 2008; Verschaffel et al., 2007). However, there 
are reports of students making this connection (Carpenter et al., 2003). In 
figure 5 connections between models for multiplication and calculations can 
be noted. 
 Equal 

groups 
Rectangular 
area 

Rectangular 
array 

Multiplica-
tive com-
parison 

Repeated addi-
tion 

    

Addition influ-
enced strategies 

    

Multiplicative 
strategies 

    

Figure 5. Matrix for connections between models for multiplication and calculations 

The multiplicative cuboid, and the matrices derived from it, enables analyses 
of how connections can be more or less frequent as well as what connections 
different students demonstrate, possibly creating different patterns of con-
nections. 

Note that it is not necessarily a sign of deep understanding to have many 
connections, to fill most cells; the structure and quality of what is connected 
and the connections are also important (Barmby et al., 2009; Baroody et al., 
2007; Hiebert & Carpenter, 1992; Hiebert & Wearne, 1992; Izsák, 2005; 
Star, 2005). For example, to have connections to repeated addition and 
commutativity is not necessarily strengthening understanding of multiplica-
tion. The example in figure 3 is not as sophisticated as to connect commuta-
tivity to a symmetrical model for multiplication to make arguments of  
generalised commutativity. 

The multiplicative cuboid could, in theory, reveal compartmentalised  
understandings by no or few cells containing utterances. However, this 
would draw on the assumption that all connections are made observable by 
explicit reasoning, which is unlikely to happen. Despite efforts to offer a 
variety of tasks to elicit reasoning and representations for multiplication, 
there would still be connections and representations that are abstract and not 
verbalisable (Crooks & Alibali, 2014). 
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5 Method 

In this chapter, I present methodological choices in relation to my research 
questions. I start by describing how the participants were chosen followed 
by data collection activities, including tasks and rationales for these activi-
ties and tasks. This is followed by a description of analyses and finally I 
present what ethical considerations were made. 

5.1 Participants 
The participating students comprise a convenience sample (Bryman, 2008) 
with no pretension of being representative. However, I chose the school for 
its diverse profile of students considering both the parents’ socio-economic 
status and the proportion of immigrant students. The results in mathematics 
are known to vary in relation to these factors (Hansson, 2012). This particu-
lar school increased the possibilities for a diverse group of students in order 
to enable various demonstrations of students’ understandings. Inviting stu-
dents from schools with different profiles could have accomplished the  
diversity, but would have made the data collections more time consuming. In 
addition to the school’s diverse profile, it included three parallel classes of 
the grade in question to ensure enough students. 

After getting agreement for the study from the school’s principle, I con-
tacted the three teachers that were teaching mathematics to grade four in 
spring 2012. Two of the teachers were planned to teach the same classes in 
mathematics in grades five and six and thus suitable for the study. Since the 
study was investigating the extension of multiplication to multi-digits and 
decimals, I wanted to start the study just before these domains were intro-
duced, which is the second semester of grade five. Hence the study should 
take place in grades five and six, when the students would be 10–13 years 
old. The decision to include the first semester of the seventh grade was made 
when the students were in sixth grade. Both teachers were well-qualified and 
experienced, they had 14 and over 25 years of experience respectively. I 
described the research project to the teachers, both written and orally, and 
provided opportunity to ask further questions. Both teachers agreed to parti-
cipate. 

Next step was to get the students’ and their parents’ informed consent. A 
written description of the study, including contact information to both my 
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supervisors and me, was handed out to the students to take home. The aim 
for the research and how the collected data would be used were explained in 
the letter. The participants were also informed of their right to withdraw 
from the study at any time and that they would be kept anonymous in all 
presentations of the study. Both the student and a parent needed to sign a 
document where they explicitly agreed either to participate fully, including 
video and audio recordings, or to participate partially, which was to partici-
pate in everything except recordings. Before handing out the written infor-
mation, all students were orally informed about the study, its rationales and 
its aims. I spent three half days in each of the classes to enable the students 
to get accustomed to me and ask more questions about the study in a more 
informal way. In addition I could learn all the students’ names prior to the 
study. 

In the first semester twenty-seven students and their parents agreed to 
participate fully and nineteen students chose to participate partially, without 
recordings. In the following years some students left the school and a few 
newly arrived were invited to participate. A stable group of twenty-two stu-
dents participated fully through the whole study. The last semester of the 
study, in the seventh grade, only eight of the students were interviewed. 
These eight were chosen as representatives for different learning trajectories 
discovered by tentative analyses of the data from earlier semesters. 

5.1.1 Teaching context 
Both teachers taught the students through fourth to sixth grade and one also 
the seventh grade. They used the same textbook series, but according to their 
own claims and my observations when visiting their classes, there were dif-
ferences in their instruction. One of the teachers, who taught eighteen of the 
twenty-two students and followed them to seventh grade, followed the text-
book closely, and the students worked individually, solving the tasks in the 
textbooks most of the time, which is common practice in Swedish mathe-
matics instruction (Skolverket, 2009). The other teacher spent more time on 
whole class teaching, mathematical games and other activities and hence less 
time was dedicated to individual work in the textbooks. 

The textbook series consists of one book for each semester and typically 
presents a problem type and how it can be solved on the top of a page and a 
number of problems, to which the solution method is applicable, on the rest 
of the page. There are also pages with mixed problems, summaries and  
challenges. The books cover different mathematical content areas, such as 
large numbers, geometry and decimal numbers, in separate chapters. 

In a simple analysis of the multiplication problems in the six textbooks 
for grades four to six, it was found that more than half of the problems 
(64 %) were uncontextualised; such as ‘calculate 40 · 20’. The contextual-
ised problems were predominantly equal groups problems (78 %) given as 
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word problems. In the first book for grade four, there were pictures of  
rectangular arrays and of equal groups, in the five subsequent textbooks 
pictures for multiplicative situations were rare, except for images of money. 

The textbook series promotes both horizontal and vertical multiplication 
calculations by partitioning the numbers by place value and explanations 
were provided by comparing ones to 1 kronor coins, tens to 10 kronor coins 
and hundreds to 100 kronor notes. Both the vertical and the horizontal calcu-
lations were presented by procedural step-by-step instruction. Once in the 
book for the second semester of the sixth grade, an alternative calculation 
was presented to simplify decimal multiplication by doubling and halving in 
order to transfer the problem into integers, for example 3.5 · 6 = 7 · 3. 

The second semester in grade five, multi-digit and decimal multiplication 
were introduced. Both were introduced by procedural step-by-step instruc-
tion for how to calculate both vertically and horizontally, and all the deci-
mals were larger than 1. In the first semester of the sixth grade, decimals less 
than 1 were included together with tasks involving to reflect over the pro-
duct not being larger than the factors. Percentage was introduced the second 
semester in grade six, as a way to find x % of a number through finding 1 % 
(or 10 %) and then multiply. 

5.2 Data collections and tasks 
In order to get different types of data, a number of different forms of tasks 
were used, which is considered as essential in studies aiming at investigating 
what connections students make (Barmby et al., 2009; Bisanz, Watchorn, 
Piatt, & Sherman, 2009; Hiebert & Carpenter, 1992). Individual clinical 
interviews give opportunity to follow the students’ line of reasoning by fol-
lowing up questions (Ginsburg, 1997), thus both procedural and conceptual 
knowledge can be investigated (Crooks & Alibali, 2014). Paired interviews 
can capture students’ reasoning while it takes place when students solve 
problems together (Izsák, 2004; Schoenfeld, 1985). Written tests allow each 
student to think about the problems without the potential stress of a re-
searcher watching and additionally have the advantage to be time efficient. 
As a complement, I also collected the students’ solutions to the written  
national tests in grade six as well as interviewed the teachers once in the 
beginning of the study. In the following I describe data collection methods 
and tasks that were used in the four parts of my study reported in this thesis. 
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5.2.1 Clinical individual interviews 
To investigate the students’ understandings of multiplication, as manifested 
by their reasoning, clinical individual interviews were the main method to 
collect data. Each individual clinical interview involved four forms of tasks; 
multi-digit calculations, explanation for calculations, story telling to given 
multiplications and questions to explicitly explain multiplication. The ques-
tions were adapted to what the students said; that is I followed their lines of 
thinking in order to understand how they perceived multiplication. 

The interviews were conducted during the school day in a small room 
close to the classroom. Each interview started by a reminder that the reason 
for my research was curiosity of how students really think when they work 
with operations, that the interview was recorded and that the student could 
withdraw from the research at any point if he or she wanted, without having 
to give any explanation. The curiosity of students’ thinking is described as 
respecting the student by showing a real interest in his or her thinking, typi-
cal of clinical interviews (Ginsburg, 1997). The reminder of my curiosity 
also included that I explicitly stated that I was not interested in the correct-
ness of their answers, but how they reached them. 

A separate audio recorder and a smartpen were used for recordings. The 
smartpen records both audio and what is written (or drawn) during the inter-
view. Both written and audio recordings can be replayed as it occurred,  
enabling a detailed transcription of the combination of the written and oral 
data. 

The explicit explanations for multiplication made it possible to compare 
the students’ answers over time as well as to compare what models for  
multiplication the stories they told reflected. Furthermore, explicit explana-
tions have been reported as a means to directly measure students’ conceptual 
knowledge and via the calculations students could demonstrate procedural 
knowledge, while explanations or justifications might demonstrate underly-
ing conceptual knowledge (Crooks & Alibali, 2014). The numbers in the 
calculation tasks, which are presented in table 1 on next page, together with 
the number expressions for story telling, were chosen to elicit strategies 
underpinned by the arithmetical properties, predominantly distributivity. 
From the second semester, the calculation tasks were chosen after a prelimi-
nary analysis had been made of the students’ solutions the previous semester 
to make use of experiences and adapt the tasks to challenge the students’ 
reasoning. 
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Table 1. Calculation and story telling tasks during individual interviews 

Time  Calculation Story telling 
Grade 5 
1st semester 

5 · 19 
16 · 25 

Any number 

Grade 5 
2nd semester 

15 · 24 Any number 

Grade 6 
3rd semester 

19 · 42 19 · 42 
4.6 · 3.9 

Grade 6 
4th semester 

39 · 23  
finish: 
37 · 21 = 20 · 37 + ? 
45 · 19 = 20 · 45 – ? 
mimic for 29 · 42 

39 · 23 
3.8 · 4.9 

Grade 7 
5th semester 

16 · 25 
2 · 0.8 
0.7 · 4 
0.2 · 0.9 

16 · 25 
2 · 0.8  
0.2 · 0.9 

 
Single- by multi-digit numbers, such as 5 · 19, had been part of instruction at 
the time of the first interview, while two multi-digit numbers, such as 
16 · 25, had not. By starting with a type of task that they had met in instruc-
tion, I hypothesised that students would feel more at ease, hence the first 
task was 5 · 19. Multiplication of two two-digit numbers was what the litera-
ture had indicated as problematic, hence what was focussed on throughout 
the study. All numbers in calculation tasks were chosen to elicit reasoning 
by distributivity and in one case, 16 · 25, also associativity. For example, 16 
can be factorised into 4 · 4 and the task can then be solved as (4 · 4) · 25 = 
4 · (4 · 25), simplifying the calculation. Both tasks, 5 · 19 and 16 · 25, came 
from other studies (Foxman & Beishuizen, 2002; Ruthven, 1998), in which 
they had proved to elicit different types of reasoning, for example 5 · 19 can 
be solved by finding half of 10 · 19 or by 5 · 20 – 5. Since 16 · 25 was pro-
ductive the first semester by eliciting distributivity among the students in 
this study, a similar task was chosen for the second semester, 15 · 24. Both 
have one number ending with a five, which had elicited reasoning about 
fives as easy to think with and the proximity of 24 to 25 might be productive 
for rounding up. Numbers ending with a nine are prone to compensation 
strategies, such as to round up to the next ten and adjust the answer by sub-
tracting, such as to solve 19 · 42 as 20 · 42 – 42 (Heirdsfield, Cooper, 
Mulligan, & Irons, 1999). Hence both calculation tasks in grade six had one 
factor ending with nine. For the last interview in grade seven, 16 · 25 was 
reused to investigate students’ development of strategies. 

The two unfinished calculations and the mimic task were chosen to  
challenge students who had not yet tried any calculation strategy involving 
distributivity. These tasks can also be construed as measuring the underlying 
principles of procedures for those students that had used distributivity earlier 
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(Crooks & Alibali, 2014). The unfinished calculations were presented as 
they are written in table 1, including a use of commutativity, such as 
37 · 21 = 20 · 37 + ? The reason for this choice was to not bias the task to-
wards one of the two types of students with a firm view of which factor de-
noted the multiplier. Among the students, within the same class, there were 
some students with a firm view of the first factor denoting the multiplier and 
some students with a firm view of the second factor denoting the multiplier. 
In the mimic task, 29 and 42 were chosen to create opportunity to use both 
of the unfinished strategies, that is to split 42 in 40 + 2 and to round up 29 to 
30 and compensate. 

The two tasks with an integer multiplied by a decimal number used in 
grade seven, forced students to abandon repeated addition procedures, or to 
treat the natural number as the multiplier and hence use commutativity to 
one of the tasks. Since some students demonstrated a firm view of the first 
factor being the multiplier, while other students showed an equally firm 
view of the second factor being the multiplier, two versions were offered to 
all students. The multiplication of two numbers less than 1 violates the ‘mul-
tiplication makes bigger’ belief (Bell et al., 1981). The number 0.9 was cho-
sen since it is close to 1, which might support ways of reasoning connected 
to rounding up and compensate. 

In addition to calculations, the students were invited to story telling, simi-
lar to problem posing. To pose a problem to a numerical expression, such as 
15 · 24, might expose students’ conceptualisation of the operation (De Corte 
& Verschaffel, 1996; Prediger, 2008). To tell a story is similar to posing a 
problem, but the story does not necessarily need to comprise a question. For 
example “Sofia has three times as many pens as Martin, and since Martin 
has five pens, Sofia must have fifteen”, is an example of a story matching 
the multiplication 3 · 5 = 15. The stories that students tell can give an image 
of what the students perceive as adequate multiplication by which model for 
multiplication they choose (De Corte & Verschaffel, 1996), but also as a 
reflection of what they have experienced in mathematics instruction 
(Verschaffel et al., 2007). By inviting students to tell stories to multi-digit 
and decimal multiplication, it was hypothesised that the stories would give 
an indication of how they conceptualised multiplication (Prediger, 2008). 

During the first year of the study, grade five, the students could tell a  
story matching any multiplicative expression. From the second semester of 
the study, the student was prompted to find more stories for the same  
expression that they themselves thought of as different, thus given oppor-
tunity to demonstrate knowledge of more models for multiplication and what 
the student viewed as significant differences within multiplication. 
From grade six they were prompted to tell a story to the same multi-digit 
task as they had first calculated, see table 1, in order to create opportunities 
for connecting the calculation strategy to a story. Almost all stories the stu-
dents told during fifth grade had reflected equal groups. To challenge their 
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choice of model, they were also invited to tell matching stories to decimals 
from grade six. The decimal multiplications in grade six, 4.6 · 3.9 and 
3.8 · 4.9, were chosen to be applicable both to the measures for a room, in 
metres, and for the cost of candy at 3.90 kronor/hg or 4.90 kronor/hg, which 
is a common every-day context in Sweden. 

5.2.2 Paired interviews 
It is hard to investigate how students think and reason when solving prob-
lems (Schoenfeld, 1985). To ask the student after the solution might result in 
a description of the successful decisions that led to the solution and the mis-
takes are omitted. This would lead to less data supporting my understanding 
of how the students were reasoning while they were working. Some re-
searchers have tried to ask for simultaneous reporting of the solutions, talk-
ing out loud. This is however hard for some persons to do, especially young 
students (Schoenfeld, 1985). To put the student with a peer might get more 
detailed access to the thinking as they were working (Izsák, 2004). A draw-
back can be that one of the students dominates the problem solving and 
hence the reasoning of the less active student is not captured, but on the  
other hand it might give more detailed information of the reasoning process 
for the first student, or in best case, both students (Schoenfeld, 1985). The 
choice of putting students in pairs rather than larger groups, even though 
some interviews were in groups of three for practical reasons, was based on 
a pilot study, in which larger groups worked less well, typically by one stu-
dent taking charge of the discussion, compared to pairs, in which both more 
often reasoned together. 

The paired interviews were conducted in the same manner as the indivi-
dual interviews (see section 5.2.1) with two exceptions; they were also video 
recorded and I did not interfere with the students’ work unless to clarify 
something or if I could not hear what they said. Video recordings could  
ensure that the students’ voices were correctly identified. In addition, a pilot 
study had revealed that when students were discussing and explaining a 
problem together the gestures and pointing increased, which contributed 
vital information of what their utterances were referring to. 

The evaluation tasks were followed by prompts to explain and justify 
their reasoning, if they did not do that spontaneously. In this thesis only the 
paired interview from last semester in grade six is reported. 

The students were invited to evaluate three invalid calculation strategies 
for the multi-digit multiplication, 26 · 19. All three suggested strategies ori-
ginate from students in the study, suggested or conducted during individual 
interviews to multi-digit multiplication. They were presented on separate 
cards as if fictitious students were suggesting them, see figure 6. The sug-
gested strategies reflect errors with respect to distributivity and influence of 
additive reasoning or overgeneralisation of addition calculations. They can 



 

 40 

also be regarded as tasks aiming for conceptual knowledge defined as prin-
ciples underlying procedures (Crooks & Alibali, 2014; Rittle-Johnson & 
Alibali, 1999). 

 
Figure 6. Three erroneous strategies 

The first suggested strategy, to split 26 into 20 and 6, multiply 20 by 19 and 
then add the 6, reflects influence of additive reasoning: since 20 and 19 are 
already used in the multiplication, there is not anything else to do with the 6 
that is ‘left’. The two other suggested strategies have analogous strategies 
for addition. The second suggested strategy, to move 1 from 26 to 19 and 
calculate 25 · 20, is analogous to a compensating strategy for addition, 
26 + 19 = (25 + 1) + 19 = 25 + (1 + 19) = 25 + 20, and underpinned by asso-
ciativity. The third suggested strategy, to partition both factors by place  
value and multiply ones and tens separately is also analogous to addition 
strategies and was described in the section about overgeneralisation of addi-
tion (section 2.4.2) since it has been reported in prior studies. During the 
paired interview the students were invited to evaluate if the suggested strate-
gy was valid or not and explain why. 

5.2.3 Written tests 
Written tests with word problems were used to give information of students’ 
passive knowledge of different multiplicative models, as a complement to 
their active knowledge when telling stories. In this thesis, only three of the 
ten word problems from the first semester were employed, namely the three 
problems reflecting multiplicative comparison and these are presented in 
table 2 on next page. The multiplicative comparison problems were used to 
measure students’ ability to reason multiplicatively. This approach to eva-
luating multiplicative reasoning is in line with other studies (e.g. Clark & 
Kamii, 1996; Van Dooren, De Bock, & Verschaffel, 2010) and was contrast-
ed to the students’ calculations of 5 · 19 and 16 · 25 the same semester. 

The written test were given during ordinary mathematics lessons to the 
whole classes, with oral information that the solution was more important 
than the answer to ensure that the students would write an expression how 
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they calculated the answer. The test consisted of ten word problems and was 
divided into two sets of five problems, in order to avoid test fatigue, that 
were given one week apart. 
Table 2. The multiplicative comparison word problems from the first semester 
(translated to English) 

Question 
number 

The word problems 

3 Sofia has 50 kronor. Martin has 3 times as much money as Sofia.  
How much money has Martin got? 

8 Sofia has 50 kronor. Martin has 150 kronor.  
How many times as much money has Martin?  

10 Max has 150 kronor. This is 3 times as much money as Mollie has.  
How much money has Mollie? 

 
The word problems were written in simple language resembling textbook 
tasks, with no superfluous or missing information. The problems were posed 
as multiplication and division problems, both partitive and quotitive. All 
numbers were ‘easy’, such as multiples of 50 or within the multiplication 
table. With too easy numbers there is a risk that students might use a super-
ficial technique to only look at the numbers to decide what operation will 
solve the problem (Greer, 1992). This was balanced by the opportunity that 
easy numbers might help the students to keep their attention on the structure 
of the problems (Tzur et al., 2013). 

5.2.4 Additional material 
In addition to tasks generated explicitly for this project, some other data 
were collected: I interviewed the teachers during the first semester of the 
study and collected copies of the students’ solutions to the written parts of 
the national test in mathematics for grade six. Both the interviews and the 
written test material could contribute to a thicker description of students’ 
mathematical experiences and achievement. 

The interviews with the teachers were conducted to get background  
information, such as their education and experience and what textbook series 
they used, but I mainly wanted to hear how they themselves described their 
instruction. 

The written test materials were collected for all students who had accept-
ed full as well as partial participation. Swedish students do national tests in 
the end of grade three, six and nine. The tests in mathematics for grade six in 
2014 consisted of an oral part and four written parts. The test items are under 
secrecy, and I was given permission from the schools principle to collect the 
written tests for the students in the study under the condition that I do not 
reveal any of the test items. I copied the participating students’ four written 
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test parts and marked them according to the guidelines for marking, provid-
ed from the Swedish National Agency for Education. These markings can be 
compared to the national results for the test, which is available on the  
National Agency’s web pages. This implies that I can compare the students’ 
overall mathematical achievements in the end of grade six to the national 
level. 

5.3 Analyses 
Analyses have been conducted by various methods, depending on the aim of 
each paper. In this section I first describe how transcriptions were con-
ducted, since that was common for all papers. This is followed by a descrip-
tion of the analyses in relation to the four research questions, addressed in 
each of the papers. 

5.3.1 Transcriptions 
The analyses of the interviews started with transcription, transforming  
spoken language to written (Bryman, 2008). Transcriptions were primarily 
made from the audio recordings and later complemented by information 
from the smartpen, and in the paired interviews also from the video re-
cordings. 

The transcriptions were verbatim, but in written language, including 
sounds like “mm” and similar. Examples of changes to written language 
were to write “jag” [I] instead of “ja” and “är det” [is it] instead of “ere”. 
The meaning of what the students think can be clearer in written language 
(Szabo, 2013) and serves my purpose better. When students were quiet long-
er than approximately three seconds, I also included how long pauses they 
made. Overlapping talk, strong emphases and laughter were noted, but no 
other audio-related information. 

The smartpen allowed me to complement what students said with their 
writing and drawings exactly when it happened. This contributed to very 
precise information of what the students said and wrote simultaneously. The 
written materials were inserted in the transcriptions when they contributed to 
understanding what was said. In a similar fashion I complemented the  
transcription with descriptions from the video recordings. I only included 
gestures that I judged as significant to understand what the students meant. 
Examples of gestures always included were when students said this, here, 
there and similar while pointing at something. Example of other gestures 
noted in the transcripts were hand movements that students made, when they 
explained what impact different speed had on the distance between two 
swimmers, reported of at a conference (Larsson & Pettersson, 2015). In the 
final phase I complemented the transcripts with punctuation marks to  
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enhance readability. The transcripts are in Swedish, and analyses of them 
were conducted in Swedish. Only excerpts that are presented are translated 
into English, and these are sometimes slightly changed into more formal 
language out of respect for the students. 

5.3.2 Analyses for paper 1 
The first paper investigates the sufficiency of multiplicative comparison 
problems for uncovering students’ multiplicative reasoning. To find answers 
to this, the whole cohort of fully participating students’ solutions to the three 
multiplicative comparison problems presented in section 5.2.3 were ana-
lysed. This was compared to how they had calculated in the interview the 
same period during first semester in grade five. 

The answers to the word problems were analysed as described by Van 
Dooren et al. (2010), coding the answers as additive, multiplicative or  
other/undefined. An additive solution to 3 times as much as 50 would be 53 
(50 + 3) and a multiplicative 150 (3 · 50). If a student had answered all three 
items by multiplicative reasoning he or she was considered to reason multi-
plicatively. If a student demonstrated two or more additive answers he or she 
was considered to reason mainly additively to the word problems. The  
remaining students were considered to demonstrate mixed reasoning. 

For the calculation tasks, the transcripts of the students’ calculations of 
5 · 19 and 16 · 25 were analysed, categorising the calculations as additive, 
multiplicative or other/undefined. Additive calculations were calculation 
strategies influenced by addition, such as to calculate the ones separately 
from the tens, typically yielding incorrect answers. In the calculation task, 
repeated addition was categorised as an additive calculation since the stu-
dents’ calculations were focussed, not only their answers. To repeatedly add 
multi-digit numbers is not considered as conceptualised multiplication  
(P. Thompson & Saldanha, 2003), even though it can lead to a correct  
answer. The multiplicative calculations were underpinned by the distributive 
or associative property. Most common was to partition one of the factors and 
for example solve 16 · 25 as 10 · 25 + 6 · 25. Finally, some students’ calcula-
tions could not be categorised according to reasoning and were categorised 
as other/undefined Students were then categorised as showing additive or 
multiplicative reasoning to both the calculations or as demonstrating mixed 
reasoning if not both calculations were additive or multiplicative. 

5.3.3 Analyses for paper 2 
The second paper answers to what students’ evaluations of erroneous calcu-
lations of multi-digit multiplicative problems can reveal about their under-
standings of distributivity. Hence, the data to analyse were the transcripts 
from the paired interviews the second semester in grade six. In this interview 
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the students were presented with three different erroneous strategies to cal-
culate 26 · 19 (see figure 6 in section 5.2.2) and the students were invited to 
evaluate whether each suggested strategy was valid or not and explain why. 

The analyses of these transcripts were conducted by a bottom-up proce-
dure (Andrews, 2009), in order to investigate how the cohort of students 
reasoned to each of the three strategies. The data were iteratively read and 
clustered in groups of similar reasoning, re-read and checked for overlaps, 
possible refining or unitising of groups. The groups were labelled according 
to the overall idea that the reasoning reflected, which yielded seven catego-
ries labelled as general justification, equal groups, counterexample, check 
the answer, experience, additive reasoning and other/no answer. For exam-
ple, the category equal groups covered reasoning in which students contex-
tualised the numbers to the equal groups model for multiplication. Each pair 
could employ more categories which all were noted. See paper 2 for more 
examples of the reasoning categories. 

This categorisation was presented and discussed at an international con-
ference, which resulted in a second analysis of the categories. In the second 
analysis, properties of the reasoning of the categories were identified and 
compared, also as a bottom-up process. This resulted in five categories at a 
more general level: investigative reasoning on a meta-level, multiplicative 
reasoning by the distributive property, procedural reasoning, descriptive 
reasoning and not showing multiplicative reasoning. 

5.3.4 Analyses for paper 3 
In the third paper, the role of equal groups for students’ understandings of 
distributivity was investigated. To investigate this the transcript from two 
students’ paired interview explaining erroneous strategies was analysed. The 
two students were chosen since I knew from the analyses conducted for  
paper 2 that they had employed equal groups several times during their rea-
soning, in which they explained distributivity. Hence it was hypothesised 
that their reasoning might provide insights to how the equal groups model 
was exploited to support distributive understanding. 

The emphasis was on the students’ understandings and a framework for 
such investigations was employed, the representational-reasoning frame-
work, described by Barmby et al. (2009). Briefly described, this framework 
views understanding as mental representations of a concept and connections 
between these representations. The connections consist of reasoning, which 
is broadly defined as the process to come to a conclusion. Reasoning can be 
observed and allows students’ understandings to be inferred. In our case we, 
one co-author and me, inferred understandings related to equal groups and 
distributivity, since we investigated reasoning that connected representations 
of these. 
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In the transcript we identified students’ explanations that drew on any 
model for multiplication, and how the model was exploited in relation to 
distributivity. This was done separately and then compared. We had identi-
fied the same excerpts and the same model, equal groups, in each of these 
excerpts. The reasoning in those excerpts was mainly verbal, but some visual 
information, such as drawings, written calculations and gestures were in-
cluded in the excerpts. Each instance of reasoning was analysed inde-
pendently in a process of iterative readings, to control if and how the reason-
ing was linking equal groups to distributivity. Some minor differences  
between how we had perceived the reasoning were discussed and in some 
cases the recordings were revisited to also include tone of voice, in order to 
decide which of possible interpretations of utterances that made more sense. 

5.3.5 Analyses for paper 4 
In the fourth paper, students’ connections between models for multiplication, 
calculations and the arithmetical properties were investigated in relation to 
how they varied over time. The analytical process in this study started by 
identifying two students who could exemplify students with different under-
standings of multiplications over the five semesters of the study. I found two 
students who had demonstrated different understandings during the first 
semester in fifth grade, while they both achieved the highest possible grade 
in the national test in the end of grade six. Next step of the analyses was to 
decide which parts of the collected data that would best serve the purpose of 
this study. A tentative analysis was therefore conducted for all collected data 
regarding the two students. The paired interviews were excluded, since too 
much of their reasoning was convoluted in the discussions with their peers. 
The written work did not reveal much of their reasoning, leading to the deci-
sion to only use the transcripts from the individual clinical interviews from 
all five semesters. 

The analysis of each transcript started by reading the whole interview ses-
sion to get an overview. If necessary for straightening out ambiguity, this 
was complemented by listening to the audio and/or looking at the animation 
of the smartpen. In the next reading, I noted the parts where any of the com-
ponents were employed, that is whether the student was calculating or was 
using or reasoning about an arithmetical property or a model for multiplica-
tion. The noted parts formed units of various lengths that could be meaning-
fully analysed. Below is an example of how such a unit was distinguished 
from the surrounding transcript. The part in italics was identified as a unit 
separated from the parts above and below. Note that I have changed the tran-
script into more formal written language out of respect for Ida and to not 
make her reasoning obscured by spoken idioms. This was not made prior to 
my analyses. In this unit, Ida used a multiplicative calculation and distribu-
tivity, but no model for multiplication. 
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Kerstin:  I am very curious how you think when you are going to calcu-
late five times nineteen. 

Ida:  I have never calculated that. 
Kerstin:  No, I didn’t think so. It isn’t like a multiplication table task. 
Ida:  No. [pause 4 sec] First I would take five times ten, because 

that is fifty. Yes! What a good way! Then I take five times ten 
again, and then it will be one hundred. And then minus five, so 
it becomes ninety-five 

Kerstin:  When you said it is fifty, did you think that you had //had times 
I think//1 

Ida:  //Yes, well//, that I, had taken five times ten and then five times 
ten again. 

Kerstin:  Do you have other ways to calculate? 

The entire units were copied into matrices for connections (see figures 3–5 
in section 4.2.1). If the same unit demonstrated connections in more than one 
cell, it was placed everywhere it fitted. The matrices ensured that the data 
were treated systematically. 

When all units were copied into the matrices, there were still some units 
left not matching any of the cells even though there were instances of one of 
the components. An example is the following excerpt: 

Kerstin:  Zero point seven times four? 
Emil:  Seven times four equals twenty-eight, and divided by ten is 

two point eight. 

Emil performed a calculation, but it was not connected to any other compo-
nent by reasoning, since it was a procedure he had learnt from instruction, 
which he did not explain or justify. This was the case with some calculations 
and they were put in a one-dimensional matrix representing only the calcula-
tion component, see figure 7. 
 
Calculations  
Repeated addition  
Addition influenced strategies  
Multiplicative strategies Kerstin: Zero point seven times four? 

Emil: Seven times four equals twenty-eight, and 
divided by ten is two point eight. 

Figure 7. One-dimensional matrix for calculations 

A similar one-dimensional matrix was needed to categorise the students’ 
multiplicative stories in the story telling task, since they were not connected 
to calculations or properties due to the design of the task. In the matrices for 
models for multiplication all stories from the story-telling task were noted 
together with the explanations of what multiplication is. 

                                                        
1 Text written between pairs of // shows overlapping speech with what is written between the 
next pairs of //. 
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The excerpts in the matrices were coded to get an overview over the data 
material, see figure 8. For example, Emil stated that multiplication is repeat-
ed addition once in the second semester of the study, and in the fourth  
semester he explained that multiplication is applicable to percentages. The 
remaining notations are equal groups stories that Emil told during his inter-
views or gave as explanations to what multiplication is. Each notation repre-
sents an excerpt, thus one can see that Emil told two equal group stories 
during the interview the first semester. 
 
Emil Story telling and explanations of multiplication 

Semester 1 - Equal groups 
- Equal groups  

Semester 2 - Repeated addition 
- Equal groups 
- Equal groups 

Semester 3 - Equal groups 
- Equal groups 
- Equal groups 

Semester 4 - Percentages 
- Equal groups 
- Equal groups 
- Equal groups 

Semester 5 - Equal groups 
- Equal groups 

Figure 8. Compilation of models for multiplication all semesters 

The compilation of models in figure 8 was combined with the two-
dimensional matrices in figures 3–5 (see section 4.2.1) for all semesters into 
a matrix shown in figure 9 on next page. From this matrix I could discern 
patterns of how students connected, or not connected, the three components. 
In figure 9 one can see which connections Emil made between all three 
components all semesters. Normal text style in the cells indicates that he had 
shown the connection during one interview, and bold text style indicates that 
he had shown the connection during more than one interview. 

The first two columns, labelled calculations and properties, show what 
three-way connections Emil made between models for multiplication and 
calculations and properties. The connections that he demonstrated between 
properties and calculations (from the matrix in figure 3) are written in the 
cells. These were also connected to the equal groups model, thus in this 
combination matrix written on the equal groups row. Consequently, it is 
noted that he connected all three components in three ways: equal groups, 
additive calculation and distributivity; equal groups, multiplicative calcula-
tions and distributivity; and finally, equal groups, multiplicative calculation 
and associativity. 
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Emil Calculations Properties Stories 
Equal groups Additive:  

- Distributivity 
 

Distributivity: 
- Multiplicative 
- Additive 

natural × natural 
natural × decimal 
decimal × decimal 

Multiplicative: 
- Distributivity 
- Associativity 

Associativity:  
- Multiplicative 

 

Array    
Area    
Comparison    

Figure 9. Matrix for models in relation to calculations, properties and stories. 

In addition, the third column, labelled stories, shows an abbreviation of the 
one-dimensional matrix in figure 8, for what stories Emil told during the 
whole study, and what number types the stories were told to. Natural × na-
tural means that both factors were natural numbers and natural × decimal 
that one factor was a natural number and the other a decimal number. The 
same matrix for Ida, see figure 10, showed a significantly different pattern, 
which demonstrates the usefulness of the matrix to find different patterns for 
different students. 
 
Ida Calculations Properties Stories 
Equal groups   natural × natural 

natural × decimal 

Array   natural × natural 

Area   decimal × decimal 

Comparison   decimal × decimal 

Figure 10. Matrix for models in relation to calculations, properties and stories. 

All Ida’s calculations were unconnected to any model for multiplication. She 
demonstrated connections between calculations and properties, which were 
noted in the matrix for that type of two-way connections (see figure 3 in 
section 4.2.1). Since she never connected her calculations and properties to 
any model for multiplication, they were not put into this matrix, and there-
fore the cells are empty. She had, however, told stories of different models 
for multiplication, which is displayed in the third column.   
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To illustrate demonstrated connections between calculations and proper-
ties with respect to variation over time, the matrices in figure 9 and 10 were 
restructured, see figure 11. 

 
Calculations Properties  Stories/what is 

REPEATED ADDITION 
S3: 

- Repeated addition 
S5: 

- Repeated addition (bor-
ing) 

ASSOCIATIVITY 
S5: 

- 16 · 25 
- 16 · 25 

 S1: 
- Equal groups 
- Equal groups 
 
S2: 

- Repeated addition 
- Equal groups 
- Equal groups 
 
S3: 

- Equal groups 
- Equal groups 
- Equal groups 
 
S4: 

- Percentages 
- Equal groups 
- Equal groups 
- Equal groups 
 
S5 

- Equal groups 
- Equal groups 

ADDITIVE 
S5: 

- Distributivity 

COMMUTATIVITY 
 

Knows, see notes  

MULTIPLICATIVE 
S1: 

- Distributivity 
- Distributivity 
- Distributivity 
S2: 

- Distributivity 
- Distributivity 
- Distributivity 
S3: 

- Distributivity 
- Distributivity 
S4: 

- Distributivity 
- Distributivity 
- Distributivity 
- Distributivity 
- Distributivity 
- Distributivity 
S5: 

- Distributivity 
- Distributivity 
- Distributivity 
- Associativity 
- Associativity 

DISTRIBUTIVITY 
S1: 

- 5 · 19 
- 16 · 25 
- 9:ans 
S2: 

- 15 · 24 
- 15 · 24 
- 15 · 24 
S3: 

- 19 · 42 
- 19 · 42 
S4: 

- 39 · 23 
- 39 · 23 
- Finish 
- Finish 
- Mimic 
- Mimic 
S5: 

- 16 · 25 
- 16 · 25 
- 16 · 25 

Figure 11. The combined matrix for Emil. 

In figure 11, Emil’s calculations for all five semesters are presented as an 
example of such a restructured matrix. In the first two columns his demon-
strated connections between calculations and properties are displayed by 
writing each instance in both columns. These two columns are organised in 
three sections, one for each type of calculation and property respectively. 
The third column includes the stories and explicit explanations to what mul-
tiplication is, from the matrix in figure 8. All sections include information of 
which semester the connection was demonstrated, S1 means semester 1 and 
so on. For example, during the second semester (S2), Emil demonstrated 
three different ways for calculating 15 · 24, all by distributivity. This can be 
read both as “distributivity” in the in the multiplicative section of the calcu-
lation column and as “15 · 24” in the distributivity section of the properties 
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column. Under commutativity I have entered “Knows, see notes”, since 
there was too much information to make a short summary. The grey colour 
over “distributivity” and “mimic” denotes that he made errors in the two 
calculations when he tried to mimic a distributive strategy 

The iterative reading (and sometimes listening) of the students’ reasoning 
and the different matrices with different degrees of details guided me to use 
the matrices of connections in combination with one-dimensional matrices to 
map each student’s understanding of multiplication. This enhanced the pos-
sibility of making a fair and useful description of both the students’ under-
standings of multiplication and how it varied over time. I combined the  
matrices shown in figures 9 and 11 for Emil, and the corresponding matrices 
for Ida, in the analyses for paper 4. This combination served to demonstrate 
the complexity of students’ multiplicative reasoning without giving too 
many details, which might entail losing sight of a pattern, and at the same 
time not ignore too many details, thus losing significant data. 

5.4 Ethical considerations 
The ethical considerations concern both the participants and the quality of 
research. There are several different systems of criteria for qualitative re-
search and an overarching quality measure suggested to be suitable for quali-
tative research is denoted trustworthiness (Bryman, 2008). I have construed 
trustworthiness as being as clear and open about methods, data and choices 
as possible. However, to protect the participants and at the same time be 
open to ensure validity forms a dilemma. To be totally open would imply 
that the participants’ identities would be revealed, for example by sharing 
the video recordings in order to increase trustworthiness in relation to what 
the students said. To partly address this dilemma, I have, for example,  
engaged a small number of researchers in the research group at Stockholm 
University to analyse small parts of the data to ensure inter-code reliability. 

As my descriptions of data collections activities indicate, I have followed 
the guidelines from the Swedish Research Council ([Vetenskapsrådet]), 
making sure that both the students and their legal guardians were informed 
of the study, and agreed to participate by a written consent. I have also en-
sured that the data have been kept securely from other persons to ensure the 
students’ and their teachers’ anonymity. The pseudonyms were chosen from 
a list of common names given to children in Sweden the same year as the 
students were born. The names and the students were randomly paired, giv-
ing the students names according to their gender. In all conversations and 
presentations I have used the pseudonyms. 

I have considered how to present data from a small-scale study in an ethi-
cally proper fashion, in relation to both the participants and research. Even 
though I refrain from presenting the real names and what school I have visit-
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ed, the students themselves, their teachers, parents and friends know that 
they participated. I need to present what they have said and done to give 
justice to the actual situations, to be true to the data. This must however be 
conducted in such a way that the students’ anonymity is not jeopardised as 
well as ensure treating the students’ respectfully. For example, I have trans-
formed the transcriptions into more formal written language before present-
ing them and most often the presentations are given in English, which  
further aid to protect the students from being recognised. A verbatim tran-
scription including spoken language might give a negative image of the 
speaker (Kvale & Brinkmann, 2009) and would not be respectful. 

If any student can identify him- or herself is an open question. Do they 
remember what they said two to four years ago? If any of them do, I hope 
that my presentations of their reasoning and explanations make them feel 
proud of their interesting and enlightening explanations, irrespective of its 
correctness. As I repeated to them every time I interviewed them: I am not 
interested in the correctness. I am not here to evaluate you, your answers or 
your thinking. I am interested in how you think when working and explain-
ing. It is equally interesting if the reasoning is correct or not, what matters is 
to help us mathematics teachers to understand how you students actually 
think. 
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6 Summary of papers 

In this chapter each paper is summarised with focus on the results and dis-
cussions. The full papers are printed in the end of this thesis. 

6.1 Paper 1 – Finding Erik and Alva: Uncovering 
students who reason additively when multiplying 

The first paper reports a study from the first semester of grade five, in which 
the sufficiency of multiplicative comparison problems for uncovering stu-
dents’ multiplicative reasoning was investigated. Twenty-two students’  
answers to three multiplicative comparison problems from a written test 
were compared to their calculations of two multiplications, 5 · 19 and 
16 · 25. 

Multiplicative comparison problems have proved valuable to investigate 
whether a student has yet developed multiplicative reasoning or not. To be 
considered to reason multiplicatively is based on the interpretation of ex-
pressions such as “three times as much as 50”, understanding that 150 is the 
correct answer, not 53, which is considered to reflect additive reasoning. 
However, in the literature the definition of multiplicative reasoning often 
refers to reasoning closely connected to calculations, such as to coordinate 
composite numbers and for example realise that an increase of 1 in one fac-
tor is equal to an increase of the other factors’ magnitude. In a calculation of 
5 · 19 this explains why 5 · 20 is 5 more and not 1 more, even though  
1 was added to 19. 

The students’ answers to each multiplicative comparison problem were 
categorised as demonstrating additive or multiplicative reasoning in line 
with earlier research, assessing the answers. The students were then catego-
rised into additive reasoning, multiplicative reasoning or mixed reasoning, 
depending on how many of the problems were answered additively and  
multiplicatively, respectively. Similarly, the students’ calculations were 
categorised as additive or multiplicative. The students were then categorised 
into three groups of additive, multiplicative or mixed reasoning as in the 
word problem task, depending on how many calculations were multiplica-
tive. 
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The results from both forms of tasks were combined and showed that ten 
of the twenty-two students had demonstrated the same type of reasoning to 
both forms of tasks. The remaining twelve students had demonstrated dif-
ferent types of reasoning when interpreting multiplicative comparison prob-
lems and when calculating. The mixed results for seven students can be  
accounted for by the transitional stage they are expected to demonstrate, the 
path from additive to multiplicative reasoning is not straightforward and 
students may demonstrate many different strategies and ways of reasoning 
simultaneously. 

The remaining five students are more problematic. All of them demon-
strated additive reasoning to the calculations, even though one of them 
showed multiplicative reasoning and four demonstrated mixed reasoning to 
the word problems. That is, all these five students correctly interpreted at 
least two multiplicative comparison problems, thus implying that they were 
reasoning multiplicatively or on their way to multiplicative reasoning. This 
is problematic; since the evaluation of their calculations demonstrated that 
they should be offered instruction to support their transition to multiplicative 
reasoning, since they demonstrated influence of additive reasoning. The 
multiplicative comparison problems are typically employed to investigate 
students’ transition from additive to multiplicative reasoning, irrespective of 
the calculation. 

Two students, Erik and Alva, were chosen as representatives for the 
group of five students that could correctly interpret the multiplicative com-
parison problems but demonstrated additive reasoning in their calculations. 
Both Erik and Alva stated that they had no other calculation strategy than 
repeated addition, which is not sufficient as numbers get larger and decimals 
are introduced. In order to identify students like Erik and Alva, I suggest that 
evaluating whether they can understand multiplicative comparison problems 
is insufficient; the calculations also play a significant role for the develop-
ment of multiplicative reasoning. 

It was also discussed whether the way students chose to write their solu-
tion to the multiplicative comparison problems could be used in the evalua-
tion of their reasoning. To write the solution as 50 + 50 + 50 or as 3 · 50 
could possibly reflect how the student has reasoned while solving the prob-
lem, even though students might do one thing when calculating and then 
write it in another way. However, the written solutions for these twenty-two 
students seemed to actually reflect their preferred way of calculating;  
students who preferred to use repeated addition in the clinical interviews had 
written solutions by repeated addition, which not was the case for those who 
preferred to use multiplicative calculations during interviews. 

The conclusion from paper 1 is that the method to identify students as 
multiplicative reasoners by their answers to multiplicative comparison prob-
lems is not sufficient; the calculations also play a significant role for the 
development of multiplicative reasoning. 
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6.2 Paper 2 – Sixth grade students’ explanations and 
justifications of distributivity 

In the second paper, students’ explanations of and justifications for distribu-
tivity were investigated through paired interviews at the end of grade six, the 
fourth semester of the study. The research question was: What do students’ 
evaluations of erroneous calculations of multi-digit multiplicative problems 
reveal about their understandings of multiplication? 

There were nineteen students from the cohort that participated in paired 
interviews (one was working alone) evaluating three suggested calculation 
strategies. All suggested strategies were connected to distributivity and re-
flected mistakes that were influenced by additive reasoning. Students from 
this cohort had earlier demonstrated these erroneous strategies during indi-
vidual interviews. In the paired interview, the students were invited to eva-
luate each strategy’s validity and explain why the strategy was valid or inva-
lid. The suggested strategies were presented as a fictitious student was say-
ing it (see figure 6 in section 5.2.2). All strategies were suggestions to calcu-
late 26 · 19 in an easier way: splitting 26 into 20 and 6 and multiply 20 by 19 
and then add 6; moving one from 26 to 19 and then calculate 20 · 25; and to 
split both numbers into tens and ones, multiply them separately and add the  
results, 20 · 10 + 6 · 9. By inviting the students to evaluate and explain erro-
neous calculation strategies, it was possible to infer understandings of the 
distributive property from their reasoning. 

The explanations that the students gave to the suggested strategies were 
categorised into five groups: a) demonstrating investigative reasoning on 
meta-level; b) demonstrating reasoning by distributivity; c) demonstrating 
procedural reasoning; d) demonstrating descriptive reasoning; e) not demon-
strating multiplicative reasoning. The first four (a–d) reflected multiplicative 
reasoning at different levels of sophistication. 

Reasoning belonging to the first three categories (a–c) correctly found the 
strategies invalid. Investigative reasoning was employed to investigate under 
which circumstances the strategy was valid, making general justifications. 
Reasoning by distributivity was demonstrated by contextualising the number 
expression to the equal groups model or by giving counterexamples. Proce-
dural reasoning was shown by suggesting calculating the result and seeing if 
the correct answer was reached, thus not focussing how the strategy worked, 
but whether it produced the correct answer. Descriptive reasoning denotes 
that the students described the strategy based on their experiences. This was 
used both as a validation, “I know that it works, because that is how I do”, 
and as refutation, “I know that does not work because I used to do like that”, 
and hence on a lower level of sophistication than procedural reasoning. Stu-
dents who did not demonstrate multiplicative reasoning either displayed 
additive reasoning or could not give any explanations. 
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Signs of the students’ understandings of distributivity became discernable 
in the reasoning, since the reasoning both demonstrated what they under-
stood and what was unclear to them. To contextualise the strategy by the 
equal groups model was successful, it allowed students to explain the validi-
ty of the distributive property, thus suggesting that it is a robust model for 
distributivity. For example, a story of twenty-six piles with nineteen sticks in 
each supported the students’ understanding that taking away one pile was 
equivalent to taking away nineteen sticks. At the same time the equal groups 
stories had a constraining effect on flexible use of commutativity. Even 
though students knew commutativity to be valid in multiplication, equal 
groups models caused some misunderstandings between students who  
perceived different factors to denote the multiplier. 

The conclusion was that the equal groups model for multiplication was a 
powerful model for communication, explaining distributivity and justifying 
why erroneous strategies were invalid. Coincidently, some pairs were partly 
constrained by the model in relation to fluent use of commutativity.  
Furthermore, to evaluate and explain erroneous strategies had potential to 
elicit reasoning about distributivity, and hence to make it possible to infer 
parts of the students’ understandings of multiplication. 

Alternative explanations to the fact that some students did not demon-
strate multiplicative reasoning were discussed, suggesting that it could de-
pend on difficulties to express their thinking as well as perceiving the issue 
as self-evident instead of a more shallow understanding of distributivity. To 
perceive the error as self-evident was suggested with respect to the first sug-
gested strategy; in which 20 were multiplied by 19 and the remaining 6 from 
26 was added. Students might have found it obvious that 6 also needed to be 
multiplied by 19. The other two suggested strategies were evoking longer 
and more elaborated reasoning, and hence were suggested to be more pro-
ductive with respect to elicit students’ understandings of distributivity. 

6.3 Paper 3 – The ambiguous role of equal groups in 
students’ understandings of distributivity 

In the third paper, the role of equal groups for students’ understandings of 
distributivity was investigated by means of a case study of two students in 
the end of the sixth grade. We, one co-author and me, used data from the 
same tasks as for paper 2, the paired interview in which the students were 
invited to evaluate and explain erroneous strategies. Here we focussed on 
two students’ paired reasoning and contrasted it to their individual reasoning 
two weeks earlier when they calculated similar tasks during interviews, and 
what we know about the instruction they took part in. 
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From the analyses conducted for paper 2 we knew that the students, with 
pseudonyms Anton and Lucas, had succeeded to explain distributivity by 
contextualising the problem as equal groups. Hence, we conjectured that 
their reasoning might provide insights to how the equal groups model was 
exploited to support understanding of distributivity. 

Distributivity is considered as fundamental for understanding of multipli-
cation, but the literature is inconsistent with respect to how difficult distribu-
tivity is and whether equal groups is a suitable model to understand distribu-
tivity. Furthermore, there are reports of overgeneralisations of addition stra-
tegies causing errors violating distributivity, for example to solve 26 · 19 as 
20 · 10 + 6 · 9. This erroneous strategy was part of the suggested strategies, 
and both Anton and Lucas had used it two weeks earlier when calculating 
39 · 23. Another example of overgeneralisation of addition that were sug-
gested during this interview, is to move a part of one factor to the other, such 
as to move 1 from 23 to 39 and thus calculate 40 · 22 instead. Lucas suggest-
ed this strategy during his individual interview two weeks earlier. 

When Anton and Lucas evaluated and explained the suggested strategies, 
they connected the calculations to the equal groups model by contextualising 
the calculations to heaps of things and bags with coins. Their reasoning was 
supported by the asymmetry of equal groups, for example to denote 26 as 
the multiplier helped them to infer that to take away 1 from 26, meant that 
one heap or bag was removed, hence 19 things. Thus they coordinated the 
numbers multiplicatively. When they explained why cross-multiplication (to 
multiply the tens with the ones, such as 20 · 9 and 6 · 10 in 26 · 19) was  
necessary, their contextualisation of bags with coins helped them to con-
struct more general reasoning concerning multi-digit multiplication and dis-
tributivity. 

The difference between their reasoning when evaluating and explaining 
compared to when calculating might be due to the nature of the tasks, to 
evaluate and explain may imply that deeper mathematical thinking is evoked 
compared to conducting calculations. It is also possible that their reasoning 
gained from working together with a peer, thus being forced to formulate 
their thinking out loud. 

The role of equal groups with respect to multiplicative reasoning has been 
questioned, since equal groups does not emphasise the two-dimensionality 
of multiplication, but rather the one-dimensionality of repeated addition. Our 
study shows that this is not necessarily the case; Anton and Lucas reasoned 
multiplicatively by contextualisation of multi-digit multiplication to equal 
groups. However, the sustainability of equal groups is questionable, since it 
cannot explain decimal multiplication, hence other models are needed too. 
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6.4 Paper 4 – Students’ conceptualisation of multipli-
cation as repeated addition or equal groups in 
relation to multi-digit and decimal numbers 

In the fourth paper, we investigated how students connect the three compo-
nents: models for multiplication, calculations, and arithmetical properties as 
well as how these connections changed as multiplication was extended from 
single-digit to multi-digit and decimal numbers. This is accomplished by a 
case study of two students, here called Emil and Ida, whom we interviewed 
over five semesters in grades five to seven. 

The data for this study came from clinical individual interviews with the 
two students. The choice of which students to report was guided by the 
demonstrated understanding of multiplication from the first semester (see 
Larsson, 2013) and their results to the national tests in grade six. Emil and 
Ida both had reached the highest performance level on the national test and 
we knew that they had demonstrated different understandings of multiplica-
tion in the first semester, which led us to hypothesise that they would 
demonstrate different connections over the five semesters of the study. In the 
interviews, the students were invited to explain what multiplication is, to 
calculate multiplicative tasks and to tell stories to match multiplications as 
described in section 5.2.1. 

The analyses, which are thoroughly described in section 5.3.5, revealed 
that Emil constantly connected equal groups to multiplication. During all 
interviews, he told, or tried to tell, stories of equal groups. When both num-
bers were decimals, Emil told unrealistic stories in grade six, but in grade 
seven he concluded that it was impossible to tell such stories to decimals. He 
stated “here it is two things that are not whole, so you cannot have zero point 
nine candy, you can have that, but you cannot have that in zero point two 
jars”, thus pinpointing the unfeasibility of the equal groups model for deci-
mals. Emil’s multi-digit calculations were, through the entire study, mani-
fested in strategies underpinned by distributivity. His calculations were con-
nected to the model of equal groups, which he employed to justify his calcu-
lation strategies. However, he did not consider distributive strategies suscep-
tible to decimal numbers, which he stated to be “a completely different 
system for how it works”. When Emil discussed his calculation strategies he 
sometimes reminded himself by saying out loud that “you could calculate in 
the other direction” or similar before applying commutativity, indicating that 
commutativity was not as self-evident as distributivity to Emil. 

The analyses of Ida’s interviews demonstrated that she was calculating by 
repeated addition in the start of the study and gradually changed to distribu-
tive strategies, parallel to overgeneralisations of addition. By the end of the 
study she demonstrated that distributivity was applicable to decimal numbers 
and employed associativity to multi-digits. She told stories of equal groups, 
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rectangular array, multiplicative comparison and rectangular area during 
these five semesters, the latter two to decimal multiplication, thus telling 
realistic stories. Ida did not employ commutativity fluently, she reminded 
herself that “it doesn’t matter what direction” when applying it. Ida did not 
demonstrate any explicit connections to her calculations; they were all  
numerical, talking about numbers as entities. 

Emil and Ida were both high achieving students according to the national 
test in grade six and demonstrated similarities as well as differences in how 
they connected models for multiplication, calculations and arithmetical 
properties, and how these connections changed over time and in relation to 
multi-digit and decimal numbers. 

They demonstrated similarities in their firm view of asymmetrical multi-
plication, Emil by the model of equal groups, and Ida by the procedure of 
repeated addition, even though Ida reasoned partly additive and Emil was 
fluently using distributivity in the beginning of the study. This firm connec-
tion to asymmetrical multiplication probably constrained their fluent use of 
commutativity, and, in the case of Emil, to make sense of decimal multipli-
cation. Ida demonstrated a significant development during the five semesters 
of the study. She had active access to multiple models for multiplication. 
This study cannot connect those two observations as a causal correspond-
ence, but suggests that Emil’s shortcomings to apply multiplication to deci-
mals had its roots in the single model of equal groups. 

Two alternative explanations to both students’ firm views of multiplica-
tion as asymmetrical are discussed: the intuitive models theory and concep-
tual change theory. Both theories offer explanations to why students hold on 
to what they have learnt early, which raises questions about how the students 
were introduced to multiplication. In their instruction through fourth to sixth 
grade, multiplication was predominantly presented asymmetrically in their 
textbooks, which might be part of the explanation. The theories lead to dif-
ferent suggestions concerning both early and later instruction to support 
students to extend their understandings of multiplication and a proposal is 
that we need to introduce parallel models in instruction. Symmetrical models 
might be used parallel to asymmetrical, highlighting different aspects of 
multiplication. 
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7 Discussion 

In this chapter, I discuss the results, the project, which includes methodo-
logical choices, implications, the contribution and future research. 

7.1 Results 
The result discussion is focussed on results concerning the students’ under-
standings of multiplication and what different forms of tasks can reveal, 
which reflects the overarching research question: 

What do students’ responses to different forms of multiplicative tasks in 
the domain of multi-digits and decimals reveal about their understandings 
of multiplication? 

7.1.1 Students’ understandings of multiplication 
The most salient outcome from this study is the ambiguous role of equal 
groups and repeated addition for students’ understandings of multiplication. 
The students in this study perceived multiplication as the procedure of re-
peated addition, as the model of equal groups, or as a combination of them. I 
do not view repeated addition as a model for multiplication; I view it as a 
calculation procedure. However, I do recognise that repeated addition and 
the equal groups model are congruent (De Corte & Verschaffel, 1996) and 
that they can play a similar role, as they share asymmetric properties (Greer, 
1992; Park & Nunes, 2001). A body of research, including this thesis, views 
procedural and conceptual knowledge as intertwined and as supporting the 
construct of each other (Baroody et al., 2007; Maciejewski & Star, 2016; 
Rittle-Johnson & Alibali, 1999; Rittle-Johnson et al., 2015; Star, 2005). In 
the case of additive and multiplicative reasoning this is ambiguous; even 
though “there is a conceptual discontinuity between multiplication and addi-
tion, there is a procedural connection” (Park & Nunes, 2001, p. 764). There-
fore, I discuss repeated addition and equal groups together when I focus on 
the asymmetry and calculations, but not when I focus on the students’  
conceptualisation of multiplication. 

The strong role of equal groups and repeated addition could be predicted. 
For example, the multiplier effect is based on a view of multiplication as 
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repeated addition and that students prefer to pose equal groups problems to 
match multiplicative expressions is well known (e.g. De Corte & 
Verschaffel, 1996). However, the robustness of the students’ asymmetrical 
view entails details concerning advantages and disadvantages not reported 
for students in traditional instruction at the stage when multi-digit and deci-
mal multiplication is introduced. 

The persistence of equal groups and repeated addition can be explained 
by different theories. The intuitive model theory suggests that repeated addi-
tion is deeply rooted and resistant to change for two reasons, it is the initially 
taught procedure for multiplication and “correspond to features of human 
mental behavior that are primary, natural, and basic” (Fischbein et al., 1985, 
p. 15). The intuitive model theory predicts that the reasoning will be in-
fluenced by repeated addition long after more generalised models and calcu-
lations have been incorporated in the students’ repertoire. The long lasting 
effect of initial instruction is generally agreed upon, but there are different 
views of the roots of multiplicative reasoning. For example, it is suggested 
that the intuitive and informal idea of multiplication children have before 
instruction is embedded in a one-to-many correspondence (Nunes & Bryant, 
2010) or as splitting (Confrey, 1994; Confrey & Smith, 1995), rather than as 
repeated addition, which makes multiplication conceptually different from 
addition. 

Conceptual change theory offers complementary explanations to the  
resistance to change initially taught models and procedures. The term change 
can be misleading, since it is not a sudden change; it is a gradual process that 
stretches over several years and may include parallel conceptualisations 
(Vamvakoussi & Vosniadou, 2010; Vosniadou & Verschaffel, 2004). To 
conceptualise multiplication as rectangular array and area parallel to repeat-
ed addition and equal groups could thus be described as a conceptual 
change. In the process of expanding and changing conceptualisations, syn-
thetic concepts can occur. Synthetic concepts are intermediate and erroneous 
concepts that may evolve as a result of experiences (Vamvakoussi & 
Vosniadou, 2010) and they can coexist with correct concepts (Durkin & 
Rittle-Johnson, 2015). For example, the idea that multiplication makes big-
ger can be explained by the experiences to multiply in the set of natural 
numbers and be labelled as a synthetic concept. Similarly, overgeneralisa-
tions of addition calculation strategies to multiplication can be viewed as 
synthetic concepts. 

Both conceptual change theory and the intuitive model theory suggest 
that it is a slow and cumbersome process to change one’s conceptualisations. 
Therefore it can be argued that to construct sustainable models from the start 
is easier than to remedy synthetic concepts (Van Dooren, De Bock, Hessels, 
Janssens, & Verschaffel, 2004). Coincidently, it is generally agreed that a 
sound basis for mathematics instruction is to build on students’ informal 
strategies (Nunes & Bryant, 2010; Selter, 1998; Verschaffel et al., 2007). 
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This may form a pedagogical dilemma. If the informal strategy for multipli-
cation is repeated addition, it might form obstacles to the development of 
multiplicative reasoning (Nunes & Bryant, 2010; Selter, 1998). 

The positive influence that the repeated addition and/or equal groups 
view of multiplication can have on students’ reasoning in relation to distri-
butivity is noteworthy. For example, to conclude that the strategy of moving 
1 from 26 to 19 is equivalent to a subtraction of 19 and an addition of 25 as 
Hugo did (in paper 2) was guided by repeated addition. He suggested that 
the fictitious student could continue by compensating what was wrong: 

Hugo: She has multiplied twenty times and then she must take away 
what stands for one time, that is twenty-five. She has to take 
away twenty-five. […] Then she gets that one times nineteen, 
so she has plus nineteen. 

Similarly, Lucas and Anton (in paper 3) sorted out the same problem by 
constructing a verbal representation drawing on equal groups: 

Anton:  Yes, but if you think that if one has twenty-six heaps and take 
away one heap, then one…then one gets… 

Lucas:  There are nineteen in each. There are nineteen things in each 
heap. 

Anton:  There are nineteen things in twenty-six heaps. 
Lucas:  Yes. If one takes away one heap, then one takes away nineteen. 

And that is supposed to be handed out in twenty-five heaps. It 
doesn’t work. One can’t add. It will be nineteen coins in twen-
ty-five heaps. It will be too little. 

Anton:  Yes, exactly. 
Lucas:  So it doesn’t work. 

It is far from trivial to explain this particular strategy. The coordination of 
expanded factors, such as (20 + 6), is described as advanced in the literature, 
especially when both factors are expanded (Ambrose et al., 2003; Izsák, 
2004). To simultaneously increase and decrease the factors, strains the mul-
tiplicative coordination of numbers. Numerically we can write the move of 1 
from 26 to 19 as 

(26 – 1) · (19 + 1) = 26 · 19 + 26 – 19 – 1 

and algebraically the move of 1 as 
(a – 1) · (b + 1) = ab + a – b – 1 

The magnitude of the error of moving 1 from one factor to the other, is 1 less 
than the difference between the factors, as can be seen in the last part of the 
equations above2. In the case of 26 · 19 the result of 25 · 20 is 26 – 19 – 1 
less than of 26 · 19, that is 1 less than the difference of 26 and 19; the erro-
neous strategy will yield an answer that is 6 more than the correct answer. 

                                                        
2 Under the condition that a > b 
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Or as Lucas said, there will be too little, only nineteen, to be handed out in 
twenty-five heaps. 

Emil and Ida (in paper 4) gave similar explanations as Hugo and Lucas 
for their calculations, referring to repeated addition and equal groups. These 
findings of understanding of distributivity, by use of equal groups and re-
peated addition, are in line with a number of studies (Ambrose et al., 2003; 
Carpenter et al., 2005; Lampert, 1986; Schifter et al., 2008). However, the 
other studies are reports from interventions in which the students are en-
couraged to reason relationally and to justify their reasoning by mathema-
tical arguments. The students I report with respect to distributivity take part 
in a traditional Swedish instruction, typically by individual work in the text-
book according to the teacher. 

The students’ use of verbal representations of the equal groups model can 
be viewed as a tool for thinking and communicating (Greeno & Hall, 1997; 
Izsák, 2005; Selling, 2016; Yackel, 2001), thus lessening the burden on the 
working memory (Pape & Tchoshanov, 2001). By imagining, for example 
heaps of sticks, the meaning of multiplication became clear and possibly 
helped the students to construct more and stronger connections between the 
calculation and the model as suggested in research (Barmby et al., 2009; 
Baroody et al., 2007; Hiebert & Carpenter, 1992; Richland et al., 2012). 
Verbal representations of the equal groups model were powerful in relation 
to thinking, communicating and understanding distributivity, thus confirm-
ing the role of representations for conceptual understanding, suggested in 
literature (Goldin & Shteingold, 2001; Greeno & Hall, 1997; Hiebert & 
Carpenter, 1992; Izsák, 2005; Panasuk & Beyranevand, 2010). 

However, there are disadvantages in relating multiplication to repeated 
addition and equal groups. For example, in relation to the asymmetry, Ida 
and Emil (in paper 4) had to explicitly remind themselves that commutativi-
ty is valid in multiplication before using it, and a number of student pairs in 
paper 2 had to overcome different views of which factor denoted the multi-
plier, by explicit reminders of commutativity. This is analogous to reports of 
secondary students using significantly longer time to solve problems that are 
incongruent to the natural number structure, compared to problems follow-
ing the natural number structure (Van Hoof et al., 2013). Event though the 
secondary students solved the incongruent problems correctly, they needed 
more time to solve them; even though Emil and Ida knew and correctly used 
commutativity, they stopped and said that it was all right to swap the num-
bers. Furthermore, as was seen in the work of Erik and Alva (in paper 1), the 
procedure of repeated addition is cumbersome and prone to errors in the 
domain of multi-digits. 

Repeated addition becomes even more problematic in the domain of  
decimals, as has been discussed by a number of scholars (Greer, 1992; P. 
Thompson & Saldanha, 2003; Verschaffel et al., 2007). Decimals were in-
cluded in the story telling tasks in sixth and seventh grade, and among the 
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students reported of in this thesis there was only one, Ida (in paper 4), who 
told appropriate stories for decimal multiplication. The other students gave 
up, said it was impossible or told what they called ‘weird’ stories such as  
broken trees with partially eaten pears, as Anton (in paper 3). Emil (in paper 
4) explained why it was impossible: 

Emil: One should calculate something, as for example that one has 
four candies in four jars, how many together. But here it is that 
one has two things that are not whole, so one cannot have zero 
point nine candy, one can have that, but one cannot have that in 
zero point two jars. 

Other models are needed to overcome the problem that Emil pinpoints. 
There is an on-going debate concerning what role equal groups and repeated 
addition should have in instruction, especially regarding distributivity. This 
study contributes to the debate by detailed descriptions of students’ reason-
ing about multi-digit multiplication. The equal groups model and repeated 
addition helped them to draw sophisticated conclusions from calculations 
where both factors were changed and to explain distributivity. This cannot 
be ignored, but neither can the disadvantages of repeated addition and equal 
groups with respect to commutativity and decimal numbers be ignored, 
which this study also provides detailed information of. The question of how 
multiplication, especially initially, best can be modelled remains. 

7.1.2 Different forms of tasks 
With respect to different forms of tasks, it seems that to evaluate and explain 
a suggested calculation, as in paper 2 and 3, evoked reasoning that draws on 
deeper mathematical thinking compared to explain one’s own calculation. 
This can be viewed as analogous to findings concerning problem solving, in 
which students who categorised problems became better problem solvers 
(Van Dooren, De Bock, Vleugels, et al., 2010). Van Dooren and his col-
leagues suggest that the act of categorisation promoted deeper and more 
mathematical thinking, presumably because the categorisation task requires 
the student to take a step back and think about the structure of the problems. 
Similarly, the tasks to evaluate and explain might have promoted more focus 
on conceptual knowledge, such as principled knowledge and knowledge of 
principles underlying procedures (Crooks & Alibali, 2014; Rittle-Johnson & 
Alibali, 1999). This suggestion is in line with arguments concerning early 
algebra through generalised arithmetic. To foster students to explain and 
make mathematical arguments for their calculations, rather than focussing 
on the calculations per se, can enhance both arithmetical calculation skills 
and conceptual knowledge of arithmetical properties, such as distributivity 
(Bastable & Schifter, 2008; Carpenter et al., 2003; Carpenter et al., 2005; 
Schifter et al., 2008). 
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To reason about and justify calculation strategies might stimulate the use 
of models for multiplication as tools to think and communicate (Selling, 
2016; Yackel, 2001). For example, at the time of the paired interview both 
Lucas and Anton knew that cross-multiplication was necessary, but not until 
they connected it to a model could they explain why. The act of making this 
connection can support the understanding of multiplication (Barmby et al., 
2009; Dreyfus, 1991). 

The three suggested calculation strategies did not provide the same 
amount of information concerning the students’ understandings of distribu-
tivity. One suggested strategy, to solve 26 · 19 as 20 · 19 + 6, generated less 
reasoning than the other two. This indicates that it was not only to evaluate 
and explain that were important to elicit students’ reasoning, but also the 
properties of the suggested strategies. The strategy that evoked less infor-
mation might have been too easy to evaluate as erroneous, while the other 
two suggested strategies (to simplify by ‘moving’ 1 and to only multiply 
within place value) were more challenging to evaluate as seen by the stu-
dents’ longer discussions. Both are direct applications of valid addition strat-
egies. Overgeneralisation of the latter strategy is reported in the literature 
both for young students and prospective teachers (Foxman & Beishuizen, 
2002; Lo et al., 2008; Young-Loveridge & Mills, 2009) and was used in this 
group of twenty-two students during all semesters of the study. The stu-
dents’ instruction can provide an explanation to the frequent presence of the 
place value mistake. To partition by place value is the standard calculation 
that their textbooks promote, both for addition and multiplication. If the 
instruction emphasises step-by-step procedures, as these students’ textbooks 
do, it is well known that ‘buggy algorithms’ might occur (I. Thompson, 
1999; Verschaffel et al., 2007). The strategy to move a part from one factor 
to the other was used less frequently even though several students suggested 
it during the first two years of the study. I have not found anything in the 
literature concerning this specific type of overgeneralisation and it was not 
an addition strategy promoted by the textbooks for grades four to six; hence 
it is harder to find explanations for its occurrence. It is possible that the 
strategy had been part of instruction in the classroom or in earlier grades. In 
both cases of overgeneralisation of addition strategies it is possible that the 
students reasoned as the prospective teachers that Lo et al. (2008) report; 
that addition strategies should apply to multiplication since multiplication is  
repeated addition. 

Two different forms of tasks, multiplicative comparison word problems 
and multi-digit calculations, were employed in an assessment of students’ 
multiplicative reasoning in paper 1. For a group of five students, these two 
different forms of tasks generated different results with respect to their rea-
soning being assessed as multiplicative or not. One explanation to this result 
might be the choice to categorise repeated addition as multiplicative in the 
multiplicative comparison problem, but as additive in the calculation task. 
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This can be viewed as a stricter categorisation in the calculation task com-
pared to the word problem task. It can also be viewed as reflecting the two 
different types of descriptions of multiplicative reasoning reported in the 
literature. To transform multiplication into repeated addition implies that the 
coordination of composite units is sidestepped (Sowder et al., 1998; Tzur et 
al., 2013), hence some researchers describe repeated addition as reflecting 
additive reasoning (Bakker et al., 2014; Nunes et al., 2015; P. Thompson & 
Saldanha, 2003; Vergnaud, 1983). However, other researchers describe  
multiplicative reasoning as understanding the multiplicative relationship in 
multiplicative comparison and proportion problems, and evaluate it by dis-
tinguishing additive comparison from multiplicative (Clark & Kamii, 1996; 
Fernandez et al., 2012; Van Dooren et al., 2008; Van Dooren, De Bock, & 
Verschaffel, 2010). I view the abilities to coordinate numbers multiplica-
tively in calculations and to recognise, distinguish and solve multiplicative 
problems as equally important and as an example of connecting several  
aspects of multiplication, thus forming more and stronger connections, 
which is in line with what for example Barmby et al. (2009) and Baroody et 
al. (2007) suggest. 

7.2 The project 
Students’ understandings of multiplication were investigated in this project. 
To study someone’s understanding directly is impossible, but it might be 
inferred from something that can be directly observed, such as external re-
presentations (Goldin & Shteingold, 2001) and reasoning (Barmby et al., 
2009). For example, it is problematic to directly investigate students’ under-
standings of arithmetical properties (J. Torbeyns, personal communication, 
February 17, 2016), but through the students’ calculations and explanatory 
reasoning and use of representations of models for multiplication I could 
infer how they understood the properties. These inferences were in line with 
the literature about conceptual understanding and external representations 
(Barmby et al., 2009; Berthold et al., 2009; Crooks & Alibali, 2014; Hiebert 
& Carpenter, 1992; Hiebert & Wearne, 1992; Rittle-Johnson & Alibali, 
1999). The students’ understandings might be different from what I inferred. 
It is possible, or rather plausible, that they understood more than they shared 
with me, but I could only study what was demonstrated (Goldin & 
Shteingold, 2001). The results can be construed in the light of earlier studies. 
For example, the theory of ‘multiplication makes bigger’ (Bell et al., 1989; 
Bell et al., 1981) served both to explain and predict students’ reasoning by 
comparing and contrasting their reasoning (Cobb, 2007). 

Understanding of an arithmetical operation involves solving and posing 
problems, calculations and reasoning. To investigate understanding, I drew 
on multiple sources of data, combined methods and used different forms of 
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tasks, as recommended in literature (Barmby et al., 2009; Bisanz et al., 2009; 
Hiebert & Carpenter, 1992). The literature review convinced me that both 
large cross-sectional studies and small-scale case studies were feasible in 
order to extend the knowledge of students’ understandings of multiplication, 
since both have been conducted to investigate students’ understandings of 
mathematical concepts (e.g. Tzur et al., 2013; Van Dooren, De Bock, & 
Verschaffel, 2010). The opportunity to say something more general increas-
es with the number of cases, but the level of details decreases (Battista et al., 
2009). It is possible that other tasks and methods could have elicited more 
and other reasoning among the students. For example, solving word prob-
lems in the individual interviews might have complemented the written tests 
with more information on the students’ reasoning with respect to various 
models for multiplication as well as number types. However, the interviews 
were time consuming, both for the students and me, and therefore the 
amount of tasks was kept relatively small. 

Other possible weaknesses concerning the approach are that little data 
concerning the students’ instruction were included and the relatively small 
number of students. The findings would plausibly have been more enlighten-
ing if they had been compared to the instruction of the students to a greater 
extent. The textbooks that were used extensively in the case of eighteen of 
the twenty-two students could be included as data, but to observe instruction 
was not feasible in this project. The methodology was partly chosen from 
pragmatic considerations; the doctoral project must be possible to conduct 
within the given time frame. The number of students was too large to con-
duct detailed analyses of all data within the project. However, I had two 
reasons to not exclude any of the students; I did not want to risk having too 
few students in the end of the project due to dropouts and I did not want to 
disappoint any student who wanted to participate. 

To be interviewed both individually and in pairs was popular. The stu-
dents showed that they enjoyed having full attention from a person who 
made efforts to understand them and who demonstrated a genuine interest 
and curiosity about their thinking, as was proposed by Ginsburg (1997). 
Most of the students who were involved looked forward to being inter-
viewed, as shown by their asking if it was their turn to come to me soon. 
During the interviews I experienced that the students appeared relaxed. At 
every interview, before starting the recordings, I explicitly asked the student 
if he or she was feeling at ease being recorded and reminded the student that 
he or she was free to ask me to stop interviewing at any point. In one single 
case the student said no to audio recording, but still wanted to be inter-
viewed, hence I did not record him and just took notes. Another student 
asked me to stop recording in one interview when she got stuck on a calcula-
tion, but she still wanted to go on being interviewed both on that occasion 
and in later semesters. I trust that the students’ positive attitude to participate 
in the study reflects that they really enjoyed being listened to, and that they 
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experienced that I treated them respectfully, which is a hallmark of clinical 
interviews (Ginsburg, 1997). 

To conduct clinical interviews is not easy and I had no prior experiences 
when the study started. When reading the transcripts from different semes-
ters this became obvious. In the first semester I sometimes posed leading 
questions and did not always follow up students’ statements. In the later 
semesters I had improved my interviewing skills and made fewer mistakes. 

A framework can be employed to distinguish what is investigated from 
other information (Larson, 2014). In this study the multiplicative cuboid 
served as such a framework, supporting the distinction of students’ reason-
ing, with respect to the three components and connections between them, 
from other information. However, the cuboid and the two-way matrices de-
rived from it, were insufficient as analytical tools, since only connected data 
were framed. The complementing one-dimensional matrices were needed to 
give justice to the students’ reasoning, but most important, the complexity of 
the data required a combination of matrices of different types. 

One might argue that to include overgeneralisations of addition in the 
framework is questionable, since they reflect erroneous strategies. However, 
it can be argued that they not only reflect additive reasoning, but students’ 
initial attempts to employ multiplicative reasoning by distributivity. The first 
suggested strategy in papers 2 and 3, to split 26 into 20 and 6 and multiply 
20 by 19 and add the 6, can be viewed as such an attempt. Another example 
is Ida’s reasoning when she calculated 15 · 24 and started by taking 10 · 10 
and then suggested that since she had already taken 10 from both numbers 
she must go on and multiply 5 by 14. The students in this group commonly 
demonstrated such reasoning. 

A limitation of the multiplicative cuboid, as presented in this thesis, is its 
suitability to decimal multiplication; it was more appropriate to multi-digit 
than to decimal numbers. The nature of numbers in multiplication is reported 
as more influential than other dimensions, such as model for multiplication, 
for students’ conceptualisation of multiplication problems (Greer, 1992; 
Verschaffel et al., 2007). To be useful for analyses of decimal multiplication 
one of the dimensions of the cuboid might be divided into categories of 
number types, such as combinations of integers, decimals larger than 1 and 
decimals less than 1. The number type could replace the arithmetical proper-
ties dimension of the cuboid. The arithmetical properties could be placed as 
subcategories in the multiplicative strategies along the calculation dimen-
sion, since the multiplicative calculation strategies were underpinned by the 
arithmetical properties. 

Despite these drawbacks, I think that variations of the multiplicative  
cuboid, including the one-dimensional complementing matrices, can be use-
ful in further studies aiming at mapping students’ understandings of multi-
plication. A multiplicative cuboid for analyses of younger students than this 
study would need slightly different categories in the calculation dimension 
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and for older students, for example when expanding multiplication to poly-
nomials, it might need other dimensions. In such cases, the model’s three 
components might be extended or collapsed into other categories of compo-
nents analogous to how categories of models for multiplication can be re-
fined or unitised (Mulligan & Mitchelmore, 1997). 

The analytical process of connections was extended over a long time,  
refined and changed and discussed several times among a small group within 
the mathematics education research group at Stockholm University. Parts of 
the matrices have also been discussed and scrutinised by international  
researchers at a conference (Larsson, 2015) and other meetings. I am grate-
ful for all these discussions and critical examination of the matrices, it has 
improved the analytical work and the versions presented here. I do not want 
to label these versions as final, since there remain opportunities for im-
provement. As for every model, the ‘multiplicative cuboid’ is a simplifica-
tion. It does not tell the full story of what constitutes understanding of multi-
plication. There are other dimensions, which affect students’ development of 
multiplicative reasoning, for example, affective factors, the interaction with 
other students, teachers and parents, and individual cognitive disposition. 

Initially I had decided to exclusively investigate the transition from  
single-digits to multiple-digits and stay in the domain of natural numbers. 
From the early analyses I found that decimals were required to challenge the 
students who only used the equal groups model or repeated addition proce-
dure and thus they were included. This also made sense since the introduc-
tion of decimal multiplication took place during the same semester as for 
multi-digits. The unfinished calculations and mimicking task have the same 
background; tasks were needed to challenge students who did not use dis-
tributivity, to get more information about their reasoning. These choices 
were possible to make since the study run over several years. At the same 
time, these choices can be regarded to weaken the study. I had new types of 
tasks included in different semesters, which made a developmental per-
spective of the study weak. I have, for example, no way of knowing stu-
dents’ understandings of decimal multiplication before grade six. 

In hindsight, I can identify some problematic choices in the methodology 
that were not discussed in paper 1, the comparison of two forms of tasks to 
assess students’ multiplicative reasoning. Firstly, the multiplicative compari-
son problems were mixed with other multiplicative problems. If they had 
been mixed with additive word problems it might have caused students to 
reason differently to the problems. Secondly, the distinction for what was 
categorised as additive or multiplicative reasoning was well defined for each 
answer, but not for the whole task. To be considered reasoning multiplica-
tively, all three word problems needed to be correctly solved, while two 
additive answers were enough to be considered to reason mainly additively. 
This choice might seem arbitrary, but it does not change the result much, all 
five students that were identified as reasoning additively when calculating 
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would still be the same demonstrating the same additive reasoning while 
calculating. Thirdly, the choice to use easy numbers might have affected the 
outcome in two ways: to help the students to focus the structure as was in-
tended and suggested by Tzur et al. (2013), or to increase superficial strate-
gies as Greer (1992) proposed. Easy numbers might also elicit more multi-
plicative reasoning compared to, for example, decimal ratios (Van Dooren, 
De Bock, & Verschaffel, 2010). Both possible drawbacks of using easy 
numbers might have skewed the results to show more answers reflecting 
multiplicative reasoning. Furthermore, in problems with too easy numbers 
students might ‘see’ the answer without calculating, and the possibility that 
the students actually wrote their thinking might have increased if more chal-
lenging numbers had been used (Sowder et al., 1998). On the other hand, too 
difficult numbers might have led more students to ignore the structure of the 
problems and apply additive reasoning since the numbers were too problem-
atic to use multiplicatively. I think the issue of choosing numbers deserves 
more attention in research as it might influence students’ reasoning. 

Finally, I have an over-all reflection with respect to the role of different 
forms of tasks for research. It was very informative to employ a number of 
different forms of tasks. In paper 4, in which Emil and Ida were recurrently 
interviewed, four forms of tasks were used and they contributed to a more 
nuanced picture of the students’ reasoning. For example, Ida’s reasoning 
was solely numerical throughout the study except when prompted to tell 
stories and Ida told stories reflecting four different models. In this case the 
story telling task was productive to elicit more, or another aspect, of Ida’s 
understanding of multiplication to become observable. Even though I found 
the mix of various forms of tasks productive, there is probably room for 
further variation of forms of tasks. This makes me wonder what forms of 
tasks that could have been even more productive to create situations in 
which more students would have shown more of their understandings. 

7.3 Implications for instruction 
The results from this study demonstrate that students’ understandings of 
multiplication can be robustly rooted in repeated addition and equal groups. 
This is both advantageous and disadvantageous. Considering the view of 
mathematical understanding as connections, there is much that points at a 
need for multiple models for multiplication and several calculation strate-
gies. Connections refer to connections between the three components; calcu-
lations, models for multiplication and arithmetical properties, but also to 
connections between conceptual and procedural knowledge. Additionally, it 
could entail connections between multiplication and other operations, con-
nections between multiplication and other domains of mathematics, and 
connections to everyday experiences. I cannot rule out that instruction in 



 

 70 

Swedish classrooms offers multiple models for multiplication and multiple 
calculation strategies to students. However, these students’ reasoning and the 
textbook series for grades four to six demonstrated a strong emphasis on 
equal groups and repeated addition. 

To include more models for multiplication can enhance the understanding 
of multiplication, as has been suggested in the literature (Acevedo Nistal et 
al., 2009; Dreyfus, 1991; Greer, 1992; Panasuk & Beyranevand, 2010). 
Equal groups and repeated addition are insufficient in the domain of deci-
mals. It has been advocated that students should not have to learn both about  
decimals and new models simultaneously, hence other models should be 
offered in the domain of natural numbers (Izsák, 2004). But the literature 
also points out that ‘more’ is not enough, it is also the quality of the structure 
of more models or representations that matters (Barmby et al., 2013; Hiebert 
& Carpenter, 1992). To compare and contrast different models’ properties 
might be a way to provide that quality. The rectangular area model is sug-
gested as a more general model, susceptible to decimals and polynomials, 
but also challenging to understand (Greer, 1992; Izsák, 2005; Simon & 
Blume, 1994; Verschaffel et al., 2007). Therefore, I suggest that models’ 
properties are compared, investigated and discussed in instruction. 

Based on the results from paper 3, in which Anton and Lucas demonstrat-
ed such advanced reasoning by explaining erroneous strategies exploiting 
equal groups, I suggest to give more opportunities for students to explore 
and discuss suggested strategies and explanations. The very act of explaining 
and justifying has been reported to support students’ understandings 
(Berthold et al., 2009). To use misconceptions, as well as correct and crea-
tive strategies, from the same group of students, might help the students to 
draw conclusions that are close to their own held beliefs with respect to the 
operation. 

7.4 Contribution and future research 
This doctoral project contributes to the literature on students’ understandings 
of multiplication by detailed descriptions of how students can reason on 
different forms of tasks and how their reasoning can change (or not change) 
during the time period in which multiplication is extended beyond single-
digit numbers. As far as what I am aware, previous studies concerning  
understanding of multiplication, that have contributed with detailed descrip-
tions of students’ reasoning, are either intervention studies or focussed on 
earlier stages, such as the introduction of multiplication. The students in this 
project participated in traditional Swedish mathematics instruction. The  
detailed descriptions of how these students reason involve a combination of 
their calculations, their rationales for how they calculate and interpretations 
of what multiplication is, and what is allowed to do in multiplication. Thus, 
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the descriptions combine different aspects of multiplication. This follows a 
line of research conducted in the initial years of instruction, which has  
produced much knowledge of how young children reason to various arith-
metic problems with natural numbers (e.g. Bastable & Schifter, 2008; 
Carpenter et al., 1999). Here it is extended to middle school students and the 
challenges to extend understanding of multiplication beyond single-digits, in 
a setting of traditional instruction. 

The overgeneralisation of an addition strategy, to move a part of one  
factor to the other, was found among several students in this study and ex-
plored through the eyes of the same group of students. As far as I know, this 
type of overgeneralisation is not described in previous research. 

The understanding of the three arithmetical properties is not a well-
researched area. All three properties are considered important for flexible 
calculations and as a foundation for understanding algebra (Carpenter et al., 
2005; Ding & Li, 2014). The literature review gives anecdotal and ambi-
guous evidence of students’ understandings of the arithmetical properties, 
and hence more research is needed. For example, to investigate what type of 
instruction that promotes understanding and flexible use of the arithmetical 
properties would contribute to our knowledge. 

The predominant result from the project was details concerning the  
ambiguous role of equal groups and repeated addition; how students were 
supported and constrained by the same model and procedure. The constraints 
were prevalent in the reasoning even for high achieving students, thus indi-
cating that it is not a problem connected to weak mathematical achievement. 
This needs to be addressed in future research. I suggest that investigations if 
and how it is possible to reduce the negative effects of equal groups and 
repeated addition with respect to decimals and commutativity, without jeo-
pardising the positive effects to distributivity, is conducted. This could for 
example be investigated through interventions in which explicit comparisons 
of various models’ features are addressed. Such a study would preferably be 
longitudinal, to map effects of introduction in a longer perspective, including 
the extension of multiplication beyond single-digits, to include multi-digits 
and decimals. 
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Sammanfattning 

Multiplikation genomsyrar stora delar av matematiken, till exempel bygger 
vårt positionssystem och tal i bråkform på multiplikativa relationer och det 
råder enighet i tidigare forskning om att det är viktigt att tillägna sig förmåga 
att resonera multiplikativt. Multiplikativt resonemang innebär bland annat att 
inse skillnaden mellan multiplikativ och additiv jämförelse, det vill säga att 
3 gånger mer än 5 är 15 och inte 8, samt att simultant kunna fokusera både 
helhet och delar samt hur dessa är relaterade. Det kan till exempel innebära 
att kunna se 60 kulor som är fördelade i 4 påsar med 15 i varje som en helhet 
samtidigt som man ser de fyra delarna och att varje påse representerar 15 
kulor. Processen att utveckla förmåga att resonera multiplikativt beskrivs 
allmänt som besvärlig och tidskrävande. Denna process omfattar bland annat 
att lära sig räkneoperationen multiplikation. Multiplikation introduceras ofta 
som en upprepad addition och förknippas med lika stora grupper av föremål. 
När multiplikation utvidgas till att omfatta rationella tal, utmanas föreställ-
ningen av multiplikation som upprepad addition. Det är svårt att föreställa 
sig hur man kan addera till exempel 3,8 exakt 4,9 gånger. Redan vid multi-
plikation inom de naturliga talen kan upprepad addition vara otillräcklig, till 
exempel när talen som ska multipliceras är stora. När multiplikation utvidgas 
till att omfatta både flersiffriga tal och tal i decimalform, behöver därför 
synen på multiplikation som upprepad addition av lika stora grupper föränd-
ras eller utvidgas, vilket har visat sig vara problematiskt för många elever. 

Förmågan att resonera multiplikativt har i tidigare forskning beskrivits 
som att simultant fokusera både helhet och delar samt hur dessa är relate-
rade. Detta är nära förknippat med hur beräkningar utförs, till exempel inne-
bär det att inse att a · (b + 1) inte är lika med ab + 1, utan att det korrekta är 
att det är lika med ab + a, eftersom en ökning med 1 av den ena faktorn in-
nebär en ökning av produkten som är lika stor som den andra faktorn. 
Många studier har undersökt elevers förmåga att resonera multiplikativt 
genom att de fått lösa textuppgifter som reflekterar multiplikativ jämförelse, 
det vill säga proportionella samband. Då testas elevernas förmåga att tolka 
en multiplikationsmodell uttryckt som en textuppgift snarare än deras för-
måga att samtidigt hantera helhet och delar i en multiplikativ beräkning. Att 
testa förmåga att resonera multiplikativt enbart genom att bedöma elevers 
svar på textuppgifter utan hänsyn till hur beräkningarna har gjorts, är ett 
exempel på diskrepans i tidigare forskning inom elevers förståelse för multi-
plikation. Ett annat exempel där tidigare forskning inte är entydig, är vilken 
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roll upprepad addition och lika stora grupper har, och borde ha, i relation till 
distributivitet. Det finns forskning som visar att elever lyckas väl med att 
utveckla förståelse för distributivitet med hjälp av beräkningar som bygger 
på upprepad addition och multiplikationsmodellen lika stora grupper. Samti-
digt pekar en del forskning ut rektangelformationer, som hur ägg ligger i en 
äggkartong, och rektangelarea som lämpligare modeller än lika stora grup-
per, för att förstå och använda den distributiva lagen. Vidare beskrivs distri-
butivitet som svårare för eleverna att lära sig än kommutativitet i en del stu-
dier och vice versa i andra. Däremot verkar det vara stor enighet om vikten 
av att kunna koppla samman multiplikation med olika modeller, som till 
exempel rektangelformation och lika stora grupper, samt att tillägna sig för-
ståelse för de aritmetiska egenskaperna; kommutativitet, distributivitet och 
associativitet. 

Grunden för den studie som beskrivs i avhandlingen utgörs av de ovan 
beskrivna motsättningarna i litteraturen i kombination med samstämmig-
heten i vikten av förståelse för multiplikation och de aritmetiska egen-
skaperna. Syftet med studien är att få en utökad kunskap om elevers förståel-
ser av multiplikation, när den utvidgas till att omfatta flersiffriga tal och tal i 
decimalform. Den övergripande forskningsfrågan var: Vad visar elevers 
lösningar till olika typer av multiplikativa uppgifter, inom multiplikation 
med flersiffriga tal och decimaltal, av deras förståelse av multiplikation? 

Studien genomfördes genom att följa tjugotvå elever under fem terminer i 
årskurs fem till sju. Eleverna arbetade med olika typer av uppgifter under 
återkommande kliniska intervjuer som genomfördes både individuellt och i 
par. Under intervjuerna fick eleverna konstruera räknehändelser till givna 
multiplikationer, ge explicita förklaringar av vad multiplikation är, utföra 
beräkningar följda av uppmaningar att förklara och motivera hur och varför 
strategin de använt fungerar, samt utvärdera beräkningsstrategier presente-
rade som förslag från fiktiva elever. Dessutom gav eleverna skriftliga svar 
till textuppgifter under ordinarie matematiklektioner. 

Att förstå ett matematiskt begrepp har i forskning ofta beskrivits som att 
ha gjort kopplingar mellan begrepps- och procedurkunskap, vilket för multi-
plikation kan innebära att man vet både vad 3 · 5 innebär och hur man räknar 
ut det. Vidare kan förståelse innebära kopplingar mellan kunskapstyperna 
och olika representationer för begreppet, till exempel genom att man kan 
koppla ihop multiplikationen med en bild eller en räknehändelse. Koppling-
en mellan de olika kunskapstyperna och representationerna kan ses som 
resonemang. Ett exempel på ett resonemang är att 3 · 5 måste vara lika 
mycket som 5 · 3, eftersom om det finns tre rader med fem bullar på en bak-
plåt så är det lika många bullar även om man vrider på plåten så att det är 
fem rader med tre bullar. Detta resonemang binder samman en aritmetisk lag 
med en multiplikationsmodell, nämligen kommutativa lagen med modellen 
rektangelformation. 
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Tre komponenter av multiplikationskunskaper har lyfts fram i tidigare 
forskning som särskilt betydelsefulla för utvidgningen av multiplikation till 
flersiffriga tal och decimaltal: multiplikationsmodeller, beräkningar och de 
aritmetiska lagarna. Att till exempel utföra beräkningen av 16 · 25 som 
10 · 25 + 6 · 25 innebär att den distributiva lagen används, vilket kan tolkas 
som att det finns en koppling mellan komponenterna beräkning och aritme-
tisk lag. Att förklara beräkningen genom att beskriva 16 · 25 som sexton 
påsar med tjugofem kulor i varje påse och att man först räknar ut hur många 
kulor det är i tio av påsarna och därefter hur många det är i de andra sex och 
slutligen summerar resultaten, kan tolkas som en koppling av beräkningen 
till en multiplikationsmodell. I föreliggande studie granskas kopplingar mel-
lan de tre komponenterna multiplikationsmodeller, beräkningar och aritme-
tiska egenskaper. Detta görs genom att studera elevernas resonemang, som 
ses som kopplingar, i syfte att beskriva deras förståelser av multiplikation. 

Resultaten av studien är uppdelade i fyra fristående rapporter (paper). 
Den första rapporten beskriver en undersökning om den eventuella motsätt-
ningen mellan att lösa multiplikativa jämförelseproblem och att utföra mul-
tiplikationsberäkningar, genom att jämföra elevernas resultat från dessa två 
typer av uppgifter. Det visade sig att en grupp elever som kunde förstå och 
lösa multiplikativa jämförelseproblem utförde beräkningar med hjälp av 
additiva resonemang. Resultatet indikerar att det inte tillräckligt att enbart se 
till elevernas tolkning av multiplikativ jämförelse för att utvärdera elevers 
förmåga att resonera multiplikativt, även hur de utför beräkningarna bör 
undersökas. Den andra rapporten beskriver vad elevers utvärderingar av 
felaktiga beräkningsstrategier kan berätta om elevers förståelse för distribu-
tivitet. Där framkom att eleverna resonerade på många olika sätt och att de 
elever som kopplade samman beräkningsstrategierna med multiplikations-
modellen lika stora grupper kom längre i sina resonemang än de elever som 
enbart resonerade numeriskt. Samtidigt som kopplingen till modellen lika 
stora grupper verkade bidra till mer utvecklade resonemang, verkade kopp-
lingen till modellen ibland hindra eleverna från att utnyttja kommutativitet. 
Dessutom visade det sig att de felaktiga beräkningsstrategier som eleverna 
fick undersöka var olika utmanande och ledde till olika typer av resone-
mang, vilket understryker vikten av att explicit beskriva de uppgifter som 
används i en studie för att andra ska kunna tolka och värdera resultaten. Den 
tredje rapporten beskriver vilken roll multiplikationsmodellen lika stora 
grupper kan ha för elevers förståelse för distributivitet genom en fallstudie 
av två elevers resonemang kring de felaktiga strategierna från den andra av 
de fyra rapporterna. Dessa båda elever utnyttjade kontextualiseringen av 
beräkningarna för att argumentera kring och förklara distributivitet. Samti-
digt verkade modellen lika stora grupper hindra dem att förstå vad multipli-
kation av decimaltal kan innebära. Den fjärde rapporten beskriver hur ele-
vers förståelse för multiplikation kan manifesteras genom de kopplingar de 



 

 75 

gör och hur denna förståelse kan variera över tid. En dubbel fallstudie med 
två elever visade två olika lärostigar under studiens fem terminer.  

Resultaten från de fyra rapporterna diskuteras gemensamt för att svara på 
den övergripande frågan om hur elevers lösningar till olika former av multi-
plikativa uppgifter kan visa deras förståelse för multiplikation. 
Sammantaget visade sig elevernas förståelse av multiplikation vara djupt 
rotad i upprepad addition och modellen lika stora grupper. Att koppla sam-
man multiplikation med lika stora grupper var fördelaktigt för deras förstå-
else för distributivitet, men samtidigt begränsande för tillämpning av kom-
mutativitet och förståelse för multiplikation av decimaltal. En förklaring till 
den djupt rotade bilden av multiplikation som upprepad addition och lika 
grupper kan vara hur multiplikation introduceras, vilket diskuteras i relation 
till tidigare forskning. Diskussionen behandlar även det allmängiltiga  
dilemmat om hur mer generella modeller för multiplikation (t.ex. rektangel-
area) är svårare att konceptualisera än de mer konkreta modellerna (t.ex. lika 
stora grupper), vilka i sin tur inte räcker till då talområdet utvidgas från de 
naturliga talen till att omfatta även rationella tal. 

I relation till olika uppgiftstyper indikerar studien att en del uppgiftstyper 
var mer produktiva för att generera varierande typer av resonemang än 
andra. Till exempel verkade uppgiften att utvärdera en fiktiv elevs felaktiga 
beräkningsstrategi skapa större möjligheter för eleverna att resonera multi-
plikativt jämfört med uppgiften att motivera och förklara sin egen beräk-
ningsstrategi. I framtida forskning som syftar till utökad kunskap om elevers 
förståelse för multiplikation föreslås därför att en variation av uppgiftstyper 
används. 
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