Supporting Information

Iron (III)-catalyzed intramolecular stereospecific substitution of the OH group in stereogenic secondary and tertiary alcohols
Rahul A. Watile ${ }^{1}$, Anon Bunrit ${ }^{1}$, Emi Lagerspets ${ }^{2}$, Ingela Lanekoff, ${ }^{3}$ Srijit Biswas ${ }^{4}$, Timo Repo ${ }^{2, *}$ and Joseph S. M. Samec ${ }^{1, *}$
${ }^{1}$ Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden.
${ }^{2}$ Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014, Finland.
${ }^{3}$ Department of Chemistry, BMC, Uppsala University, Box 599, 75124, Uppsala, Sweden.
${ }^{4}$ Division of Molecular Synthesis and Drug Discovery, Centre of Bio-Medical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, India.

*Corresponding author. Tel.: +46705592511; Fax: +468162000
E-mail: joseph.samec @su.se (J. S. M. Samec), timo.repo@helsinki.fi (T. Repo)

Table of Contents:

1.	Checklist of characterization data of all compounds	S3
2.	General Information	S9
3.	List of abbreviations	S9
4.	General Scheme A to synthesize 1a to 1g	S10
5.	General Method A to synthesize 1a to 1g	S10
6.	General Scheme B to synthesize $\mathbf{1 h}$ and 1i	S11
7.	General Method B to synthesize 1h and 1i	S12
8.	General Scheme \mathbf{C} to synthesize $\mathbf{1 j}, \mathbf{1 k}$, and $\mathbf{1 n}$	S13
9.	General Method \mathbf{C} to synthesize $\mathbf{1 j} \mathbf{j} \mathbf{1 k}$, and 1n	S13
10.	General Scheme D to synthesize 1m and 1n	S14
11.	General Method D to synthesize 1m and 1n	S14
12.	General Scheme E to synthesize 10 and 1p	S15
13.	General Method E to synthesize $\mathbf{1 0}$ and 1p	S15
14.	General Scheme F to synthesize 3a, 3b, and 3c	S16
15.	General Method F to synthesize 3a, 3b, and 3c	S16
16.	General Scheme \mathbf{G} to synthesize 2-iodo-N-phenylaniline M	S18
17.	General Method G to synthesize 2-iodo-N-phenylaniline M	S18
18.	General Scheme \mathbf{H} for the synthesis of dioxygen-centered nucleophiles	S19
19.	General Method \mathbf{H} for the synthesis of dioxygen-centered nucleophiles	S19
20.	General Scheme I for the synthesis of dinucleofuges $\mathbf{1 4}{ }^{\prime \prime}$	S19
21.	General Method I for the synthesis of dinucleofuges $\mathbf{1}{ }^{\prime \prime}$	S21
22.	Optimization of reaction conditions for secondary benzylic alcohols	S21
23.	Optimization of reaction conditions for tertiary alcohols	S22
24.	Inductively Coupled Plasma Mass Spectrometry analysis of $\mathrm{Fe}(\mathrm{OTf})_{3}$ catalyst	S22
25.	Rate order determination	S22
26.	In-situ UV-visible spectroscopy analysis	S23
27.	ESI-MS/MS of intermediate of the standard reaction	S24
28.	Characterization data of all starting alcohols 1 and $\mathbf{3}$	S24
29.	Experimental procedures and characterization data of all final products 2 and 4	S36
30.	Characterization data of synthesized intermediates	S50
31.	References	S53
32.	Copies of HPLC chromatograms for all starting alcohols and products	S54
33.	Copies of NMR for all starting alcohols and products	S92

1. Checklist of characterization data of all compounds

a. Checklist of characterization data of synthesized intermediates
Code

| | Known | 1 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

b. Checklist of characterization data of starting alcohols
Code

1i		Known	1	/	-	-
1j		New	1	1	/	/
1k		Known	1	1	-	-
11		New	1	/	/	1
1m		New	1	/	/	/
1n		Known	1	1	1	1
10		Known	1	1	-	-
1p		New	1	1	1	1
1 ${ }^{\prime}$		Known	1	1	1	/
1h"		New	1	1	1	1

3a		New	/	/	/	/
3b		New	/	/	/	/
3c		New	/	/	/	/

c. Checklist of characterization data of products

Code	Compound	New/ Known	$\begin{gathered} { }^{\mathbf{1}} \mathrm{H}- \\ \text { NMR } \end{gathered}$	$\begin{gathered} { }^{13} \mathrm{C}- \\ \text { NMR } \end{gathered}$	IR	HRMS
2 a		Known	/	/	/	/
2b		Known	/	/	/	/
2c		New	/	/	/	/
2d		New	/	/	/	/

2e		New	1	1	/	1
2 f		New	1	1	/	1
2g		New	1	1	/	/
2h		Known	/	/	/	/
2 i		Known	/	1	/	/
2j		New	1	/	/	/
2k		Known	1	1	-	-
21		New	1	/	1	/

(1)

2. General information:

Unless otherwise noted, all reactions were carried out in oven-dried 5 ml vial. All the reagents and solvents were bought from commercial sources and were used without further purification. All reactions were executed with oven-dried glassware under inert condition using argon. 1,2-Dichloroethane (DCE) was distilled using CaH_{2}. Dry THF, diethyl ether and toluene were obtained from a VAC solvent purifier. NMR spectra were recorded with a 400 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ spectrometer as solutions in CDCl_{3}. Chemical shifts (δ) are reported in parts per million (ppm) and are referenced to $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ as an internal standard. All coupling constants (J) are expressed in Hz. The description of the signals include: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and $\mathrm{dd}=$ doublet of doublets, at $=$ apparent triplet. IR spectra were recorded by a Perkin Elmer FT-IR Spectrometer. HighResolution Mass Spectra (HRMS) were performed with a micrOTOF (Bruker) spectrometer by Na-formate. The molecular fragments are quoted as the relation between mass and charge $(\mathrm{m} / \mathrm{z})$. The enantiospecificity (e.s.) of products were determined by chiral HPLC using the corresponding racemic compounds as references. The routine monitoring of reactions was performed by crude ${ }^{1} \mathrm{H}$ NMR.

3. List of abbreviations

$\mathrm{Cb} \quad N, N^{\prime}$-diisopripylcarbamoyl
Me Methyl
n-Hex $\quad n$-hexyl
PE Petroleum ether 40/60 fraction
Ph Phenyl
$s \mathrm{Bu} \quad$ sec-butyl
THF Tetrahydrofuran
DMF N,N-Dimethylformamide
TLC Thin Layer Chromatography
DCE Dichloroethane
DPPF 1,1'-Ferrocenediyl-bis(diphenylphosphine)
4. General Scheme A for the synthesis of 1a, 1b, 1c, 1d, 1e, 1f, and 1g:

5. General Method A to synthesize 1a, 1b, 1c, 1d, 1e, 1f, and 1g:

To a solution of 2-pyrrolidinone (30 mmol) in 30 mL dry DMF was added CuI ($10 \mathrm{~mol} \%$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv.) and aryl bromide (2 equiv.). The reaction mixture was refluxed for 48 h . After completion of the reaction, the reaction mixture was allowed to attain room temperature. Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$ was then added and the aqueous layer was separated and extracted with EtOAc $(4 \times 50 \mathrm{ml})$. The combined organic phase were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over anhydrous MgSO_{4} and concentrated under reduced pressure to give the crude product. Purification was carried out by silica gel column chromatography to afford N-aryl-2-pyrrolidinones \mathbf{A}.

An oven-dried round-bottomed flask equipped with a magnetic stir bar was charged with dry THF (20 mL) and N-aryl-2-pyrrolidinones $\mathbf{A}(10 \mathrm{mmol})$ under argon atmosphere. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and aryl magnesium bromide (1.1 equiv, in 4 mL THF) was added dropwise. The reaction was allowed to attain room temperature and was run at the same temperature for 3 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL)
extracted into diethyl ether $(3 \times 50 \mathrm{~mL})$. The combined organics were dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude residues (ketones, B1B7) were directly used for the next step (i.e. CBS-reduction) without further purification.

Ketones (B1-B7) were reduced to the alcohols enantioselectively by Corey-Bakshi-Shibata (CBS) reduction method. An oven-dried round-bottomed flask equipped with a magnetic stir bar was charged with $\mathrm{BH}_{3} /$ THF complex (1.2 equiv.) and chiral oxazaborolidine catalyst (R-CBS-Ox, $10 \mathrm{~mol} \%$) under argon. The solution was cooled to $0^{\circ} \mathrm{C}$ and stirred for 15 min . Ketones B1-B7 (5 mmol) dissolved in dry THF (10 mL) were added dropwise and the reaction was continued for 2 h at same temperature. After completion of reaction (TLC), the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL), extracted into ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organics were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the alcohols

1a-1g.

6. General Scheme B to synthesize 1h and 1i:

7. General Method B to synthesize 1h and 1i:

4-Oxo-4-arylbutyric acid \mathbf{C} (10 mmol) was dissolved in methanol (10 mL). Acetyl chloride (1.2 equiv.) was added dropwise and the reaction mixture was stirred at room temperature for overnight. After completion of the reaction (TLC), the reaction mixture was extracted into DCM ($3 \times 50 \mathrm{~mL}$). The combined organics were washed with water $(2 \times 50 \mathrm{~mL})$ and brine ($1 \times 50 \mathrm{~mL}$); dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain the corresponding methyl esters D. Esters D were used in the next step without further purification.

Ester D (5 mmol) dissolved in dry THF (10 mL) were added dropwise to a solution of $\operatorname{RuCl}(p-c y m e n e)[(S, S)$-Ts-DPEN $(5 \mathrm{~mol} \%)$ in $5: 2$ formic acid / triethylamine (10 mL) under argon and stirred for 48 h at $30^{\circ} \mathrm{C}$ oil bath. After completion of the reaction, the reaction was quenched with saturated NaHCO_{3} solution (30 mL) and extracted into $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$; dried on anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography to obtain a non-separable mixture of alcohol (\mathbf{E}) and lactone (\mathbf{F}).

A mixture of \mathbf{E} and \mathbf{F} (approx. 5 mmol) were reduced by using LiAlH_{4} (0.5 equiv.) in dry THF (20 mL) at room temperature to obtain the products $\mathbf{1 h}$ and $\mathbf{1 i}$ in quantitative yields.
8. General Scheme C for the synthesis of $\mathbf{1 j}, \mathbf{1 k}$, and 11 :

9. General Method \mathbf{C} to synthesize $\mathbf{1 j}, \mathbf{1 k}$, and 11 :

Alcohols $\mathbf{1} \mathbf{j}, \mathbf{1 k}$ and $\mathbf{1 l}$ were prepared by ring opening of lactam $\mathbf{A} \mathbf{2}$ with Grignard reagent. After completion by TLC, the following ketones were in situ reduced by NaBH_{4} for 1 hour to obtain racemate alcohols. Crude reaction mixtures were purified by silica gel column chromatography to obtain G1, G2, and G3 in $56 \%, 45 \%$ and 55% yields.

Alcohols G1, G2, and G3 were used to perform kinetic resolution with Candida Antarctica lipase- $B(C A L-B)$ in the excess amount of vinyl acetate for 12 hours. After completion of the reaction, crude mixtures were purified by silica gel column chromatography to alcohols $\mathbf{H 1}$, H2, H3 in $45 \%, 48 \%$ and 45% yields and acetylated products $\mathbf{I} 1, \mathbf{I} \mathbf{I}, \mathbf{I} \mathbf{3}$ in $40 \%, 43 \%, 45 \%$ yields, respectively.

Acetylated compounds $\mathbf{I 1}, \mathbf{I} \mathbf{2}, \mathbf{I} \mathbf{3}$ were used to perform deprotection in the present of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH for 2 hours. After completion by TLC, crude mixtures were purified by silica gel column chromatography to alcohols $\mathbf{1 j}, \mathbf{1 k}$, and $\mathbf{1 1}$ in $90 \%, 95 \%$ and 93% yields, respectively.

10. General Scheme D for the synthesis of $1 m$ and 1 n :

11. General Method D for the synthesis of $\mathbf{1 m}$ and $1 \mathbf{n}$:

N -aryl lactam K1 and K2 were prepared following a similar procedure as described in general method 5. To a solution of γ-lactam \mathbf{J} (30 mmol) in 30 mL dry DMF was added CuI (10 $\mathrm{mol} \%$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv.), and aryl bromide (2 equiv.). The reaction mixture was refluxed for 48 h . After completion of the reaction, the reaction mixture was allowed to attain room temperature. Aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$ was then added and the aqueous layer was separated and extracted with ethyl acetate $(4 \times 50 \mathrm{ml})$. The combined organic phase were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the crude product. Purification is carried out by usual silica gel column chromatography to afford pure K1 and K2.

A warm solution of N -aryl lactam $\mathbf{K}(10 \mathrm{mmol})$ in dry benzene $(30 \mathrm{ml})$ was added slowly to a well stir solution of phenyl lithium (10 mmol) under argon atmosphere. The reaction mixture
was stirred at reflux for 2 h under argon atmosphere. Benzene and ice-water were added at ice temperature. The combined organic phase was separated, washed with water, dried over sodium sulfate and concentrated under reduced pressure. The crude residues (ketones, L1-L2) were directly used without further purification for the CBS-reduction, after which the crude reaction mixtures were purified by silica gel column chromatography to obtain pure alcohols $\mathbf{1 m}$ and $\mathbf{1 n}$.

12. General Scheme \mathbf{E} for the synthesis of 10 and 1 p:

13. General Method \mathbf{E} for the synthesis of 10 and 1 p :

An oven-dried round-bottomed flask equipped with a magnetic stir bar was charged with dry THF (20 mL) and chroman-2-one (10 mmol) under argon atmosphere. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and aryl magnesium bromide (1.1 equiv, in 4 mL THF) was added dropwise. The reaction was allowed to attain room temperature and was run at the same temperature for 3 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) extracted into diethyl ether $(3 \times 50 \mathrm{~mL})$. The combined organics were dried over sodium sulfate, filtered, and concentrated under reduced pressure. The crude (ketones, M1 and M2) was directly used without further purification for the CBS-reduction after which the crude reaction mixtures were purified by silica gel column chromatography to obtain pure $\mathbf{1 0}$ and $\mathbf{1 p}$ in 34% and 39% overall yields respectively.

14. General Scheme \mathbf{F} for the synthesis of enantiomerically enriched tertiary alcohols

 3a, 3b, and 3c:

Q

$$
\mathrm{Y}=\mathrm{OH}, \mathbf{3 c}=98 \%, \text { er }(\mathrm{R} / \mathrm{S})=96: 4
$$

15. General Method \mathbf{F} for the synthesis of enantiomerically enriched tertiary alcohols 3a

3b and 3c:

Step 1: Preparation of enantiomerically enriched secondary benzylic alcohols \mathbf{N} via Noyori's asymmetric reduction: Acetophenone $(1.0 \mathrm{~g}, 8.33 \mathrm{mmol})$ was added to a solution of $\mathrm{RuCl}(p-$ cymene) $[(S, S)$-Ts-DPEN ($52.9 \mathrm{mg}, 0.083 \mathrm{mmol}, 1.0 \mathrm{~mol} \%$) in 5:2 formic acid / triethylamine (15 mL) under argon and stirred at $28^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, saturated NaHCO_{3} solution (50 mL) was added and stirred for another 15 min . The reaction mixture was extracted into DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$; dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Purification of the crude residue by column chromatography afforded pure alcohol \mathbf{N} in 90% yield.

Step 2: The following procedure is representative of the preparation of secondary carbamates \mathbf{O} from chiral secondary benzylic alcohol: A solution of alcohol $\mathbf{N}(5 \mathrm{mmol})$, diisopropylcarbamoyl chloride (1.1 equiv.), and triethyl amine (1.1 equiv.) in anhydrous DCM (30 mL) was refluxed for 24 h . After completion of the reaction (TLC), the reaction mixture was poured in water (50 mL). The mixture was extracted with diethyl ether (3×50 $\mathrm{mL})$. The combined organic parts were washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$; dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by usual silica gel column chromatography to afford pure carbamate \mathbf{O}.

Step 3: Lithiation/borylation of chiral secondary carbamates to tertiary allylic alcohol \mathbf{P} : To a stirred solution of (S)-1-Phenylethyl diisopropylcarbamate $\mathbf{O}(1 \mathrm{~g}, 4.01 \mathrm{mmol})$ in 20 mL anhydrous diethyl ether at $-78^{\circ} \mathrm{C}$ was added $s-\operatorname{BuLi}(3.4 \mathrm{~mL}$ of 1.4 M solution, $4.8 \mathrm{mmol}, 1.2$ equiv.) drop wise under an atmosphere of argon. The resulting light yellow homogeneous solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and neat vinylboronic acid pinacol ester ($1 \mathrm{~mL}, 6$ mmol, 1.5 equiv.) was added drop wise with vigorous stirring. The reaction mixture was then stirred for 45 minutes at $-78{ }^{\circ} \mathrm{C}$. A methanol solution of magnesium bromide ($6.0 \mathrm{~mL}, 6.0$ $\mathrm{mmol} ; 1 \mathrm{M})$ was added dropwise under argon. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for an additional 15 min . and then allowed to attain room temperature and was run at the same temperature for 16 h . The reaction was quenched with the addition of an ice cold solution of 3 M aqueous sodium hydroxide (14.8 mL) and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(8.5 \mathrm{~mL})$ and stirred at room temperature for an additional 2 hours. The reaction mixture was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water ($1 \times 50 \mathrm{~mL}$) and brine ($1 \times 50 \mathrm{~mL}$) and concentrated under reduced pressure. The crude product was purified by column chromatography to obtain tertiary allylic alcohol $\mathbf{P}(474.7 \mathrm{mg}, 80 \%)$ as a colorless oil.

Step 4: Palladium-catalyzed vinylations of iodoanilines \mathbf{Q} :

A mixture of $\mathbf{Q}(1.0 \mathrm{mmol})$, 2-phenylbut-3-en-2-ol $\mathbf{P}(5.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.10 \mathrm{mmol})$, and DPPF as ligand (0.20 mmol) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv.) in toluene : $\mathrm{H}_{2} \mathrm{O}(1: 1,2.0$ mL) were heated with stirring in a sealed tube at the temperatures $100^{\circ} \mathrm{C}$ for 3 h . After completion of the reaction (TLC), saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (30 mL) was added and the reaction mixture was extracted into ethyl acetate three times. The combined organic layers were washed with saturated $\mathrm{NaCl}(1 \times 50 \mathrm{~mL})$; dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography to obtain a pure alcohol \mathbf{R}.

Step 3: Hydrogenation of a tertiary alcohol R:

Tertiary alcohol $\mathbf{R}(1 \mathrm{mmol})$ was dissolved in $\mathrm{ACN}(10 \mathrm{~mL})$ at room temperature. $\mathrm{Pd} / \mathrm{C}(10 \%$ wt) was added under argon atmosphere, and the reaction vessel was cooled to $0^{\circ} \mathrm{C}$. Then, the atmosphere was substituted with $\mathrm{H}_{2}(1 \mathrm{~atm})$ and the reaction mixture was stirred at the same temperature for 1 h . After the completion of reaction (TLC), the mixture was filtered through a tight packed pad of Celite®. The filtrate was concentrated and purified via silica gel (100200 mess) column chromatography to obtain pure $\mathbf{3 a}, \mathbf{3 b}$, and $\mathbf{3 c}$.

16. General Scheme G for the synthesis of 2-iodo-N-phenylaniline (Q):

17. General Method G for the synthesis of 2-iodo-N-phenylaniline (Q):

To a solution of 2-iodoaniline ($2.0 \mathrm{mmol}, 438.04 \mathrm{mg}$) and 2-(Trimethylsilyl)phenyl trifluoromethanesulfonate ($2.2 \mathrm{mmol}, 656.37 \mathrm{mg}$) in acetonitrile (20 mL) was added CsF (4.0 $\mathrm{mmol}, 607.6 \mathrm{mg}$). The reaction was allowed to stir at room temperature for 12 h . After completion of the reaction (TLC), $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added carefully and stirred for 15 min . The mixture was extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were
washed with water $(1 \times 50 \mathrm{~mL})$ and brine $(1 \times 50 \mathrm{~mL})$) ; dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography to obtain 2-iodo-N-phenylaniline (Q, 92.0\%).

18. General Scheme \mathbf{H} for the synthesis of dioxygen-centered nucleophiles $\mathbf{1 h}^{\prime}$

19. General Method H for the synthesis of dioxygen-centered nucleophiles $\mathbf{1 h}^{\prime}$

A mixture of 2-bromoacetophenone ($10 \mathrm{mmol}, 199 \mathrm{mg}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv. 138mg, 10 mmol), and methyl ethyl ketone (2 equiv. 144 mg) in acetone (20 mL) was stirred at room temperature for 12 h . After completion of the reaction it was diluted with water, extracted in DCM, washed with water, brine and dried over the anhydrous sodium sulphate. The solvent was removed under vacuum. The crude product was recrystallized from 2-propanol gave pure compound dimethyl 2-(2-oxo-2-phenylethyl)malonate $\mathbf{S}(90 \%, 225 \mathrm{mg})$. The compound \mathbf{S} (approx. 8 mmol) was reduced by using LiAlH_{4} (0.5 equiv.) in dry THF (20 mL) at room temperature to obtain the products (3-(hydroxymethyl)-1-phenylbutane-1,4-diol) $\mathbf{1 h}^{\prime}$ in quantitative yields.

20. General Scheme I for the synthesis of dinucleofuges $1 h^{\prime \prime}$

21. General Method I for the synthesis of dinucleofuges $1 h^{\prime \prime}$

Similar to the synthesis of di-O-centered nucleophiles $\mathbf{1} \mathbf{h}^{\prime \prime}$, a substitution reaction of ethyl bromoacetate with dibenzoylmethane generated ethyl 3-benzoyl-4-oxo-4-phenylbutanoate \mathbf{T}, followed by then LiAlH_{4} reduction to give 2-(hydroxy(phenyl)methyl)-1-phenylbutane-1,4diol $\mathbf{1 h}^{\prime \prime}$.

22. Table S1: Optimization of reaction conditions for secondary benzylic alcohols*

		cat.$(10 \mathrm{~mol}$ MS ($3 \AA$) Solvent			
Entry	Catalysts	Solvent	Temp (${ }^{\circ} \mathbf{C}$)	Yield $(\%)^{\dagger}$	$\begin{gathered} \text { e.s. } \\ (\%)^{\ddagger} \end{gathered}$
1	FeF_{3} (III)	DCE	90	15	0
2	FeCl_{2} (II)	DCE	90	20	92
3	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)$	DCE	90	NR	0
4	$\mathrm{Fe}(\mathrm{acac})_{3}$	DCE	90	NR	0
5	$\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$	DCE	90	NR	0
6	$\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	DCE	90	10	91.1
7	$\mathrm{Fe}(\mathrm{EDTA})$ sodium salt	DCE	90	NR	0
8	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	DCE	90	10	93
9	FeCl_{3}	DCE	90	35	92
10	Ferric citrate	DCE	90	NR	0
11	Iron(III) tartrate	DCE	90	NR	0
12	$\mathrm{Fe}(\mathrm{OTf})_{3}$	DCE	90	62	96
13	$\mathrm{Fe}(\mathrm{OTf})_{3}$	DCE	110	85	80
14	$\mathrm{Fe}(\mathrm{OTf})_{3}$	ACN	90	13	0
15	$\mathrm{Fe}(\mathrm{OTf})_{3}$	MeNO_{2}	90	10	92
16	$\mathrm{Fe}(\mathrm{OTf})_{3}$	1, 2 dibromomethane	90	05	0
17	$\mathrm{Fe}(\mathrm{OTf})_{3}$	CDCl_{3}	90	14	95
18	$\mathrm{Fe}(\mathrm{OTf})_{3}$	Toluene	90	32	0
19	$\mathrm{Fe}(\mathrm{OTf})_{3}$	1,4 dioxane	90	23	90
20	$\mathrm{Fe}(\mathrm{OTf})_{3}$	Hexane	90	21	99
21	$\mathrm{Fe}(\mathrm{OTf})_{3}+\mathrm{AgBF}_{4}(10 \mathrm{~mol} \%)$	DCE	90	NR	0
22	$\mathrm{Fe}(\mathrm{OTf})_{3}+\mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%)$	DCE	90	NR	0
23	$\mathrm{Fe}(\mathrm{OTf})_{3}+\mathrm{AgPF}_{6}(10 \mathrm{~mol} \%)$	DCE	90	NR	0
24	$\mathrm{Fe}(\mathrm{OTf})_{3}{ }^{\S}+\mathrm{MS}(3 \AA)$	DCE	90	98	99
25	MS ($3 \AA$)	DCE	90	NR	0
26	$\mathrm{Fe}(\mathrm{OTf})_{3}+\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ ($\left.5 \mathrm{~mol} \%\right)$	DCE	90	31	88
27	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$	DCE	90	NR	0
28	Without catalyst	DCE	90	NR	0
29	$\mathrm{Cu}(\mathrm{OTf})_{2}$	DCE	90	<10	0
30	$\mathrm{Ni}(\mathrm{OTf})_{2}$	DCE	90	<10	0
31	$\mathrm{Mn}(\mathrm{OTf})_{2}$	DCE	90	<10	0
32	$\mathrm{Co}(\mathrm{OTf})_{2}$	DCE	90	<10	0

Reaction condition: *All reactions were performed using 0.5 mmol of $\mathbf{1 a}, 0.050 \mathrm{mmol}$ of catalyst ($10 \mathrm{~mol} \%$) in DCE as solvent $(2.0 \mathrm{~mL})$, MS $(3 \AA)=300 \mathrm{mg}$, at $90^{\circ} \mathrm{C}$ temperature for time 24 h under argon atmosphere. ${ }^{\dagger}$ NMR yield. ${ }^{\dagger}$ Enantiospecificity was determined by chiral stationary phase HPLC analysis.
${ }^{8}$ The purity of catalyst has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) analysis. NR, no reaction.

23. Table S2: Optimization of reaction conditions for tertiary alcohols*

Entry	Solvent (mL)	Temp (${ }^{\circ} \mathbf{C}$)	Time (h)	Yield (\%) †	e.s. (\%)
${ }^{\ddagger}$					
1	DCE	90	24	100	09
2	n-Hexane	90	24	100	26.8
3	DCE $+n$-Hexane $(0.5+0.5)$	90	24	100	40
4	DCE $+n$-Hexane $(0.4+0.6)$	90	24	100	32.2
5	DCE $+n$-Hexane $(0.3+0.7)$	90	24	100	32.2
6	DCE $+n$-Hexane $(0.2+0.8)$	90	24	100	29
7	DCE $+n$-Hexane $(0.25+0.25)$	90	24	100	36
8	DCE $+n$-Hexane $(01+01)$	90	24	100	35
9	DCE $+n$-Hexane $(0.5+0.5)$	80	24	100	50.53
10	DCE $+n$-Hexane $(0.5+0.5)$	60	24	100	64
11	DCE $+n$-Hexane $(0.5+0.5)$	rt	48	98	96

Reaction condition : *All reactions were performed using 0.2 mmol of $\mathbf{3 a}, \mathrm{MS}(3 \AA)=100 \mathrm{mg}$, and 0.020 mmol of catalyst $(10 \mathrm{~mol} \%)$ in the indicated solvent $(01 \mathrm{~mL})$ under argon atmosphere. ${ }^{\dagger}$ NMR yield. ${ }^{\dagger}$ Enantiomeric excess was determined by chiral stationary phase HPLC analysis. NR, no reaction.

24. Inductively Coupled Plasma Mass Spectrometry analysis of $\mathrm{Fe}(\mathrm{OTf})_{3}$ catalyst

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for detecting trace elemental impurities in the $\mathrm{Fe}(\mathrm{OTf})_{3}$ catalyst (purity 90.00%, Table S1). The major metal impurities were individually screened as catalysts for the transformation (entry 29-32, Table S1). However, none of the trace metals outperformed $\mathrm{Fe}(\mathrm{OTf})_{3}$ as catalyst in the intramolecular substitution reaction.

25. Rate order determination

The reaction of $\mathbf{1 a}$ to $\mathbf{2 a}$ was performed using five different concentrations of catalyst $(0,5$, 10,15 , and $20 \mathrm{~mol} \%$). The reactions were monitored by using ${ }^{1} \mathrm{H}$ NMR spectroscopy and the initial rates were determined below 20% conversion. Duplicates of the reactions were made and the data is the mean value of these duplicates.

Fig S1: Rate order determination
Reaction condition: 1a (0.2 mmol), DCE (1 mL), MS ($3 \AA$) (200 mg), and catalyst ($0,5,10,15$, and $20 \mathrm{~mol} \%$) were heated in an oil bath at $90^{\circ} \mathrm{C}$. Initial rates of the reaction were determined below 20% conversion (up to 2h) by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The values are the mean value of two reactions.

26. In-situ UV-visible spectroscopy analysis

N-methyl anisole (1r), represent an N-centered nucleophile exhibits the absorption bands at $320 \mathrm{~cm}^{-1}$ (Fig. 2) in UV-vis spectrum in DCE. When Fe is added a blue shift to $275 \mathrm{~cm}^{-1}$ is observed. A similar trend is found in the UV-vis spectrum for the substrate 1a (Fig. 3).

Fig. S2: Interaction of $\mathrm{Fe}(\mathrm{OTf})_{3}$ with nucleophile (1r)

Fig.S3: Interaction of $\mathrm{Fe}(\mathrm{OTf})_{3}$ with 1a

27. ESI-MS/MS of intermediate of the standard reaction

Fig.S4: ESI-MS/MS of intermediate of the reaction

28. Characterization data of all starting alcohols:

All characterization data for alcohols 1a, 1c, 1d, 1e, 1f, 1g, 1j, 1k, 11, 1m, 1n, 10, 1p, 3a, 3b, and $\mathbf{3 c}$ which are not reported previously, are supplemented below. Alcohols $\mathbf{1 b}, \mathbf{1 h}$, and $\mathbf{1 i}$ were previously reported and the obtained NMR data (see copies of NMR attached below) matched with the reported values.

(S)-4-((4-methoxyphenyl)amino)-1-phenylbutan-1-ol (1a) ${ }^{1}$

IR (neat) 3360.64, 3028, 2932.25, 2831, 1617, 1512.40, 1455, 1296, 1235.54, 1178, 1119, 1119.18, 1034.64, 913, 819, 749, $701 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform-d) $\delta=7.37-$ 7.33 (m, 4H), $7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.72$ (dd, $J=7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dddd}, J=10.2,8.4,6.7,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $152.5,144.6,142.0,128.5,127.6,125.8,114.9,114.7,74.3,55.8,45.4,36.8,26.0 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 272.1572$ found m / z 272.1645. The enantiomeric ratio of 1a was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=25.45 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=30.12 \mathrm{~min}$.

(S)-1-phenyl-4-(phenylamino)butan-1-ol (1b) ${ }^{1}$

IR (neat) $3354.64,3029,2930.25,2835,1615,1510.40,1465,1316,1145.54,1178,1119.18$, 1034.64, 911, 819, 750, $711 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, 4H), $7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.54(\mathrm{~m}$, $2 \mathrm{H}), 4.73(\mathrm{dd}, J=7.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.72$ $(\mathrm{m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=148.3,144.5,129.2,128.5$, 127.6, 125.8, 117.4, 112.9, 74.3, 43.9, 36.6, 25.9 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 242.1548$ found $m / z 242.1545$. The enantiomeric ratio of $\mathbf{1 b}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane $:$ isopropanol $=90: 10$, flow
rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}($ channel 1$), 232 \mathrm{~nm}($ channel 2$): \mathrm{t}_{1}($ major $)=22.1 \mathrm{~min}, \mathrm{t}_{2}$ $($ minor $)=32.8 \mathrm{~min}$.
(S)-1-(4-fluorophenyl)-4-((4-methoxyphenyl)amino)butan-1-ol (1c)

IR (neat) 3367.48, 2994, 2935.19, 2834.38, 1603, 1511.78, 1464, 1386, 1235.4, 1179, 1092.8, 1035.34, 821.49, 755, 718, $574 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.36-7.31$ (m, $4 \mathrm{H}), 7.26(\mathrm{~d}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.38-$ $2.27(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=162.3\left(J_{\mathrm{C}-\mathrm{F}}=320 \mathrm{~Hz}\right), 152.8,141.6,127.5\left(J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 115.3\left(J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 115.1$, 114.9, 73.6, 55.8, 45.6, 37.0, 25.9 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z}$ 290.1569 found m / z 290.1551. The enantiomeric ratio of $\mathbf{1 c}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=22.81 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=28.03 \mathrm{~min}$.
(S)-1-(4-chlorophenyl)-4-((4-methoxyphenyl)amino)butan-1-ol (1d)

IR (neat) $3370.58,2935,2830.34,1616,1512.28,1463,1365,1295,1237.31,1179,1088.9$, 1036.44, 818.9, 770, 702, $475 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.29(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 4 \mathrm{H}), 6.81-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{dd}, J=7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta=152.8,141.6,127.5,127.4,115.4,115.2,115.1,114.9,73.6,55.8,45.6,37.0,25.9$ ppm. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 306.1267$ found m / z 306.1255. The enantiomeric ratio of 1d was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1$), 232$ $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=45.3 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=53.7 \mathrm{~min}$.

(S)-4-((4-methoxyphenyl)amino)-1-(3-(trifluoromethoxy)phenyl)butan-1-ol (1e)

IR (neat) $3371.68,2934,2831.44,1606,1513.81,1465,1360,1190,1240.71,1201,1080.1$, $811.9,765,701,470 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 4.76$ (t, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{td}, J=6.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dd}, J=7.3,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.78-1.67(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta==152.5,149.4,147.2,142.2$, 129.7, 124.1, 121.7, 119.7, 119.2, 118.3, 114.9, 114.8, 73.5, 55.8, 45.2, 37.1, 26.0 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 356.1395$ found m / z 356.1385. The enantiomeric ratio of $\mathbf{1 e}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=16.01 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=21.1 \mathrm{~min}$.
(S)-4-((4-methoxyphenyl)amino)-1-(p-tolyl)butan-1-ol (1f)

IR (neat) 3361.8, 2937, 2830.86, 1614, 1511.98, 1462, 1293, 1235, 1179, 1119.8, 1035.67, 818.6, $518.77 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{dt}, J=$ $9.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.7,141.6,137.2,129.1,125.8$, 115.1, 114.9, 99.9, 74.1, 55.8, 45.7, 36.7, 25.9, 21.1 ppm. HRMS (ESI)calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 308.1618$ found $\mathrm{m} / \mathrm{z} 308.1621$. The enantiomeric ratio of $\mathbf{1 f}$ was determined by HPLC analysis using Daicel Chiralcel AD column: n-Hexane : isopropanol $=$ 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 nm (channel 2): t_{1} (major) $=28.8$ $\min , \mathrm{t}_{2}($ minor $)=29.6 \mathrm{~min}$.

(S)-1-(3-methoxyphenyl)-4-((4-methoxyphenyl)amino)butan-1-ol (1g)

IR (neat) 3370, 3030, 2831, 1616, 1505, 1468, 1440, 1417, 1311, 1267, 1170, 1118, 1094, 1030. 817, $755 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=$ $4.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{ddd}, J=8.3,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.68(\mathrm{dd}, J=7.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-$ $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.7, 152.4, 146.4, 129.4, 118.1, 114.9, 114.8, 114.6, 112.9, 111.3, 74.1, 55.8, 55.2, 45.2, 36.8, 25.9 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 302.1752$ found $m / z 302.1751$. The enantiomeric ratio of $\mathbf{1 g}$ was determined by HPLC analysis using Daicel Chiralcel AD column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=42.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=48.9 \mathrm{~min}$.

(S)-1-phenylbutane-1,4-diol (1h) ${ }^{2}$

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ $(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{td}, J=7.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.63(\mathrm{~m}$, 2H)ppm. ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=144.7$, 128.4, 127.5, 125.8, $74.3,62.8,36.2$, 29.2. HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 167.1070$ found m / z 167.1076. The enantiomeric ratio of $\mathbf{1 h}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane : isopropanol $=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}: \mathrm{tl}$ (minor) $=44.3$ $\min , \mathrm{t} 2($ major $)=48.4 \mathrm{~min}$.

(S)-1-(4-fluorophenyl)butane-1,4-diol (1i) ${ }^{3}$

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.28(\mathrm{ddd}, J=8.0,5.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-6.94(\mathrm{~m}$, $2 \mathrm{H}), 4.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.69$ $-1.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=162.0\left(\mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}\right), 140.4,140.4,127.3$ $\left(J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right), 115.2\left(J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 73.6,62.7,36.5,29.0 . \mathrm{ppm}$ HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNaO} 2[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 207.0797$ found m / z 207.0797. The enantiomeric ratio of $\mathbf{1 i}$ was determined by HPLC analysis using Daicel Chiralcel AD column: n-Hexane: isopropanol $=$ 95:5, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 nm (channel 2): t_{1} (major) $=111.0$ $\min , \mathrm{t}_{2}($ minor $)=118.4 \mathrm{~min}$.
(S)-6-((4-methoxyphenyl)amino)hexan-3-ol (1j) ${ }^{3}$

IR (neat) $\mathrm{cm}^{-1} 3382,3030,2931,2870,1661,1614,1510,1451,1354,1311,1217,1170$, 1118, 1040, 1036. 917, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=6.85-6.74(\mathrm{~m}$, $2 \mathrm{H}), 6.69-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{ddd}, J=17.2,10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dtd}, J=5.9,4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.16-$ $3.02(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.57(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.1,142.4$, 141.0, 114.8, 114.4, 114.4, 72.5, 55.7, 45.0, 34.6, 25.4 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] 222.1489 \mathrm{~m} / \mathrm{z}$ found $222.1498 \mathrm{~m} / \mathrm{z}$. The enantiomeric ratio of $\mathbf{1} \mathbf{j}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane: isopropanol $=$ 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 nm (channel 2): t_{1} (major) $=46.3$ $\min , \mathrm{t}_{2}($ minor $)=49.7 \mathrm{~min}$.

(R)-5-((4-methoxyphenyl)amino)pentan-2-ol (1k) ${ }^{3}$

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{tdd}, J=8.3$, $5.9,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.2$, $142.5,114.8,114.4,67.7,55.7,45.2,36.9,26.0,23.6 \mathrm{ppm}$.

The enantiomeric ratio of $\mathbf{1 k}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=85: 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=58.9 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=63.2 \mathrm{~min}$.

(R)-6-((4-methoxyphenyl)amino)hex-1-en-3-ol (11) ${ }^{3}$

IR (neat) $\mathrm{cm}^{-1} 3382,3029,2935,2874,2833,1660,1615,1513.49,1456.9,1385,1238.21$, $1179,1111,1036.69,969,819.74,753 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=6.84-$ $6.74(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.57(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dddd}, J=8.5,7.5,4.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.19-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 1.81-1.39(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.0,142.3,114.6,114.4,72.9,55.6,45.2,34.6,30.2,25.9$, 10.0 ppm . HRMS (ESI) calcd. For $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] 224.1645 \mathrm{~m} / \mathrm{z}$ found $224.2652 \mathrm{~m} / \mathrm{z}$. The enantiomeric ratio of $\mathbf{1 1}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane: isopropanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=14.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=15.4 \mathrm{~min}$.

(S)-5-((4-methoxyphenyl)amino)-1-phenylpentan-1-ol (1m) ${ }^{4}$

IR (neat) 3362.14, 3029, 2935.27, 2833, 1611, 1522.80, 1450, 1206, 1230.44, 1186, 1121, 1044.51, 911, 820, $789 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.39-7.31(\mathrm{~m}, 4 \mathrm{H})$, $7.29(\mathrm{dd}, J=6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.61(\mathrm{~m}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.58$ $(\mathrm{m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{ddd}, J=10.3,7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.0,144.7,142.6,128.5,127.6,125.8,114.9,114.1,74.5,55.8,44.8$, 38.8, 29.5, 23.4 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 286.1811$ found m / z 286.1807. The enantiomeric ratio of $\mathbf{1 m}$ was determined by HPLC analysis using Daicel

Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), $232 \mathrm{~nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=29.23 \mathrm{~min}, \mathrm{t}_{2}($ major $)=31.38 \mathrm{~min}$.

(S)-3-(2-((4-methoxyphenyl)amino)phenyl)-1-phenylpropan-1-ol (1n) ${ }^{4}$

IR (neat) 3366.44, 3031, 2945.55, 2823, 1615, 1520.79, 1441, 1216, 1202.40, 1184, 1116, 1040.50, 916, 821, 780, 711, $498 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.34(\mathrm{~m}, 4 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.89-$ $6.82(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{dd}, J=8.7,4.4 \mathrm{~Hz}, 0 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 2.82-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.99(\mathrm{~m}$, $0 \mathrm{H}) \mathrm{pmp} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=154.8,144.4,142.9,137.0,130.0,129.7,128.5$, 127.7, 126.9, 125.8, 121.3, 120.5, 116.8, 114.7, 73.4, 55.6, 39.0, 27.1 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 356.1621$ found $\mathrm{m} / \mathrm{z} 235.1631$.

The enantiomeric ratio of $\mathbf{1 n}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}($ channel 1$), 232$ $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=26.2 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=46.6 \mathrm{~min}$.
(S)-2-(3-hydroxy-3-phenylpropyl)phenol (10)

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta=7.41-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{td}, J$ $=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{dd}, J=10.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{ddd}, J=14.2,10.6,6.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.77(\mathrm{ddd}, J=14.3,6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=35.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dddd}, J=14.3,10.3$, 6.1, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=154.6,143.9$, $130.5,128.6,127.9,127.7,127.1,125.8,120.8,116.2,73.1,39.3,25.9 \mathrm{ppm}$.

The enantiomeric ratio of $\mathbf{1 0}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane: isopropanol $=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=43.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=46.4 \mathrm{~min}$.
(S)-2-(3-(4-fluorophenyl)-3-hydroxypropyl)phenol (1p)

IR (neat) 3357, 2934.80, 2836.60, 1622, 1555, 1513, 1473, 1464, 1237, 1179, 1116, 1035, 992, 922, $821 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15$ (ddd, J $=8.5,7.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{dd}, J=10.2,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95$ (ddd, $J=14.1,10.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (ddd, $J=14.3,6.7,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10$ (dddd, $J=14.3,10.4,6.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dddd}, J=14.0,10.3,6.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=162.3\left(J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}\right), 154.4,139.7,139.7,130.6,127.7,127.5\left(J_{\mathrm{C}-\mathrm{F}}=\right.$ $10 \mathrm{~Hz}), 127.1,120.8,116.1,115.4\left(J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 72.4,39.4,25.9 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] 269.0948 \mathrm{~m} / \mathrm{z}$ found $269.0973 \mathrm{~m} / \mathrm{z}$. The enantiomeric ratio of $\mathbf{1 p}$ was determined by HPLC analysis using Daicel Chiralcel AD column: n-Hexane : isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}($ channel 1$), 232 \mathrm{~nm}($ channel 2$): \mathrm{t}_{1}$ $($ minor $)=12.3 \mathrm{~min}, \mathrm{t}_{2}($ major $)=16.2 \mathrm{~min}$.

(S)-2-phenyl-4-(2-(phenylamino)phenyl)butan-2-ol (3a) ${ }^{5}$

IR (neat) 3355, 3141, 2901.89, 2853.68, 1609.54, 1515.43, 1389.12, 1360, 1256, 1223.34, 1189.64, 1155, 1015, 816, 711, $459 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.47-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H})$, $6.96-6.86(\mathrm{~m}, 5 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=14.0,11.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.2,144.2,140.5,132.3$, 129.9, 129.2, 128.3, 126.8, 126.7, 124.7, 121.8, 120.2, 119.2, 117.2, 74.8, 44.0, 30.6, 26.2 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 340.1671$ found $\mathrm{m} / \mathrm{z} 340.1672$. The enantiomeric ratio of 3a was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}\left(\right.$ channel 2) $: \mathrm{t}_{1}($ minor $)=8.7 \mathrm{~min}, \mathrm{t}_{2}($ major $)=10.1 \mathrm{~min}$.

(S)-2-(3-hydroxy-3-phenylbutyl)phenol (3b) ${ }^{5}$

IR (neat) $3361.83,3058,3028,2975,2929,1582.51,1489,1455.94,1374,1243,1218,1119$, $1065,1029,944,890,753.71,699,548 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.54-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.00$ $(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.65(\mathrm{td}, J=9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.46 (ddt, $J=15.8,9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=14.3,9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=14.5$, $9.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=153.83,147.10,130.01$,
$128.32,127.46,126.79,125.44,124.67,120.38,115.95,75.47,43.86,30.49,24.76 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / z 265.1211$ found m / z 265.1199.

The enantiomeric ratio of $\mathbf{3 b}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane: isopropanol $=90: 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=11.1 \mathrm{~min}, \mathrm{t}_{2}($ major $)=12.8 \mathrm{~min}$.

(R)-2-(3-hydroxy-3,7-dimethyloctyl)phenol (3c) ${ }^{5}$

IR (neat) $3338.03,3071,3036,2953,2868,1593.65,1490,1457.54,1366,1243,1175,1089$, 1041, 912, 847, $751.42 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.09-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.82-6.72(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.31-$ $1.22(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.0,129.9,128.8,127.4,120.1,116.2,73.9,42.4,40.9,39.3$, 27.8, 26.7, 24.3, 22.6, 21.9 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 273.1837$ found m / z 273.1825. The enantiomeric ratio of $\mathbf{3 c}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane: isopropanol $=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}\left(\right.$ channel 1), $232 \mathrm{~nm}\left(\right.$ channel 2) $: \mathrm{t}_{1}($ major $)=15.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=21.2 \mathrm{~min}$.

29. Experimental procedures and characterization data of all final products:

(R)-1-(4-methoxyphenyl)-2-phenylpyrrolidine (2a) ${ }^{7}$

To an oven-dried 5 ml vial equipped with a magnetic stir bar was added substrate aminoalcohol 1a ($135.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA$) (300 mg), and $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}, 0.05 \mathrm{mmol})$. The tube was sealed with a teflon-lined cap, connected to a vacuum and backfilled with argon three times by piercing with a needle attached to a Schlenk line. Then 2.0 ml of anhydrous DCE was added by syringe and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 24 hours. After this, the reaction was cooled to room temperature and the crude was concentrated under vacuum. The crude residue was purified by column chromatography with ethyl acetate and hexanes (1:20) as solvent to obtain the pure product 2a $(98 \%, 133 \mathrm{mg}$) as colorless oil. IR (neat) 3059, 3044, 2966, 2901, 2829, 1618, 1513, 1490, 1450, 1363, 1262, 1240, 1179, 1174, 1042, 966, 811.93, $770.69,747.12,589 / 98,519.20 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta=7.37-7.32(\mathrm{~m}$, $4 \mathrm{H}), 7.28(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{dd}, J=7.5$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{td}, J=6.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=131.7,128.5,127.6,125.8$, 115.3, 115.2, 114.9, 99.9, 74.3, 55.8, 45.8, 36.8, 25.9 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}] m / z 254.1546$ found $m / z 254.1539$.

The enantiomeric ratio of 2a was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 05$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1): t_{1} $($ minor $)=13.1 \mathrm{~min}, \mathrm{t}_{2}($ major $)=14.4 \mathrm{~min}$.
(R)-1,2-diphenylpyrrolidine (2b)

$S / R=92: 8$

$R / S=90: 10$

Alcohol 1b ($120.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 48 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by a fast column chromatographic using silica gel (mess 100-200) and dichloromethane eluent obtain pure 2b ($115.6 \mathrm{mg}, 0.96 \mathrm{mmol}$, 96% yield) as colorless oil. IR (neat) 3060, 3034, 2965, 2911, 2834, 1601, 1512, 1455, 1362, 1264, 1239, 1180, 1101, 1034, 965, 812.73, 771.90, $740.13,584 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.36-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{q}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38(\mathrm{tt}, J=11.0,7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=147.1,144.6,128.9,128.4,126.6,125.9,115.7,112.3,62.9,49.1,36.0,23.0$ ppm. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 246.1261$ found $m / z 246.1251$.

The enantiomeric ratio of $\mathbf{2 b}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane: isopropanol $=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1$), 232$ $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=8.3 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=9.9 \mathrm{~min}$.
(R)-2-(4-fluorophenyl)-1-(4-methoxyphenyl)pyrrolidine (2c)

1c
S/R=98:2

$R / S=95: 5$

Alcohol 1c ($144.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA \AA^{\text {) }}$ (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 24 h and purified as described for $\mathbf{1 a}$ to obtain

2c ($128.7 \mathrm{mg}, 0.474 \mathrm{mmol}, 95 \%$ yield) as a yellowish oil. IR (neat) 3061, 3045, 2963, 2911, $2815,1611,1525,1493,1451,1362,1281,1229,1178,1177,1044,965,812.23,771.19$, 737.12, 701.38, $523.21 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.20(\mathrm{~s}, 2 \mathrm{H}), 7.03-$ $6.89(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.64-3.70(\mathrm{~m} 1 \mathrm{H}), 3.34(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 1.88$ (s, 1H) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.2\left(J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}\right), 150.9,141.9,140.7$, $127.3\left(J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 115.2\left(J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 114.8,113.0,62.8,55.9,49.7,36.3,23.2 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NFO}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 272.1447$ found m / z 272.1445. The enantiomeric ratio of 2c was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=10.4 \mathrm{~min}, \mathrm{t}_{2}($ major $)=19.9 \mathrm{~min}$.
(R)-2-(4-chlorophenyl)-1-(4-methoxyphenyl)pyrrolidine (2d)

1d
S/R= 97:3

R/S= 97:3

Alcohol 1d (152.5 mg, 0.5 mmol), MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 24 h and purified as described for $\mathbf{1 a}$ to obtain 2d ($140.6 \mathrm{mg}, 0.489 \mathrm{mmol}, 98 \%$ yield) as a yellowish oil. IR (neat) 3060, 3055, 2910, 2825, $1615,1531,1490,1450,1356,1280,1232.45,1188,1167.35,1063.54,960,811.33,770.29$, $717.11,701.41,520.83 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta=7.33-7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.19(\mathrm{~s}, 2 \mathrm{H}), 6.82-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.0,143.7,141.9,132.2,128.6,127.3,114.9,113.1$, 62.9, 55.9, 49.7, 36.2, 23.3 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 288.1158$
found m / z 288.11150. The enantiomeric ratio of 2d was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}\left(\right.$ channel 1), $232 \mathrm{~nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=24.0 \mathrm{~min}, \mathrm{t}_{2}($ major $)=33.4 \mathrm{~min}$.

(R)-1-(4-methoxyphenyl)-2-(3-(trifluoromethoxy)phenyl)pyrrolidine (2e)

$S / R=97: 3$

1,2-Dichloroethane $90^{\circ} \mathrm{C}, 24 \mathrm{~h}$

$R / S=97: 3$

Alcohol $\mathbf{1 e}(177.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA \AA^{\text {) }}$ (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for 1 a for 24 h and purified as described for $\mathbf{1 a}$ to obtain 2d ($165.5 \mathrm{mg}, 0.485 \mathrm{mmol}, 91 \%$ yield) as a yellowish oil. IR (neat) 3061, 3053, 2921, 2822, $1611,1521,1493,1451,1352,1271,1222.35,1178,1060.57,963,801.34,771,701.41 \mathrm{~cm}^{-1}$. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.47-6.38(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{td}, J=8.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.1,149.6,147.9,141.8,129.8,124.2$, 119.2, 118.8, 118.5, 114.8, 113.1, 63.1, 55.9, 49.7, 36.1, 23.3 ppm HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 338.1323$ found $\mathrm{m} / \mathrm{z} 338.1320$. The enantiomeric ratio of 2e was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=$ 90:10, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 nm (channel 2): t_{1} (major) $=7.18$ $\min , \mathrm{t}_{2}($ minor $)=9.5 \mathrm{~min}$.

(R)-1-(4-methoxyphenyl)-2-(p-tolyl)pyrrolidine (2f)

$S / R=98: 2$

R/S=91:9

Alcohol $\mathbf{1 f}(143.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 24 h and purified as described for $\mathbf{1 a}$ to obtain 2f ($124.1 \mathrm{mg}, 0.464 \mathrm{mmol}, 93 \%$ yield) as a colorless oil. IR (neat) $3068,3050,2911,2821$, $1609,1530,1491,1453,1372,1273,1231.42,1137,1166.32,1064.43,961,816.43,771.49$, $707.13,521.93 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.27-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.91-6.81$ $(\mathrm{m}, 2 \mathrm{H}), 6.60-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.75(\mathrm{~m}$, $1 \mathrm{H}), 3.45(\mathrm{td}, J=8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.08-1.96(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.7,142.2,142.1,136.0,129.1$, 125.8, 114.8, 112.9, 63.1, 55.9, 49.6, 43.4, 36.3, 23.3, 21.0 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 268.1705$ found $\mathrm{m} / \mathrm{z} 268.1696$.

The enantiomeric ratio of $\mathbf{2 f}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=11.4 \mathrm{~min}, \mathrm{t}_{2}($ major $)=12.5 \mathrm{~min}$.

(R)-2-(3-methoxyphenyl)-1-(4-methoxyphenyl)pyrrolidine (2g)

$\mathrm{S} / \mathrm{R}=98: 2$
1g

1,2-Dichloroethane $90^{\circ} \mathrm{C}, 24 \mathrm{~h}$

$R / S=98: 2$

Alcohol $\mathbf{1 g}(150.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA$) $\left(300 \mathrm{mg}\right.$), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 24 h and purified as described for $\mathbf{1 a}$ to obtain $\mathbf{2 g}(119.4 \mathrm{mg}, 0.421 \mathrm{mmol}, 88 \%$ yield) as a colorless oil. IR (neat) 3068, 3050, 2911, 2821,
$1609,1530,1491,1453,1372,1273,1231.42,1137,1166.32,1064.43,961,816.43,771.49$, $707.13,521.93 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-$ $6.64(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.65-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{tt}, J=11.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.80(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.8,150.9,147.2,142.2,129.4,118.3,114.8,113.0$, $111.9,111.6,63.5,55.9,55.1,49.7,36.2,23.4 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 284.1649$ found $\mathrm{m} / \mathrm{z} 284.1645$.

The enantiomeric ratio of $\mathbf{2 g}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 05$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=27.8 \mathrm{~min}, \mathrm{t}_{2}($ major $)=35.4 \mathrm{~min}$.

(R)-2-phenyltetrahydrofuran (2h) ${ }^{7}$

Alcohol $\mathbf{1 h}(83 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA$) $\left(300 \mathrm{mg}\right.$), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}, 0.05$ mmol) were treated as described for 1 a for 12 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by a fast column chromatographic using silica gel (mess 100-200) and dichloromethane eluent obtain pure $\mathbf{2 h}(82 \mathrm{mg}, 0.98 .8 \mathrm{mmol}$, 99% yield) as colorless oil. ${ }^{1}$ H NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta=7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28$ - $7.22(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J=8.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{td}, J=7.8,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.4,128.2,127.1,125.6,80.7,68.6,34.6,26.0 \mathrm{ppm}$. The enantiomeric ratio of 2h was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 05$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}($ channel 1$): \mathrm{t}_{1}($ minor $)=9.2 \mathrm{~min}, \mathrm{t}_{2}$ $($ major $)=10.1 \mathrm{~min}$.

(R)-2-(4-fluorophenyl)tetrahydrofuran (2i) ${ }^{8}$

Alcohol $1 \mathbf{1 i}(83 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA$) $(300 \mathrm{mg})$, and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}, 0.05$ mmol) were treated as described for $\mathbf{1 a}$ for 12 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by a fast column chromatographic using silica gel (mess 100-200) and dichloromethane eluent obtain pure $\mathbf{2 i}(82 \mathrm{mg}, 0.98 .8 \mathrm{mmol}$, 99% yield) as colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}$, $2 \mathrm{H}), 4.85(\mathrm{t}, J=6.8 \mathrm{~Hz}), 4.08(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.96(m, 1H), 1.80-1.71 (m, 1H) ppm. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=162.0\left(J_{\mathrm{C}-\mathrm{F}}=\right.$ $250 \mathrm{~Hz}), 139.1,139.0,127.2\left(J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 115.0\left(J_{\mathrm{C}-\mathrm{F}}=20 \mathrm{~Hz}\right), 80.1,68.6,34.6,25.9 \mathrm{ppm}$. The enantiomeric ratio of $\mathbf{2 i}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=80: 20$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1): t_{1} $($ major $)=12.3 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=13.8 \mathrm{~min}$.

(R)-1-(4-methoxyphenyl)-2-vinylpyrrolidine (2j) ${ }^{9}$

1j
$\mathrm{S} / \mathrm{R}=99: 1$

R/S=94:6

Alcohol $\mathbf{1 j}$ ($110.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, $0.05 \mathrm{mmol})$ were treated as described for $\mathbf{1 a}$ at $100^{\circ} \mathrm{C}$ for 48 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by the column chromatographic using silica gel (mess 100-200) to obtain pure $\mathbf{2 j}$ ($89 \mathrm{mg}, 0.438 \mathrm{mmol}, 88 \%$ yield) as colorless oil. IR (neat) $\mathrm{cm}^{-1} 3040,2955.9,2890,2875,2821,1616.5,1575.6,1513$,
$1460,1365,1274,1241.5,1181,1166,1045,970,820,591 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{ddd}, J=17.1,10.2,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.10$ (dddd, $J=6.7,5.4,2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49$ (ddd, J $=8.4,7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{td}, J=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{ddt}, J=8.7$, $6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.8,142.5,139.9,114.8,114.3$, 112.9, 61.4, 55.9, 49.2, 32.7, 23.3 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}] 204.1383$ m / z found $204.1386 \mathrm{~m} / \mathrm{z}$. The enantiomeric ratio of $\mathbf{2} \mathbf{j}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane: isopropanol $=99.5: 0.5$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}($ channel 1$): \mathrm{t}_{1}($ major $)=60.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=63.1 \mathrm{~min}$.

(S)-1-(4-methoxyphenyl)-2-methylpyrrolidine (2k)

1k

$\mathrm{S} / \mathrm{R}=2: 98$

Alcohol $\mathbf{1 k}$ ($104.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ at $100^{\circ} \mathrm{C}$ for 48 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by the column chromatographic using silica gel (mess $100-200$) to obtain pure $2 \mathrm{k}(76.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 80 \%$ yield) as colorless oil. IR (neat) $\mathrm{cm}^{-1} 3045,2961,2930,2874,2824,1616,1575,1464,1329$, $1275,1245,1181,1164,1041,970,811.6,591 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=$ $6.97-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.56(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{td}, J=6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.52-$ $3.43(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{td}, J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{dp}, J=5.3,2.6,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.6,142.2,114.9$, $112.7,55.9,54.0,48.9,33.1,23.3,19.5 \mathrm{ppm}$. The enantiomeric ratio of $\mathbf{2 k}$ was determined by

HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol = 99.5:0.5, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}($ channel 1$): \mathrm{t}_{1}($ minor $)=30.0 \mathrm{~min}, \mathrm{t}_{2}($ major $)=60.6 \mathrm{~min}$.

(S)-2-ethyl-1-(4-methoxyphenyl)pyrrolidine (21)

$R / S=99: 1$
$S / R=96.5: 3.5$
Alcohol 11 ($111.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ at $100^{\circ} \mathrm{C}$ for 48 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by the column chromatographic using silica gel (mess 100-200) to obtain pure $21(85.07 \mathrm{mg}, 0.419 \mathrm{mmol}$, 83% yield) as colorless oil. IR (neat) $\mathrm{cm}^{-1} 3044,2960.59,2931,2873,2829,1619.75$, $1574.68,1512.9,1464,1363,1327,1274,1240.55,1180,1163,1044,969,810.9,590,525$ $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.60(\mathrm{~m}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 3.62(\mathrm{tt}, J=7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.99$ $(\mathrm{m}, 3 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta=150.5,142.4,114.9,112.5,60.4,55.7,49.0,29.8,26.0,23.5,10.5$ ppm. HRMS (ESI) calcd. For $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}] 206.1539 \mathrm{~m} / \mathrm{z}$ found $206.1546 \mathrm{~m} / \mathrm{z}$. The enantiomeric ratio of $\mathbf{2 l}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane $:$ isopropanol $=99.5: 0.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1): t_{1} $($ minor $)=25.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=63.8 \mathrm{~min}$.

(R)-1-(4-methoxyphenyl)-2-phenylpiperidine (2m)

Alcohol 1m (142.58 mg, 0.5 mmol$)$, MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 24 h and purified as described for $\mathbf{1 a}$ to obtain $\mathbf{2 m}$ ($116.1 \mathrm{mg}, 0.434 \mathrm{mmol}, 87 \%$ yield) as a colorless oil. IR (neat) 3060, 3044, 2956, 2915, 2830, 1611, 1512, 1491, 1451, 1360, 1261, 1245, 1180, 1171, 961.56, 811.75, 771.69, 748.15, $590.1,521.25 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta=7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.52(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=9.5,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=12.0,10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.72$ (dddd, $J=15.0,13.4,10.5,6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=144.7,128.0,127.4,126.1,123.7,113.7,99.9,92.9,64.4,56.4,55.3$, 36.1, 26.5, 24.1 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}] \mathrm{m} / \mathrm{z} 268.1702$ found m / z 268.1696. The enantiomeric ratio of $\mathbf{2 m}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=95: 05$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ $($ channel 1$), 232 \mathrm{~nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=13.6 \mathrm{~min}, \mathrm{t}_{2}($ major $)=20.5 \mathrm{~min}$.

(R)-1-(4-methoxyphenyl)-2-phenyl-1,2,3,4-tetrahydroquinoline (2n)

Alcohol 1n ($166.58 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ for 24 h and purified as described for $\mathbf{1 a}$ to obtain 2n ($157.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 100 \%$ yield) as a colorless oil. IR (neat) $3013,2931,2852,1602$, $1508,1451,1361,1289.97,1238.08,1211,1179,1101,933.6,827.75,756.69,700.08,552.2$ $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{dd}, J=4.8,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.60(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 2.71-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{ddt}, J=12.9,11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,145.2,144.2,140.5,129.2,128.3,128.2,126.7,126.7$, 126.7, 122.4, 116.8, 114.7, 114.1, 63.7, 55.4, 28.9, 23.7 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}] m / z 338.1508$ found $m / z 338.1515$.

The enantiomeric ratio of $\mathbf{2 n}$ was determined by HPLC analysis using Daicel Chiralcel OJ-H column: n-Hexane : isopropanol $=96: 4$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ minor $)=10.5 \mathrm{~min}, \mathrm{t}_{2}($ major $)=11.9 \mathrm{~min}$.

(R)-2-phenylchromane (2o)

Alcohol $\mathbf{1 0}$ ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$), MS ($3 \AA$) (300 mg), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, $0.05 \mathrm{mmol})$ were treated as described for $\mathbf{1 a}$ at $-20^{\circ} \mathrm{C}$ for 48 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by the column chromatographic using silica gel (mess 100-200) to obtain pure $\mathbf{2 0}$ ($95 \mathrm{mg}, 0.454 \mathrm{mmol}, 91 \%$ yield) as colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.50-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{dd}, J=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$
(dddd, $J=17.3,11.2,6.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=16.5,5.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dddd}, J=$ 13.7, $5.9,3.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (dddd, $J=13.7,11.3,10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.1,141.7,129.5,128.5,127.8,127.3,125.9,121.8,120.3,116.9,76.7$, 29.9, 25.1 ppm . The enantiomeric ratio of $\mathbf{2 0}$ was determined by HPLC analysis using Daicel Chiralcel JM column: n-Hexane: isopropanol $=98: 2$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ $($ channel 1$): \mathrm{t}_{1}($ major $)=8.9 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=14.2 \mathrm{~min}$.

(R)-2-(4-fluorophenyl)chromane (2p)

Alcohol $\mathbf{1 p}(123 \mathrm{mg}, 0.5 \mathrm{mmol})$, MS ($3 \AA$) $\left(300 \mathrm{mg}\right.$), and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}$, 0.05 mmol) were treated as described for $\mathbf{1 a}$ at $-20^{\circ} \mathrm{C}$ for 48 h . After completion of reaction (TLC), the crude was concentrated under vacuum and purified by the column chromatographic using silica gel (mess 100-200) to obtain pure $\mathbf{2 p}$ ($92 \mathrm{mg}, 0.419 \mathrm{mmol}, 81 \%$ yield) as colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.06(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{dd}, J=10.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.84$ (ddd, $J=16.5,5.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dddd}, J=13.7,5.8,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dddd}, J=$ $13.7,11.3,10.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=162.4\left(J_{\mathrm{C}-\mathrm{F}}=250 \mathrm{~Hz}\right)$, $154.9,137.5,137.5,129.5,127.73\left(J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}\right), 127.4,121.7,120.4,116.9,115.3\left(J_{\mathrm{C}-\mathrm{F}}=20\right.$ Hz), $30.00,25.04 \mathrm{ppm}$. ppm. The enantiomeric ratio of $\mathbf{2 p}$ was determined by HPLC analysis using Daicel Chiralcel JM-column: n-Hexane : isopropanol $=95: 5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}\left(\right.$ channel 1): $\mathrm{t}_{1}($ major $)=6.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=9.7 \mathrm{~min}$.

(R)-2-methyl-1,2-diphenyl-1,2,3,4-tetrahydroquinoline (4a)

$S / R=99: 1$
$R / S=98: 2$
Alcohol 3a ($158.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{DCE}+$ n-Hexane (1:1) were treated as described for 1a at room temperature for 48 h and purified as described for 1a to obtain $\mathbf{4 a}(146.51 \mathrm{mg}, 0.5 \mathrm{mmol}, 98 \%$ yield) as a white color solid. IR (neat) 3028, 3057.11, 29.79.30, 2935.16, 2845, 1602, 1591, 1575.59, 1492, 1455.32, 1378, $1319,1236.83,1156,1132,1072,1026,1003,933.49,841,763,746,699.48 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta=7.47-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{tt}, J=4.0,3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.18$ (m, 2H), $7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=$ 8.3, 1.2 Hz, 1H), 2.71 (dt, $J=16.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}, J=16.7,12.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (ddd, $J=12.8,5.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{td}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.6,146.3,144.3,131.0,129.2,129.1,128.2,126.5,126.5,126.3$, 125.9, 121.7, 116.4, 114.7, 61.3, 37.8, 29.4, 24.8 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNa}$ [M+Na] $m / z 322.1570$ found $m / z 322.1574$.

The enantiomeric ratio of $\mathbf{4 a}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane : isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=4.7 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=5.6 \mathrm{~min}$.

(R)-2-methyl-2-phenylchromane (4b)

Alcohol 3b (121.5 mg, 0.5 mmol$)$ and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{DCE}+$ n-Hexane (1:1) were treated as described for $\mathbf{1 a}$ at $-15^{\circ} \mathrm{C}$ temperature for 48 h and purified as described for 1a to obtain $\mathbf{4 b}(122 \mathrm{mg}, 0.5 \mathrm{mmol}, 100 \%$ yield) as a white color solid. IR (neat) 3060, 3024.55, 2977.79, 2929, 2849, 16010.53, 1582, 1522.56, 1488, 1456, 1446, $1373,1340.54,1305.83,1243.57,1167,1119,1069,1029,971,945.49,826,753,699.68,548$ $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.38(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{ddd}, J=$ $7.8,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{td}$, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=16.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{ddd}, J=13.7$, $10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.1,145.6,129.3$, 128.3, 127.3, 126.7, 124.9, 121.6, 119.9, 116.9, 78.3, 32.9, 30.1, 22.6 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 247.1231$ found $m / z 322.1225$.

The enantiomeric ratio of $\mathbf{4 b}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane : isopropanol $=99: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), 232 $\mathrm{nm}($ channel 2$): \mathrm{t}_{1}($ major $)=20.1 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=22.2 \mathrm{~min}$.

(S)-2-methyl-2-(4-methylpentyl)chromane (4c)

Alcohol 3c ($125.15 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the catalyst $\mathrm{Fe}(\mathrm{OTf})_{3}(25.05 \mathrm{mg}, 0.05 \mathrm{mmol})$ in DCE $+n$-Hexane (1:1) were treated as described for 1a at $-15^{\circ} \mathrm{C}$ temperature for 48 h and purified as described for $\mathbf{1 a}$ to obtain $\mathbf{4 c}(106 \mathrm{mg}, 0.456 \mathrm{mmol}, 92 \%$ yield) as a colorless oil. IR (neat) 3374, 3041, 2928, 2865, 1603, 1515, 1430, 1319, 1254, 1214, 1170, 1155, 1063, 1023, 824, $693 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.75(\mathrm{~m}, 2 \mathrm{H})$, $2.75(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{ddd}, J=14.4,9.5,7.6$
$\mathrm{Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.08(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=153.8,129.4,127.2,121.1,119.4,117.2,76.2,39.8,39.3,30.6,27.9,24.2,22.6$, 22.6, 22.1, 21.4 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 255.1719$ found m / z 255.1713. The enantiomeric ratio of $\mathbf{4 c}$ was determined by HPLC analysis using Daicel Chiralcel OD-H column: n-Hexane : isopropanol $=99: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ (channel 1), $232 \mathrm{~nm}($ channel 2$): \mathrm{t}_{1}($ major $)=6.3 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=3.9 \mathrm{~min}$.

30. Characterization data of synthesized intermediates

3-(hydroxymethyl)-1-phenylbutane-1,4-diol (1 ${ }^{\prime}$)

IR (neat) $3337.11,3063,3031,2931.01,1603,1493,1453,1348,1205,1218,1156,1028$, $913.78,849,757.33,700.74,553.70 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.38-$ $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~s}$, $3 \mathrm{H}), 1.93(\mathrm{q}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.69(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 144.8, 128.5, 127.6, 125.6, 72.8, 65.4, 65.3, 40.5, 38.6 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}] m / z 219.0994$ found $m / z 219.0992$.

2-(hydroxy(phenyl)methyl)-1-phenylbutane-1,4-diol (1 ${ }^{\prime \prime}$)

IR (neat) 3314.70, 3027, 2924.74, 1603, 1493, 1450, 1342, 1202, 1217, 1089, 1047.97, 1028.09, 913.28, 744.08, 701.12, $655 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.45-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{dtd}, J=7.2,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddt}, J=14.2$, 8.0, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.1,142.7$,
128.5, 128.1, 127.4, 126.8, 125.8, 125.5, 75.4, 72.4, 60.8, 48.4, 27.3 ppm . HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / z 295.1305$ found m / z 295.1298.

1-(4-methoxyphenyl)piperidin-2-one (K2)

IR (neat) 2953, 2905, 2839, 1683, 1652, 1601, 1510, 1492, 1459, 1360.65, 1331, 1295, 1268, 1247.94, 1223, 1178, 1105, 1031, 830, 755, 730.61, $601,575,556.49 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400$ MHz , Chloroform- d) $\delta=7.19-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.56$ $(\mathrm{m}, 2 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=153.8$, $129.4,127.2,121.1,119.4,117.2,76.2,39.8,39.3,30.6,27.9,24.2,22.6,22.6,22.0,21.4$ ppm.
(S)-1-phenylethan-1-ol (N)

${ }^{1}$ H NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=145.8,128.4$, 127.4, 125.3, 70.4, 25.1 ppm .
(S)-1-phenylethyl diisopropylcarbamate (O)

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=155.0,142.8,128.4,127.4,126.0,72.7,46.1$ (br), 22.8, 21.3 (br) ppm.

2-iodo-N-phenylaniline (\mathbf{Q})

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta=7.83-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.5,7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{ddd}, J=7.9$, $5.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.9,141.9,139.5$, 129.4, 129.0, 122.5, 121.9, 119.9, 115.9, 88.8 ppm .

1-(4-methoxyphenyl)pyrrolidin-2-one (A2)

${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta=7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.8,156.5,132.6,121.7,113.9,55.4,49.1,32.4,17.9 \mathrm{ppm}$.

(5-phenyltetrahydrofuran-3-yl)methanol (2h')

${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta=7.41-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.29(\mathrm{dq}, J=6.0,2.9 \mathrm{~Hz}, 3 \mathrm{H})$, $5.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=8.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dd, $J=8.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (dd, $J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dd, $J=8.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (dd, $J=10.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=6.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{ddd}, J=$
$12.5,8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=12.3,7.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=12.7,8.5,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{ddd}, J=12.4,9.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.1,142.3,128.3,128.3,127.3,127.2,125.7,125.5,81.2,80.1$, $71.1,70.9,65.1,64.5,42.4,41.7,37.8,37.3 \mathrm{ppm}$. HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NaO}_{2}$ [M+Na] $\mathrm{m} / \mathrm{z} 201.0886$ found $m / z 201.0881$.

Phenyl(2-phenyltetrahydrofuran-3-yl)methyl acetate (2h")

IR (neat) 3063, 3032, 2947, 2875.58, 1738, 1494, 1455, 1371, 1233.84, 1063, 1024, 962, 913, $756.71,700 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta=7.38-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.27$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{ddd}, J=7.9,1.6,0.6 \mathrm{~Hz}, 3 \mathrm{H}), 5.79(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.78(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.11$ $(\mathrm{s}, 3 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 173.8, 156.5, 132.6, 121.7, 113.9, 55.4, 49.1, 32.4, 17.9 ppm. HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}] \mathrm{m} / \mathrm{z} 319.1305$ found $m / z 319.1310$.

31. Reference

1. Bunce, R. A.; Herron, D. M.; Lewis, J. R.; Kotturi, S. V. J. Heterocyclic Chem., 2003, 40, 113.
2. Kang, J. Y.; Connel, B. T. J. Am. Chem. Soc., 2010, 132, 7826.
3. Coric, I.; Mueller, S.; List, B. J. Am. Chem. Soc. 2010, 132, 17370.
4. Mortelmans, C., Van Binst, G. Tetrahedron, 1978, 34, 3, 363-369; Bell, Andrew W. Zalay, Rudolf. Oesterlin, Philip. Schane, Gordon O. Potts J. Med. Chem., 1970, 13, 4, 664-668.
5. Yokoyama Y., Takagi N., Hikawa H., Kaneko S., Tsubaki N., and Okuno H. Adv. Synth. Catal., 2007, 349, 662-668.
6. Sezen, B.; Sames, D. J. Am. Chem. Soc., 2005, 127, 5284.
7. Huy, P. H.; Koskinen, A. M. P. Org. Lett., 2013, 15, 5178.
8. Coric, I.; Mueller, S.; List, B. J. Am. Chem. Soc., 2010, 132, 17370.
9. Arseniyadis, S.; Gore, J. Tetrahedron Lett., 1983, 24, 3997.
10. Evans, P. A. \& Oliver, S. (2013) Org. Lett., Vol. 15, No. 22, 2013
11. Stymiest, J. L., Bagutski, V., French, R. M. \& Aggarwal, V. K. 456, (2008).
12. Copies of HPLC chromatograms for all starting alcohols and products:

1a:

1a: racemates

1b:

1b: racemates

1c:

1c: racemates

1d:

1d: racemates

1e:

1e: racemates

1f:

1f: racemates

1g:

1g: racemates

1h:

1h: racemates

1i:

1i: racemates

1 j :

1 j : racemates

1k:

1k : racemates

11:

11 : racemates

1m:

1m: racemates

1n:

1n: racemates

10:

10: racemates

$1 p:$

1p: racemates

3a:

3a: racemates

3b:

3b: racemates

3c:

3c: racemates

2a:

2a: racemates

2b:

2b: racemates

2c:

2c: racemates

2d:

2d: racemates

2e

2e: racemates

2f:

2f: racemates

2g:

2g: racemates

2h:

2h: racemates

$2 i$

2i: racemates

2j

$2 \mathbf{j}$: racemates

2k

2k: racemates

21

21 : racemates

2m

2m:racemates

2n:

2n: racemates

20

20 : racemates

2p

$2 p$: racemates

4a:

4a: racemates

4b:

4b: racemates

4c:

4c: racemates

33. Copies of NMR for all starting alcohols and products:

1a $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

$170 \quad 160 \quad 1$
100
$\mathrm{f} 1(\mathrm{ppm})$

1b $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-SS-phenyl-151128. ஜ0.fid

RW-JS-272-SM-Ph-13CNMR-170712.10.fid

										1	1	70		1		1		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1c $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-46-B-pure-20151203.11.fid

1d (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})
JS-RW-50-B-pure-20151203.10.fid

JS-RW-50-B-pure-20151203.11.fid

1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \text { f1 }(\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20

1e $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-39-pure-es 1103.10. fid
RW-JS-40-B-pure-13CNMR-170628.10.fid

ヘึNָ	
111	

(

1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1f (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

JS-RW-47-B-pure-151203.11.fid

		1	1				1					1	70			1	1	1	
:00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

1g (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-48-A-pure-13C-NMR-151203.10.fid

1h (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

RW-JS-266-SM-pure-13CNMR-170519.10.fid

,	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$1 \mathbf{i}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-SB-401-F-SM-alcohol-20170616.10.fi̊

RW-JS-SB-401-F-SM-alcohol-20170616.11.fid

m
U
0

$\mathbf{1 j}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB5-141-AC-170622.10.fid

AB5-141-AC-170622.11.fid

1k $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$
AB4-60-AP1-160227-2.10.fid

AB4-60-AP1-160227-2.11.fid

M
品
品
V

$11\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB5-142-AC-160815.10.fid

AB5-142-AC-160815.11.fid

1m (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

JS-RW-69-b-1H-NMR-160211.10.fid $\frac{\mathrm{U}}{0}$

													1		I		1		
:00	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

1n $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-85-B-pure-1HNMR-170519.10.fid
0

RW-JS-85-B-pure-13CNMR-170519.10.fid

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$10\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB6-176A-AC1-170622.10.fid

AB6-176A-AC1-170622.12.fid

1p (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

AB7-19-AC1-170622.10.fid

AB7-19-AC1-170622.12.fid

1h ' $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-265-SM-pure-anon-13CNMR170521.10.fid

1			1									1	1	1	1					
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1h" ${ }^{\prime \prime}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-268-SM-pure-re-20170616.12.fid

1	1			1	1	1	1	1	1	1	1	1	1	1	1	1		1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

3a $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-259-B-pure-1HNMR-170413.10.fid

RW-JS-259-B-pure-13CNMR-170413.10.fid

3b $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-219-B-pure-1HNMR -re-20170520.10.fid M
0
0

3c $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-13
8

RW-JS-130-A-pure-13CNMR160701.10.fid

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{\oplus} \end{aligned}$
I

2a (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

JS-RW-29-pure-151203.10.fid
응

JS-RW-29-pure-13C-NMR-151203.10.fid

2b $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-59-M-151212.10用

RW-JS-272-productpur-13CNMR-170712.10.fid

N	응NㅇN
守	
	\sim

$\mathcal{L}^{77.317} 77.000 \mathrm{CDCl} 3$

76.682 ${ }_{-62.890}$| -49.082 |
| :--- |
| -36.057 |
| -23.068 |

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

2c (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

[^0]2d (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

RW-JS-55-B-pure-13CNMR-re2170521.10.fid

$\int_{-77.000 \mathrm{CDCl}}{ }^{77.318}$
${ }_{76.684}$
-62.877
-55.886
-49.732
-36.218
- 23.278

			17			1					1	1	70	1	5		1	1	10
200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{~m}) \end{aligned}$	90	80	70	60	50	40	30	20	10

2e（ ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR， $\left.\mathrm{CDCl}_{3}\right)$

RW－JS．56．B9్రure－1HNMR－re20170627．10．fid

RW－JS．56．B－pure－13CNMR－re20170627．10．fid

$2 f\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-202B-pure-13CNMR-re20170521.10.fid

$\stackrel{+}{\circ}$	슥ㅅㅇㅇㅇ	$\stackrel{\sim}{7}$ - ${ }_{\sim}^{\infty}$
0	-̇	- ${ }_{\text {- }}^{\text {N }}$
	『「	1

	1	1			1			110		1	1	70	1	1		1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

2g (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

 \perp

RW-JS-54-B-pure-13CNMRre2-170521.10.fid

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

2h (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

RW-JS-266-@f.pure-1HNMRre170523.10.fid

RW-JS-266-A-pure-13CNMRre170523.10.fid
$\underbrace{\stackrel{m}{U}}$

											1		70	1	1		1			
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

$2 \mathbf{2}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-269-B-pure-1HNMR-1응709.10.fid

RW-JS-269-B-pure-13CNMR-170709.10.fid

\$

2j(${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB5-120-P-AC1-170624.10.fid

AB5-120-P-AC1-170624.11.fid

2k $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB5-123-AC1-160803.20.fid

AB5-123-AC1-160803.21.fid

$21\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB5-22-AC3-170622.10.fid

AB5-22-AC3-170622.11.fid

$\mathbf{2 m}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-70-H-13-CNMR-160304.10.fid

$\substack{77.317 \\ 77.308 \\ 76.683}$
-64.446
-56.389
-55.258

-36.138

-26.472
-24.150

[^1]2n (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

JS-RW-86-pure-20160314.10.fid
JS-RW-
0
0
0
0
0
$i=$

JS-RW-86-pure-13CNMR-20160314.10.fid

O
0
0
0 ले

-28.914
-23.731

$20\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB6-179-5-AP2-170214-2.10.fid

AB6-179-5-AP2-170214-2.11.fid

2p (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

AB7-25-AF-170622.10.fid

AB7-25-AF-170622.11.fid

$\vec{\circ}$
$\stackrel{y}{4}$
1
1

$\begin{array}{lllllllllllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{cc}90 & 80 \\ f 1(\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

2h' $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

AB7-61-AC-170530.10.fid

AB7-61-AC-170530.11.fid

$\begin{array}{llllllllllllllllll}30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{cc}90 & 80 \\ f 1 & (\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

2h" $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-86-OAc-II-re-1HNMR-170611.10.fid 응

RW-JS-86-OAc-II-re-13NMR-170611.10.fid

1	1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

4a (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

RW-JS-254-A-pure-13CNMR-170413.10.fid

4b (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})
RW-JS-221-B-pure-1HNMR170202. 胃.fid

RW-JS-221-B-pure-13CNMR170202.10.fid

M
0
0
0

		1				1	1	1		1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{nDm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$4 c\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW응S-136-B-160701.10.fid

RW-JS_136-C-13CNMR-pure-160702.10.fid

A1 $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-01-1HNMR-170603.10.fid

RW-JS-01-13CNMR-170603.10.fid

-32.373
-17.929

T	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$\mathbf{K}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-199-pure-13CNMR-161129.10.fid

끌
O
AO N N
mo
0
Nペ N

$\stackrel{\dot{\omega}^{\sim}}{\sim}$

	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
90	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\mathbf{M}\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR, $\left.\mathrm{CDCl}_{3}\right)$

RW-JS-109-1HNMR-170603.10.fid

名

RW-JS-109-13CNMR-170603.10.fid

		1								1	1	10		1				1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

J (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, CDCl_{3})

RW-JS-2Phethanol-13CNMR-170603.10.fid

$\stackrel{m}{\underset{\sim}{j}}$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

[^0]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & \mathrm{f1}(\mathrm{ppm})\end{array}$

[^1]: $\begin{array}{lll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0\end{array}$

