
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in Organic Letters. This paper has
been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Colas, K., dos Santos, A C., Mendoza, A. (2019)
i-Pr2-NMgCl·LiCl Enables the Synthesis of Ketones by Direct Addition of Grignard
Reagents to Carboxylate Anions
Organic Letters, 21(19): 7908-7913
https://doi.org/10.1021/acs.orglett.9b02899

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-175818



 

i-Pr2NMgCl·LiCl Enables the Synthesis of Ketones by Direct Addi-
tion of Grignard Reagents to Carboxylate Anions 
Kilian Colas, A. Catarina V. D. dos Santos and Abraham Mendoza* 
Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm (Sweden) 
Supporting Information Placeholder 

 

ABSTRACT: The direct preparation of ketones from carboxylate anions is greatly limited by the required use of organolithium 
reagents or activated acyl sources that need to be independently prepared. Herein, a specific magnesium amide additive is used to 
activate and control the addition of more tolerant Grignard reagents to carboxylate anions. This strategy enables the modular synthesis 
of ketones from CO2 and the preparation of isotopically-labelled pharmaceutical building blocks in a single operation. 

Ketones (1) are one of the cornerstones of organic chemistry, 
being a fundamental class of products and essential synthetic 
intermediates. Aromatic ketones are particularly relevant drugs 
and fragrances, and they are key to the synthesis of heterocyclic 
cores in valuable products.1 As a result, extensive research has 
been dedicated to obtain ketones from raw carboxylic acids (2) 
and CO2 (3). However, the addition of localized carbon nucleo-
philes to carboxylic acids is a key transformation that remains 
challenging after decades of research (Scheme 1A). Most ap-
proaches elaborate carboxylic acids 2 into more electrophilic 
derivatives 4, such as acyl chlorides,2 anhydrides,3 thioesters,2f,4 
cyanides,5 ketimines,6 imides,7 amides8 and Weinreb amides.9 
Special carbon nucleophiles 5 with lower reactivity like cu-
prates,10 organozincs,4,11 and boronates,2g,3b,7,12 are often used to 
avoid the rapid over-addition to the resulting ketone products 1. 
Alternatively, the direct coupling of carbon nucleophiles with 
unactivated carboxylic acids requires unstable organolithium 
reagents, often in excess.13,14 These addition reactions to lithium 
carboxylate anions Li-6 benefit from the stability of the addi-
tion complex Li-7, but are limited by competing metalation re-
actions, carbonyl reduction, and the narrow functional scope of 
the lithium organometallics.14 Grignard reagents (8) are pre-
ferred nucleophiles for their enhanced stability and functional-
group tolerance, particularly in large-scale processes.15,16 Un-
like organolithiums, Grignard reagents (8) are poorly reactive 
towards carboxylate anions (6), and the resulting addition inter-
mediates are unstable, giving rise to tertiary alcohol over-addi-
tion by-products.13d,14 

The addition of aromatic Grignard reagents to benzoates 
would give rise to important benzophenone compounds,1h but it 
is particularly problematic due to the lower reactivity of aro-
matic carboxylates and aryl Grignard reagents. To the best of 
our knowledge, this reaction has only been studied using che-
late-assisted heteroaryl substrates,17 or lithium propylamide as 
additive (Scheme 1B).18 However the application of these pro-
cesses in organic synthesis is severely limited by the narrow 
scope, and the inhibition in the presence of tetrahydrofuran,18 
which is the most common solvent to synthesize, store and dis-
tribute Grignard reagents.16,19 Overcoming the challenges asso-
ciated with the direct addition of Grignard nucleophiles (8) to 
carboxylate anions (6) is key to enable an extended modular 
synthesis of ketones from CO2 (3).13d Carboxylates 6 are readily 
obtained from aryl Grignard reagents (8) and CO2 (3),20 and 
these anions could ideally undergo coupling with a second or-
ganomagnesium nucleophile. The enhanced scope bestowed by 
Grignard reagents16 would enable access to diversely function-
alized ketones in a single operation.13d The use of CO2 also of-
fers a more sustainable alternative for scale-up than current 
methods based on CO, CO-sources and/or expensive transition-
metal catalysts,12,21 particularly for the synthesis of isotopically 
carbon-labelled pharmaceuticals used in bio-distribution stud-
ies and trace analysis.22 

We have recently discovered the differential behavior of Gri-
gnard reagents in combination with the hindered turbo-Hauser 
base i-Pr2NMgCl·LiCl (9a)23 in the context of Pummerer reac-
tions.24 We hypothesized that the enhanced “ate” character19a,25 
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of the turbo-organomagnesium amides thus formed, could (1) 
enhance the nucleophilicity of the initial Grignard reagent to 
overcome the low electrophilicity of the carboxylate anion, (2) 
stabilize the addition complex through strong coordination2e,9a 
and/or rapid intramolecular enolization, and in a broader sense 
(3) address the efficiency and selectivity problems that are as-
sociated with classic organometallic "ate" reagents [R3M]– 
(M=Mg, Cu, Zn).10,11,25 
Scheme 1. State-of-the-art in the synthesis of ketones and our 
approach using Grignard reagents. 

 
In agreement with the general notion in the litera-

ture,10,13a,13d,17-18,26 our exploratory studies (Table 1) revealed 
that no addition of phenylmagnesium bromide (8a) occurs to 
the sodium carboxylate (Na-6a; entry 1), and a similar result is 
obtained in the presence of PrNHLi (9b; entry 2), probably due 
to the THF in the commercial Grignard solution.18 In stark con-
trast, i-Pr2NMgCl·LiCl (9a) has a dramatic effect at enhancing 
the conversion and selectivity of the reaction, obtaining the ke-
tone 1a as the major product (entry 3). After extensive experi-
mentation, we found that the more soluble magnesium carbox-
ylate MgCl-6a further suppresses the formation of the over-ad-
dition product 10a (entry 4). Interestingly, only little conversion 
is observed when omitting the premixing of 8a and 9a (entry 5). 
Ultrasonic homogenization of this mixture decreases the for-
mation of the addition-reduction by-product 11a in small-scale 
experiments (entry 6; for details see Scheme 4), but is not re-
quired in large scale reactions as stirring proves sufficient 
(Scheme 2). Interestingly, subtle changes in the steric hindrance 
of the turbo-Hauser base have a noticeable effect on the 

efficiency of the reaction (entry 7). LiCl is essential in the 
Hauser base to achieve high conversion (entry 8), probably in-
dicating its role in the aggregation27 of the turbo-organomagne-
sium amide formed upon mixing of the Grignard 8a and 9a (for 
discussion, see Scheme 4).28 Control experiments in the absence 
of i-Pr2NMgCl·LiCl (9a; entry 9) confirm its critical role at pro-
moting the addition reaction to the magnesium carboxylate. 
Furthermore, related lithium amides 9e,f or LiCl alone were 
deemed ineffective (entries 10-12), thus indicating the singular 
activating effect of the magnesium amide LiCl complex 9a in 
the addition to the carboxylate anion. To the best of our 
knowledge, organomagnesium amides have only been used as 
bases in challenging deprotonation reactions,28c and the perfor-
mance of their LiCl-adducts as carbon nucleophiles has not 
been explored before our work.24 
Table 1. Activation and control of Grignard reagents by  
i-Pr2NMgCl·LiCl (9a). 

 

# M additive (9) 
composition (%)a 

2a 1a 10a 11a 
1 Na – 94 0 0 0 
2 Na PrNHLi 97 0 0 0 
3 Na iPr2NMgCl·LiCl (9a) 9 77 14 0 
4 MgCl iPr2NMgCl·LiCl (9a) 0 92 0 5 
5 MgCl iPr2NMgCl·LiCl (9a)b 67 28 0 5 
6 MgCl iPr2NMgCl·LiCl (9a)c 26 49 3 25 
7 MgCl TMPMgCl·LiCl (9c) 72 26 0 0 
8 MgCl iPr2NMgCl (9d) 55 36 4 4 
9 MgCl – 64 18 15 0 
10 MgCl iPr2NLi (9e) 70 22 4 8 
11 MgCl TMPLi (9f) 61 25 3 8 
12 MgCl PrNHLi (9b) 65 21 14 0 
13 MgCl LiCl (9g) 57 15 28 0 

 

Conditions: 2a (0.1 mmol), NaH or t-BuMgCl (0.1 mmol), tolu-
ene, 0 °C; PhMgBr (8a, 0.12 mmol) and 9 (0.12 mmol), 0 °C, ul-
trasound; r.t., 7 h. aDetermined by 1H-NMR using 1,1,2,2-tetrachlo-
roethane as internal standard. bNo pre-mixing of 8a and 9a. cNo 
ultrasound. TMP, 2,2,6,6-tetramethylpiperid-1-yl. 

With these optimized conditions in hand we next studied the 
substrate scope, that benefits from the enhanced tolerance of 
Grignard nucleophiles (Scheme 2).16 Readily available carbox-
ylic acids are coupled with phenylmagnesium bromide to pro-
duce ketones 1a-c in high yields. A range of aromatic Grignard 
reagents bearing oxygen- (1d), sulfur- (1e) or nitrogen-based 
substituents (1f) provide ketones in good to excellent yields. 
Notably, the localized Grignard reagents allow the regioselec-
tive preparation of meta-substituted electron-rich products that 
would be problematic through Friedel-Crafts acylation (1e,f). 
Electron-poor nucleophiles bearing halogens (1g) and p-defi-
cient heterocycles (1h) are also tolerated. It is important to un-
derscore the integration with the in situ telescoped C–H 
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metalation of phenylpyridine (1h), and the compatibility with 
bromine-containing carboxylic acids (1h,i) without engaging in 
halogen-magnesium exchange by-processes. Furthermore, het-
erocyclic moieties can be introduced from both coupling part-
ners (1h-l), enabling for instance the expedient preparation of 
important thiazolyl-ketones.1g Unlike previous reports,17 the 
presence of a nitrogen-center ortho- to the reacting site is not 
required (1l). Interestingly, the naphthol-derived ketone 1m can 
be prepared without protection of its phenol function (vide in-
fra). To our delight, aliphatic Grignard reagents also readily en-
gage in this transformation, provided that two equivalents of the 
turbo-organomagnesium amide are used. Thus, electron-rich 
and electron-poor acids are coupled to provide valerophenones 
1n-q in excellent yields. Using benzyl and homobenzyl nucle-
ophiles the corresponding α- and β-arylated ketones are ob-
tained (1r,s). The latter (1s), is a key intermediate in the synthe-
sis of the anti-hypertensive propafenone (Arythmol®).1d,1e 
Moreover, Grignard reagents containing an alkene (1t,v) or a 
free alcohol functionality (1u) can be introduced in high yields. 
Remarkably, the electron-rich, unprotected meta- and ortho-sal-
icylic acids, including hydroxy-naphtoic acid, are excellent 

substrates for this reaction, thus enabling the preparation of me-
dicinally relevant phenolic and/or morpholine-derivatives 1s,v-
x. Likewise, the alcohol-containing ketone 1y, an intermediate 
to the essential anti-psychotic haloperidol (Haldol®),1c is pre-
pared in excellent yield. Secondary alkyl nucleophiles can be 
used as well to prepare electron-deficient ketones 1x,z-ac in 
high yields, in combination with trifluoromethyl- and halogen-
ated benzoic acids. Unprotected anthranilic acids are also com-
patible (1ad), thus providing valuable intermediates for the 
preparation of benzodiazepine pharmaceuticals.1m-o Upon scale-
up, sonication is unnecessary, as illustrated by the gram-scale 
synthesis of the fluorinated ketones 1c and 1z. The generality 
demonstrated by this method, and the edge of i-Pr2NMgCl·LiCl 
(9a) over the previously developed lithium propylamide addi-
tive (9b)18 is remarkable (see 1a,g,j,l,m,o,r,w,y,ad). Still, ter-
tiary alkyl Grignard reagents do not engage in this reaction, 
which we use to our advantage in the selective deprotonation of 
the carboxylic acid substrates (2) with t-BuMgCl. Interestingly, 
aliphatic acids are recovered unreacted under these conditions 
due to their fast enolization,13e a limitation that we are currently 
investigating.

 
Scheme 2. Synthesis of ketones through turbo-Hauser-base-enabled Grignard addition to carboxylic acids. 

 

See SI for experimental conditions; ultrasound only required on small-scale. Isolated yields. areaction temperature 65 °C. bt-BuMgCl (2.0 
equiv.) was used. cMeMgCl (2.0 equiv.) was used instead of t-BuMgCl. 

Carboxylate anions (6) can also be readily obtained from the 
reaction of Grignard reagents (8) with carbon dioxide (3).20a 
The combination of this process with the transformation uncov-
ered herein enables a modular synthesis of ketones from two 
carbon nucleophiles, using CO2 as a safe and available source 
of the central carbonyl group (Scheme 3).13d This way, 

functionalized Grignard reagents, prepared in situ by halogen-
magnesium exchange19a or direct metalation,23 enable the direct 
use of aryl halides or arenes in the one-pot synthesis of complex 
ketones.16 As such, dichloropyridine is directly combined with 
CO2 and different Grignard reagents to provide 1ae,af in excel-
lent yields. Likewise, the ketone 1ag is obtained directly from 
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an ester-containing thiophene substrate and furane. This 
method also allows for the preparation of isotopically-labelled 
ketones simply by using carbon dioxide, the most available 
source of labelled carbon. The 13C-labelled [13C]-1y,ah are ob-
tained in excellent yields, which are precursors of the isotopi-
cally-labelled pharmaceuticals haloperidol ([13C]-12) and keto-
profen ([13C]-13), respectively.1c,22,29 
Scheme 3. Modular synthesis of radiolabelled ketones from 
functionalized Grignards and CO2. 

 
See SI for experimental conditions. Isolated yields. aCommercial 

Grignard solution in THF (Et2O can also be used). 

The excellent selectivity observed towards the ketone prod-
ucts indicates that the post-addition intermediate must be stable 
until the reaction is quenched. In the presence of 9a under the 
standard reaction conditions (Scheme 4A), the model benzo-
phenone 1ai undergoes rapid addition of an aryl Grignard (10ai; 
entry 1). However, extensive reduction (11ai) takes place when 
using an aliphatic Grignard reagent (entry 2). Control experi-
ments revealed that the reduction side-product 11ai can be ob-
tained using only i-Pr2NMgCl·LiCl (9a; entry 3). Interestingly, 
LiCl is essential to observe this reduction (entry 4), which we 
observe in trace amounts in our ketone synthesis. We reason 
that the reduction products stem from a Meerwein-Ponndorf-
Verley-type (MVP) hydride-transfer from the magnesium am-
ide (see 14). These results support the stability of the addition 
intermediates, as early release of the ketone product 1 would 
lead to significant over-addition and reduction by-products. 
Furthermore, deuteration experiments reveal that the enolate of 
the product 15a is formed when using aliphatic nucleophiles 
(Scheme 4B), which opens the door for further functionaliza-
tions in situ. The deprotonation of the product also explains the 
need for two equivalents of the reagents to synthesize enoliza-
ble ketone products from alkyl Grignard reagents (Scheme 2). 
Based on these results, we propose the mechanism shown on 
Scheme 4C. We reason that the crucial pre-mixing of 8 and 9a 
before addition to the carboxylate anion 6, and the noticeable 
effect of the structure of the amide ligand (see Table 1) are con-
sistent with the aggregation of 8 and 9a. Given the data availa-
ble on the structure of turbo-Hauser bases27 and organomagne-
sium amides,28b,28c we presume that a turbo-organomagnesium 
amide (16) is formed. Unlike conventional Grignard reagents or 
their LiCl complexes (Table 1, entry 13), 16 is sufficiently 

nucleophillic to add to magnesium carboxylates (6) without the 
limitations of organometallic "ate" reagents.10,11,25 The concur 
of lithium, magnesium and a singular bulky amide base have 
proven essential for this activation (Table 1). When using aro-
matic nucleophiles, we propose that the resulting intermediate 
17 is stabilized through coordination with the amide ligand, 
while in the case of aliphatic Grignard reagents we have demon-
strated that the addition intermediate 18 evolves into enolate 15. 
The stability of the putative intermediates 15,17 until the reac-
tion is quenched explains the high selectivity obtained towards 
the ketone products 1. Otherwise by-products stemming from 
over-addition (10) and reduction (11) would dominate, as it has 
been demonstrated above (Scheme 4A). 
Scheme 4. Mechanistic studies and proposal. 

 
See SI for details. aDetermined by 1H-NMR using 1,1,2,2-tetra-

chloroethane as internal standard. M = LixMgyLn. 

In summary, the turbo-Hauser base i-Pr2NMgCl·LiCl (9a) 
activates and controls the addition of Grignard reagents to car-
boxylate anions. This reaction likely proceeds through organo-
magnesium amide intermediates featuring enhanced nucleo-
philicity and the capacity to stabilize the resulting addition 
products. The wide scope of this transformation in both cou-
pling partners allows swift synthesis of relevant aromatic ke-
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carbonyl equivalent, thus facilitating the synthesis of isotopi-
cally-labelled pharmaceuticals. 
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