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Abstract 
This project added to the sparse body of research on the neural underpinnings of turn-taking with an 
electroencephalography (EEG) investigation of spontaneous conversation. Eighteen participants (3 
male, 15 female, mean age 29.79), recruited and participating in pairs, underwent EEG hyperscanning 
as they conversed on a freely chosen topic for 45 minutes. In line with previous research, it was 
predicted that a time-frequency analysis of the EEG might reveal either increased power at around 10 
Hz (the location of one of two components of the mu rhythm, an oscillation possibly involved in motor 
preparation for speech), or reduced alpha (8-12 Hz) power (reflecting non-motor aspects of turn 
preparation) prior to taking one’s turn. Increased power between 8-12 Hz was observed around 1.5 and 
1 second preceding turn-taking, but similar power increases also occurred prior to turn-yielding and 
the conversation partner continuing after a pause, and a reduction in alpha power was found in turn-
taking relative to listening to the other speaker continue after a pause. It is unclear whether this activity 
reflected motor or non-motor aspects of turn preparation, but the spontaneous conversation paradigm 
proved feasible for investigating brain activity coupled to turn-taking despite the methodological 
obstacles.  
 

Keywords 
Alpha suppression, conversation, electroencephalography (EEG), hyperscanning, mu rhythm, turn-
taking 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

En utforskning av neurala 
aspekter av turtagning i spontant 
samtal 

Ambika Kirkland 

Sammanfattning 
Detta forskningsprojekt bedrar till ett ämne där relativt få studier har genomförts med en 
elektroencefalografi- (EEG-) undersökning av hjärnaktivitet som är kopplad till turtagning i spontant 
samtal. Arton deltagare (3 män, 15 kvinnor, medelålder 29,79) som rekryterades och deltog i par, 
genomgick EEG-hyperscanning medan de pratade om ett fritt valt ämne i 45 minuter. Det förutsades 
att en tidsfrekvensanalys av EEG kan avslöja antingen ökad effekt vid cirka 10 Hz (vilket motsvarar 
en av två komponenter i mu-rytmen, en oscillation som eventuellt är involverad i motoriska 
förberedelser för tal) eller reducerad alfaeffekt (8 -12 Hz) (vilket möjligen återspeglar icke-motoriska 
aspekter av turtagningsförberedelser) innan man tar sin tur. Ökad effekt mellan 8-12 Hz observerades 
ungefär 1,5 och 1 sekund före turtagning, men liknande ökningar inträffade också innan 
samtalspartnern tog sin tur eller fortsatte efter en paus, och en minskning av alfaeffekt observerades 
när turtagning jämfördes till kontexter där försökspersonerna lyssnade när den andra talaren fortsatte 
efter en paus. Det är oklart om denna aktivitet återspeglade motoriska eller icke-motoriska aspekter av 
turtagningsförberedelser, men det visar sig vara möjligt att undersöka hjärnaktivitet kopplad till 
spontant samtal på ett rimligt sätt trots paradigmens metodologiska svårigheter. 
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1. Introduction 
 
Turn-taking is a fundamental element in the organization of dialogue. Who speaks when, for 
how long, and how parties in a conversation manage the task of allocating turns, has been a 
frequent object of research in sociology, cognitive psychology and linguistics since Sacks and 
colleagues (1974) broke ground on this topic within the area of conversational analysis.  

The messy and unpredictable nature of spontaneous conversation made many researchers 
prior to Sacks et al. (1974) hesitant to consider it a topic of serious academic investigation. 
The organization of turns, however, provided schemes for delineating the events that take 
place within a dialogue in a concrete manner. We can consider points in a conversation where 
a change from one speaker to another takes place (e.g., Sacks et al., 1974), talk about who has 
the floor (the role of speaker) and how the floor is managed (see, for example, Cappella et al., 
1985), and discuss the structure of conversation on the basis of where segments of speech and 
silence from each conversation party overlap versus occur in isolation (e.g., Heldner & 
Edlund, 2010).  
Nonetheless, spontaneous dialogue has confounded attempts to study the cognitive processes 
that underlie these turn-taking events, particularly as regards brain activity. The 
methodologies most applied to directly investigate online cognitive processing, such as the 
event-related potential (ERP) method for analyzing electroencephalography (EEG) data, 
require tight experimental control and relatively clean data. Hence, typical approaches to 
investigating the neural correlates of speech cautiously approach something resembling 
natural conversation, stopping at a very safe distance (for example, by asking participants to 
overhear conversations without actively taking part in them) or just within reach (e.g., by 
asking participants to give relatively brief responses to a mix of scripted and spontaneous 
questions delivered by an experimenter), sacrificing as little experimental control as possible.  
This exploratory project will add to the small handful of studies on the neural correlates of 
turn-taking in spontaneous conversation and work towards developing a paradigm for EEG 
studies of spontaneous dialogue, identifying the most troublesome obstacles and perhaps 
providing some insight into how to overcome them in the future.  
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2. Background 

2.1. Turn-taking in conversation 
 
“The orderly distribution of opportunities to participate in social interaction is one of the most 
fundamental preconditions for viable social organization.”  
Emanuel Schegloff (2000) 
 
Turn-taking is one of the most fundamental aspects of human conversation, a structural 
groundwork for communication which infants seem to grasp before they can even speak. 
Babies as young as two months old engage in “proto-conversations”, in which they actively 
participate in and initiate turn-taking (Gratier et al., 2015). Even non-human primates such as 
marmosets engage in turn-taking while vocalizing with one another (Takahashi et al., 2013) 
which further emphasizes the centrality and universal nature of turn-taking in social 
communication.  
Unlike in structured interactions (such as debates or scripted dialogues) the length and order 
of turns in spontaneous conversation are not fixed, but must be determined on the fly (Sacks 
et al., 1974). Speakers use various means of allocating turns, indicating when they wish to 
speak and when others may speak. Sometimes speaker switches are indicated explicitly: one 
speaker can select the next speaker by directly addressing them, e.g., asking someone a 
question or calling on them by name (Sacks et al., 1974). Often, however, the conversational 
floor is managed with the use of less explicit cues. For example, speakers can project a desire 
to yield their turn with prosodic information, such as a rise in fundamental frequency 
corresponding to the upcoming end of the current speaker’s turn (e.g., Schaffer, 1983). Gaze 
also plays a role in next-speaker selection. Auer (2018), for example, notes that in three-party 
conversations, the current speaker indicates privileged access to the next turn by gazing 
longer at the party to whom they intend to yield the floor. Gestures can also play a role in 
managing the floor. For example, shifts to a more upright posture (Harrigan, 1985) or rapid 
raising and lowering of the eyebrows (Guaïtella et al., 2009) can signal a desire to begin 
speaking. Speakers who have the floor may also indicate to other speakers that they are not 
finished speaking, for example with hand gestures (Zellers et al., 2016) or through a 
combination of syntactic information and the modulation of pause length (Wennerstrom & 
Siegel, 2003). Breathing behavior can also provide turn-taking cues; for example, several very 
short utterances coupled with a pronounced inhalation can indicate a desire to take the floor 
(Włodarczak & Heldner, 2016b). Listeners may also indicate their agreement with or 
understanding of the current speaker’s statements while encouraging the speaker to continue 
with gestures such as nodding, or short utterances (such as “mhm”, “yes”, or “right” in 
English) that overlap the other speaker’s utterance without interrupting it. This behavior is 
referred to as backchanneling (see, for example, Heldner et al., 2010).  
There is a degree of cultural specificity to the rules and patterns of turn-taking (e.g., Hayashi, 
1991), and different types of conversational contexts may result in different turn-taking 
behaviors. For example, competitive conversations such as arguments are characterized by 
shorter pause lengths than cooperative conversations, as noted by Trimboli and Walker 
(1984). However, some basic principles remain constant across languages and cultures; 
namely, speakers generally attempt to minimize both gaps and overlaps between speaker turns 
(Stivers et al., 2009). This could be thought of as the ultimate goal of the various cues 
discussed above, which help to maintain the smooth flow of conversation by indicating who 
should speak when and hence keeping transitions as short as possible. 
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2.2. Minimizing gaps and overlaps in conversation 
 
Speakers seem to accomplish the challenge of maintaining small gaps and overlaps 
remarkably well, despite the complexity and multimodal nature of conversation. Heldner and 
Edlund (2010), for example, have found that the modal duration of between-speaker gaps falls 
around 200 milliseconds. An implication of this extremely small gap is that speakers must 
begin to prepare for their upcoming turn well in advance, since this latency is significantly 
smaller than the 600 ms needed to begin articulating the name of even a single object in 
picture-naming studies (Indefrey and Levelt, 2004), what to speak of an entire sentence 
(Bögels & Levinson, 2017).  
 The capacity of speakers to manage such a minimal degree of interruption in the flow of 
conversation has been a frequent topic of investigation, with Sacks et al.’s (1974) study as an 
early example.  However, there have been few studies to date that have examined the online 
cognitive/neural processes that underlie turn-taking as they unfold. Conversational analysis, 
which has its roots in sociology, has traditionally used offline, qualitative analysis of speaker 
behavior from transcripts of spontaneous conversation to examine the organizational features 
of conversation. Sacks et al. (1974) did acknowledge some of the potential cognitive demands 
of the turn-taking system, noting the need for listeners to analyze a conversation partner’s 
speech over the course of an utterance, and other conversational analysts have carried out 
more fine-grained investigations of how speakers process incoming information over the 
duration of an utterance (e.g., Schegloff, 2000), but these analyses are still based on offline 
data and largely focus on comprehension, whereas the greatest processing bottleneck likely 
involves speech production processes (Bögels & Levinson, 2017).   

2.3. EEG and neuroimaging studies of turn-taking 
 
It is perhaps unsurprising that research on the online processes underlying turn-taking is 
somewhat sparse. The inherently messy and unpredictable nature of spontaneous conversation 
makes it difficult to apply typical methods of measuring online cognitive processing, such as 
electroencephalography (EEG) (Bögels & Levinson, 2017). This obstacle is twofold. First, the 
most common technique for analyzing brain activity connected to specific events or processes 
with EEG requires tight experimental control. The event-related potential (ERP) method 
generally involves presenting many similar stimuli over and over so that small changes in 
electrical activity measured at the scalp can be summed across participants and events in order 
to identify systematic fluctuations in a relatively weak signal. Spontaneous conversation does 
not lend itself well to this kind of control. Secondly, speech generates muscle activity, which 
can result in artifacts in the EEG signal. Unlike the highly stereotypical artifacts generated by 
eyeblinks, electromyographic (EMG) artifacts are not so easily identified and removed. They 
can pervade long stretches of the EEG, and are hard to distinguish from brain activity in some 
cases (Vos et al, 2010).  
Previous studies have attempted to address the aforementioned problems in various ways. One 
means of tackling the issue with muscle artifacts is to avoid them entirely. The overhearer 
paradigm operates on the assumption that at least some of the same processes that we engage 
in during conversation take place while acting as passive participants, listening in without 
actively taking part in a dialogue. Studies using this paradigm (e.g., Schober & Clark, 1989; 
Tolins & Fox Tree, 2016) ask participants to listen in on a pre-recorded conversation, and in 
some cases think about what they would say at various points in the discussion were they 
active participants, but no actual production is involved. The obvious shortcoming of this 
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method is that while there is evidence that overhearers engage in similar comprehension 
processes as addressees (Tolins & Fox Tree, 2016) the paradigm provides no means of 
disentangling processes that are strictly related to speech production from comprehension 
processes. Furthermore, there may be cases in which overhearers differ from addressees even 
in terms of comprehension (Schober & Clark, 1989). 
Other paradigms attempt to elicit production, but with limitations. The interactive quiz 
paradigm, for example, uses a mixture of live dialogue and pre-recorded quiz questions 
(which the participants are led to believe is live) to attain a high degree of experimental 
control in a setting that still feels natural and involves production. Bögels et al. (2015) used 
this setup to investigate the time course of production planning with EEG and found support 
for the early planning account of turn-preparation. A positive large positive event-related 
potential (ERP) and decreased power in the alpha frequency band following the availability of 
information crucial to answering the questions indicated that non-motor aspects of turn 
preparation were set into motion as soon as it was possible to begin planning a response. 
A more recent study (Bögels, 2019) has investigated the neural correlates of turn-taking 
processes with EEG in a more natural setting. An interviewer posed a series of pre-scripted 
yes/no questions to the participants, which were based on their response to a questionnaire 
that they had filled out prior to taking part in the experiment. After each question, the 
interviewer asked a spontaneous follow-up question. In this way, the interviewer engaged in a 
mix of scripted and unscripted dialogue with the participants. Native speakers of Dutch were 
asked to indicate the point in each question at which they believed a listener would have 
enough information available to begin planning their response. This annotation of the 
spontaneous questions allowed the researchers enough control to hone in on their research 
questions while also coming closer to natural conversation. This study provided further 
support to the early planning account of turn preparation, replicating the findings of Bögels et 
al. in a context that was more similar to spontaneous dialogue.  
At least one neuroimaging study, a magnetoencephalography (MEG) study by Mandel et al. 
(2016) which will be discussed in more detail later, did involve entirely spontaneous dialogue. 
However, this study used relatively short (7 minute) stretches of conversation and contrasted 
periods of listening vs. speaking, not considering a range of different types of turn-taking 
events (for example, turn-holding, where the speaker pauses but then continues speaking, turn 
transitions and situations where the conversation partner continues after a pause). While this 
was one of a handful of studies on conversation which recorded brain activity from two 
participants simultaneously, the recording was carried out while participants communicated 
via audio only from a distance of 5 km, whereas the present study will utilize hyperscanning 
of two participants situated in the same room. 
Many of the studies discussed so far have asked questions about the time course of production 
planning, and have looked at events whose starting points are reliant on the content of a 
conversation partner’s utterances and hence highly variable in terms of when they begin 
relative to the start of a speaker’s turn. Answering such questions also requires some 
consideration of the content of utterances, either by using scripted dialogue (e.g., Bögels et al., 
2015) or by asking raters to evaluate (a relatively limited amount of) spontaneous dialogue 
(e.g., Bögels, 2019) after the fact. Neither of these approaches would be practical when it 
comes to looking for neural correlates of production and production planning in a lengthy, 
entirely spontaneous dialogue where both parties are experiment participants. So what can we 
examine in such a naturalistic context? 
Using turn switches as the events of interest provides a large set of discrete events for 
analysis, but in order for such an analysis to be meaningful, there must be some sort of brain 
response related to turn-taking which occurs at a relatively consistent interval of time 
preceding a turn switch. Response planning, therefore, can’t be meaningfully investigated 
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with such an approach, as it is too reliant on the content of an utterance and occurs in too 
large of a range of possible latencies.  
The choice of analysis techniques is also an important consideration. The ERP technique is a 
popular and effective method of identifying changes in neural activity measured by EEG that 
occur in response to an event (such as the onset of a speaker’s turn, in this case). This 
technique provides excellent temporal resolution and is useful in determining precisely when 
a brain response occurred following the onset of an event, but is less suited to capturing the 
“multiple neural processes co-occurring and interacting in the service of integrative and 
dynamically adaptive information processing” (Roach & Mathalon, 2008). Essentially, the 
ERP technique treats many of the ongoing fluctuations in phase and amplitude present in the 
EEG signal as background noise. Decomposing the EEG signal into its various frequency 
components with spectral analysis and observing fluctuations in the magnitude of these 
components over time may provide a more dynamic and nuanced view of the many parallel 
processes that underlie turn-taking.  
One frequency oscillation which has actually been studied in spontaneous conversation is the 
mu rhythm, which consists of two frequency components at roughly 10 Hz (which overlaps 
with the 8-12 Hz alpha frequency band) and 20 Hz (which lies within the 12-30 Hz beta 
frequency band), both originating from sensorimotor areas of the cortex. Mandel et al. (2016) 
used magnetoencephalography (MEG) to investigate the modulation of this rhythm relative to 
the speaker vs. listener roles in spontaneous conversation. They found that over the course of 
a 7 minute conversation, both components of the mu rhythm were dampened in sensorimotor 
regions of the left hemisphere for speaking, relative to listening. However, the 10 Hz 
component increased in power at two points (1 second and 2.3 seconds) before the end of the 
conversation partner’s turn, which the researchers speculated might point to its involvement in 
preparation for one’s own turn, specifically respiratory preparation, when the partner seems 
about to end their turn.   
Alpha suppression is another phenomenon which seems to be related to turn preparation. Ahn 
et al. (2018), found reduced power in the alpha frequency band (originating in left temporal 
and centro-parietal regions) during a task where participants took turns counting numbers 
back and forth to one another. Bögels et al. (2015) also found evidence that alpha suppression 
is involved in what they suggest are non-motor aspects of response planning, at variable 
latencies related to the availability of information needed to formulate a response. While the 
mu rhythm originates within sensorimotor regions (Mandel et al., 2016), the alpha 
suppression observed by Bögels et al. (2015) was found to originate in occipital and parietal 
regions, mostly in the left hemisphere. This lent support to their conclusion that the activity is 
unrelated to motor processes. They further proposed that this activity might be related to a 
switch in attention from comprehending the other speaker’s utterance to preparing their own 
speech. It might be speculated that the phenomenon of corollary discharge is involved in this 
switch of attention, as this process underlies one’s ability to distinguish between one’s own, 
self-generated speech and speech produced by others (Ford et al., 2001). However, corollary 
discharge is typically associated with the N100 component (Ford et al., 2001) and with 
gamma band synchronization between Broca’s area and the auditory cortex (Chen et al., 
2001), neither of which were found by Bögels et al. (2015). 
 Finding alpha suppression related to non-motor response planning in this data is unlikely 
given that it is not reliably associated with any specific position in time before the onset of a 
speaker’s turn, but rather varies depending on the availability of information. However, 
should a reduction  in alpha power be observed prior to the onset of a speaker’s turn, this 
would need to be distinguished from the 10 Hz component of the mu rhythm, since this 
component occurs within the alpha frequency band (8-12 Hz). The topographical distribution 
of such components would provide a means to distinguish between processes related to motor 
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readiness that the mu rhythm seems to correlate with (which arise in the sensorimotor cortex) 
and alpha activity related to non-motor turn preparation (which as noted, has a more 
parietal/occipital distribution).  
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3. Aims and research 
questions 
The relative shortage of EEG studies of turn-taking in spontaneous conversation gave this 
project something of an exploratory character. Many researchers have avoided using 
spontaneous conversation in neuroimaging studies, choosing instead to approximate 
conversation in a very constrained fashion or to avoid directly studying production in the first 
place, because of the difficulty of obtaining meaningful data or being able to apply common 
analysis techniques to the data. Given these issues with collecting and analyzing brain data 
from spontaneous conversation, the pool of studies using this type of paradigm is extremely 
small. Hence, this project will hopefully make contributions both to our knowledge of the 
neural processes involved in turn-taking in conversation, and to the development of a 
spontaneous conversation paradigm for EEG studies. Another aspect that lends this project 
novelty is the use of EEG hyperscanning, whereby brain activity from each pair of 
participants is measured simultaneously.  
The first aim of this project is to investigate the neural correlates of turn-taking in 
spontaneous conversation with time-frequency analysis and to find frequency components 
that correspond to different types of turn-taking events. The second aim is to evaluate the 
limitations of the spontaneous conversation paradigm for neuroimaging studies of turn-taking 
and discuss possible future uses of the dataset produced in the course of the study. 
The following questions will be addressed in achieving the aims of the project: 

1. Can evidence of power increases in the 10 Hz component of the mu rhythm and/or 
suppression in the alpha band be found preceding the start of a speaker’s turn during 
spontaneous conversation?  

2. Can other spectral EEG components be found in connection to the onset of a speaker’s 
turn? 

3. Which issues with the spontaneous conversation paradigm will prove to be most 
troublesome in practice, and to which degree can these issues be mitigated without 
sacrificing spontaneity altogether? 

4. How might the hours of synchronized audio, EEG and breathing data collected for this 
study be mined for additional insights into turn-taking in conversation?  
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4. Method and data 

4.1 Participants 
 
Eighteen participants (3 male, 15 female) took part in the study in pairs. The participants were 
between 19 and 53 years old, with a mean age of 29.79. Each pair of participants was 
recruited together and had an existing relationship with one another (friends, classmates, 
spouses, etc.). All participants were right-handed native speakers of Swedish (one participant 
had both Swedish and Persian as native languages) recruited via information fliers on the 
campus of Stockholm University. In addition to Swedish, all participants spoke English, and 
several spoke additional languages to varying degrees of proficiency (French, 7; German, 3; 
Spanish, 3; Italian, 2; Turkish, 1; Greek, 1; Swedish Sign Language, 1; Dutch, 1; Arabic, 1; 
Norwegian, 1). Information about handedness and language proficiency was collected via 
questionnaires administered when the participants arrived to take part in the study. Each 
participant was compensated for their participation with three movie theater tickets. 
Participants were informed of the purpose of the study and of their right to stop participating 
at any point, and signed a consent form prior to their participation. Participants’ personal 
information was collected and handled in compliance with the General Data Protection 
Regulation 2016/679 (GDPR). 
 

4.2 EEG recording 
 
 EEG recording was carried out with two daisy-chained BioSemi ActiveTwo systems (one 32-
channel and one 64-channel system, each with 6 external electrodes) with a sampling 
frequency of 2 kHz, recorded with BioSemi’s acquisition software (ActiView). This setup 
allowed for hyperscanning of both participants simultaneously.  
 

4.3 Audio and breathing recordings 
 
Audio was captured both via Sennheiser MKE 2 microphones clipped to each participant’s 
clothing, and via miniature accelerometers (Knowles BU-27135) attached to the skin on the 
tracheal wall below the cricoid cartilage with cosmetic glue. The throat microphones were 
used to obtain a clear audio signal for each participant, uncontaminated by cross-talk, in order 
to simplify automatic segmentation into speech and silence. This type of recording can also 
capture aspects of vocal quality (Heldner et al., 2018). Breathing was recorded with the 
RespTrack system (Heldner et al., 2019) using Respiratory Inductance Plethysmography (RIP, 
Włodarczak & Heldner, 2016a) which uses two elastic bands around participants’ chest at the 
armpit and navel to measure changes in the cross-sectional area of the ribcage and 
abdomen. Audio, as well as the breathing DC-signals, were recorded with an audio interface 
with DC-coupled inputs (Expert Sleepers ES-9) at 48 kHz, 24 bit, and the DAW software 
Logic Pro X 
In order to sync the various recordings (breathing bands, audio and EEG) two beeps generated 
in EPrime (Psychology Software Tools, Pittsburgh, PA) were recorded to an additional track 
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in the audio, one at the start of the recording and one at the end. A signal was sent 
simultaneously to the EEG recording software as an event from EPrime to allow for syncing 
of the various files. 

4.4 Procedure 
 
The study took place at the Stockholm University Brain Imaging Center (SUBIC) which 
provided a location for carrying out the study, as well as the additional EEG amplifier 
required for collecting EEG data from two participants simultaneously. 
Participants were seated in a sound-proof room and asked to hold a spontaneous conversation 
in Swedish on a topic of their choice for 45 minutes. It was suggested that participants avoid 
sensitive personal topics, as the conversations would be recorded and potentially listened to 
by the researchers, but they were otherwise free to discuss whatever they wished. During the 
conversation they were seated back to back and asked to look at a fixation cross, placed at 
each participant’s eye level. This was done to minimize eye movements, which occurred at a 
high rate during early piloting of the experiment setup when participants sat facing each other, 
and can lead to artifacts in the EEG signal which are challenging to identify and remove. 
Additionally, participants were asked to avoid excessive blinking and exaggerated 
movements.  

4.5 Generating turn-taking events 
 
The audio recording from the throat microphone was automatically segmented into periods of 
silence and speech for each speaker using the MPI-PL Silence Recognizer for ELAN (version 
5.6). The minimum silence duration was 200 ms and the minimum sound duration was 80 
ms.  The periods of silence and speech annotated for each speaker were used to generate a list 
of turn-taking events and their latencies with the help of a Python script. The script used the 
TextGridTools toolkit (Buschmeier & Włodarczak 2013) to identify the same types of 
silences and overlaps described in Heldner and Edlund (2010) and illustrated in Figure 1 
below: gaps (between-speaker silences, abbreviated BSS), which indicate silences bounded by 
speech from two different speakers, pauses, which are periods of silence bounded by speech 
from a single speaker (within-speaker silences, or WSS), within-speaker overlaps (WSO) 
where one speaker starts and ends a segment of speech within the other speaker’s utterance, 
and between-speaker overlaps (BSO) where a segment of simultaneous speech is bounded by 
the silence of two different speakers.   
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Figure 1. From Heldner and Edlund (2010), used with permission. Illustration of how gaps, overlaps 
(OVERLAPB), pauses, and within-speaker overlaps (OVERLAPW) are defined and classified in the interaction 
model. The illustration shows all three steps from the perspectives of both speaker 1 (SP1) and speaker 2 (SP2). 
 
Based on these labels, four types of turn-taking events were defined for EEG analysis and 
used to create an event list that could be read by the EEGLab plugin for Matlab (Delorme & 
Makeig, 2004) in order to epoch the continuous EEG files for later analysis. These events are 
shown below in Figure 2. Speech from speaker 1 following a between-speaker interval (both 
BSS and BSO was classified as a speaker 2 to speaker 1 switch (taking the turn from the 
perspective of speaker 1). Speech from speaker 2 following a between-speaker interval (BSS 
and BSO) was classified as a speaker 1 to speaker 2 switch (yielding the turn from the 
perspective of speaker 1). Speech following a pause (WSS) was classified as a continuation 
by the respective speaker. The latency of the event was the onset of the speech that followed 
the within-speaker or between-speaker interval. 
 

 
 
Figure 2. Classification of turn-taking events. The onset of the turn-taking event is the onset of speech following 
a between-speaker or within-speaker interval. 
 
Note that since EEG activity was recorded for both speakers simultaneously, there are two 
EEG recordings associated with each point in time. Hence, every turn-taking event is included 
from the perspective of each participant, and the turn-taking events are defined in terms of 
“speaker 1” as the speaker whose brain activity is analyzed for that time-locked epoch. If 
Participant A stops speaking and Participant B begins speaking, this same event will be 
included as a “speaker 1 to speaker 2 switch” with Participant A’s brain activity time-locked 
to the epoch, and as a “speaker 2 to speaker 1 switch” with participant B’s brain activity time-
locked to the same point in Participant B’s EEG data.  
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4.6 EEG import and preprocessing  
 
EEG data were imported with the EEGLab plugin for Matlab (Delorme & Makeig, 2004). The 
data were rereferenced to the mastoid electrodes and 4000 ms epochs (2000 ms before and 
2000 ms after speech onset) were created using the turn-taking events described previously. In 
preparation for independent component analysis (ICA, Delorme & Makeig, 2004), the EEG 
data were high-pass filtered with a cutoff of 1Hz, low-pass filtered with a 40 Hz threshold, 
and trimmed with the EEGlab plugin TrimOutlier (Lee and Miyakoshi, 2019), which removes 
the most extreme parts of the EEG data. The filters had consequences for the time-frequency 
analysis, as no frequencies below 1Hz or above 40 Hz were included in the data, meaning that 
parts of the delta and gamma frequency bands were excluded or attenuated. However, given 
the large amount of noise in the data, especially low-frequency noise, this tradeoff was 
deemed necessary to obtain clean data. Individual thresholds between 500 and 2500 μV were 
set to exclude extreme noise, but not blinks (which were removed in a later step). This 
resulted in the exclusion of up to one minute of data per participant. TrimOutlier was also 
used to investigate bad channels. Five recordings had one or two bad channels which were 
removed before carrying out ICA.  

4.7 Artifact rejection 
 
Artifacts were rejected in several steps. First, ICA was carried out on the ICA-optimized data 
set. The resulting components were manually inspected, and based on their topography and 
spectral profile, components typical of eye blinks were identified and removed. Next, the 
ICLabel plugin (Pion-Tonachini et al., 2019) was used to classify the source of ICA 
components. Those components classified with a 90% or higher likelihood of having a non-
brain source (e.g., eye or muscle movements, line noise, etc.) were also removed. In addition, 
components were identified in 13 participants which contributed to a potential artifact just 
around speech onset. These components were removed. After ICA-rejection, removed 
channels were extrapolated, and the 64-channel data was reduced to the same subset of 32 
head channels present in the data recorded with the 32 channel system. Finally, epochs were 
rejected automatically by testing various criteria by visual inspection of grand averages and 
subject averages. A balance between keeping as much data as possible while also removing 
particularly noisy epochs was found by rejecting head electrodes at +-500 μV, VEOG at +-
300 μV and mastoids at +-100 μV. Based on these criteria, 7% of all epochs where rejected. 
Using these criteria 7% of all epochs where rejected leaving an average of 404 epochs per 
participant (with a range of between 151 and 972 epochs per participant). 

4.8 Computation of time-frequency 
representations 
 
Time-frequency analysis was carried out with the MNE-Python package, version 0.19.2 
(Gramfort et al., 2013) using the Anaconda distribution of Python (Anaconda Software 
Distribution, 2016). Before calculating group power averages for epochs time-locked to each 
of four types of turn-taking events, epoched files for each participant were concatenated into a 
single file per event type. Baseline correction was carried out by subtracting, then dividing by 
the mean of the entire epoch. This percent change from baseline correction method has the 
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advantage of reducing overall scale differences between frequencies, making them more 
directly comparable (Roach & Mathalon, 2008). Using the mean of the entire epoch for 
baseline correction (as opposed to choosing an earlier time window which excludes the event 
of interest as the baseline) means that changes in power reflect differences in average power 
over the epoch, as opposed to a direct comparison of differences between pre-event and post-
event power (Alday, 2019). While this may be undesirable when looking for causal effects of 
experimentally manipulated events in a typical EEG experiment, it was appropriate for this 
study design, because activity both before and after speech onset were of interest, and because 
the “events” in this case were not experimental manipulations, but spontaneously occurring 
speech. The use of a whole-epoch baseline allows for a picture of how power fluctuates 
relative to average power both before and after speech onset. 
A complex Morlet wavelet decomposition with 4 cycles was carried out to compute a time-
frequency representation (TFR) of the data, using data from all 32 head channels. The 
frequencies included in the analysis were 2-40 Hz, covering part of the delta frequency band 
(1-4 Hz), the entire theta (4-8Hz), alpha (8-12 Hz) and beta (12-30 Hz) bands, and the low 
end (30-40Hz) of the 30-100Hz gamma band.  
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5. Results 

5.1 Single-sample permutation cluster tests  
 
For each condition, non-parametric single sample cluster-based permutation tests were carried 
out with MNE-Python (Gramfort et al., 2013) to find significant clusters in the time-frequency 
power estimates. The method has the advantage of addressing the problem of multiple 
comparison with the use of permutations and cluster-level significance testing. Single-sample 
t-tests were computed across each frequency/time point in the TFR, and samples which 
passed the chosen threshold (p < 0.01) were clustered based on their proximity to one another 
in time and frequency and then compared to a null distribution of clusters generated on the 
basis of 1000 permutations of random sign flips of sample values, comparing the observed 
clusters with clusters that would occur by chance. Significant clusters for each type of turn-
taking event are shown below. Power for each turn-taking event is plotted on the left in 
Figures 3 through Figure 6, showing the change in power relative to the baseline averaged 
over all electrodes. The clusters found to be significant with the permutation cluster tests are 
shown on the right. Clusters where average power is significantly higher are plotted in red, 
while clusters with lower average power are plotted in blue.  
 

  
Figure 3. Average power and significant clusters for all 32 channels for continuations after a pause (Speaker 1 to 
Speaker 1).  
 
Figure 3 shows power across epochs where the speaker whose brain activity was time-locked 
to the epoch (Speaker 1) continued speaking after a pause, with zero marking speech onset 
after a silence which was preceded by speech from the same speaker. Significant clusters were 
found across a range of time points and frequency bands. A summary of the time and 
frequency intervals for each of these clusters is presented in Table 1, below. 
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Table 1. Summary of significant time-frequency components for continuations after a pause (Speaker 1 to 
Speaker 1).  

  Power decreases Power increases 
  Before speech onset After speech onset Before speech onset After speech onset 

Fr
eq

ue
nc

y 
ra

ng
e 

delta (<4 Hz) 

75-0 ms 0-1050 ms 
 
 
 

  

theta (4-8 Hz) 

787-525 ms 
1087-987 ms 

  87-200 ms 
125-437 ms 
312-837 ms 
1275-1500 ms 

alpha (8-12 Hz) 

375-212 ms 
 
 
 

  62-162 ms 

beta (12-30 Hz) 

750-175 ms 
 

  50-150 ms 
212-300 ms 
962-1000 ms 
1175-1287 ms 

gamma (>30 Hz) 

1412-1275 ms 
750-162 ms 

912-962 ms 
1187-1337 ms 
 
 
 

  

  
 
 
Figure 4, below, shows power for epochs where the participant whose brain activity was time-
locked to the epoch (Speaker 1) began speaking (the zero point in the figure) following a 
between-speaker interval; in other words, when they took over the turn. Figure 4 also shows 
the topographical distribution of alpha power across the scalp at 1000-762 ms before the onset 
of speech, and beta power from 87 ms before speech onset to 162 ms after speech onset. 
 
 
 
 
 
 

 
Figure 4. Average power and significant clusters for all 32 channels for epochs where the participant takes over 
the turn from the other speaker (Speaker 2 to Speaker 1). The distributions of alpha and beta power across the 
scalp are shown for two different time periods. 
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In Table 2, below, time and frequency ranges for the significant clusters shown in Figure 4 are 
summarized.  
 
Table 2. Summary of significant time-frequency components for epochs where the participant takes over the turn 
from the other speaker (Speaker 2 to Speaker 1). 
 

  Power decreases Power increases 
  Before speech onset After speech onset Before speech onset After speech onset 

Fr
eq

ue
nc

y 
ra

ng
e 

delta (<4 Hz) 
   200-1500 ms 

 
 

theta (4-8 Hz) 
425-250 ms 
 
 

  225-500 ms 

alpha (8-12 Hz) 
  1500-1287 ms 

1000-762 ms 
587-525 ms 
 
 

beta (12-30 Hz) 
775-650 ms  
550-475 ms 
87-0 ms 

0-162 ms 1175-1087 ms 
 

562-560 ms 
950-987 ms  
1062-1212 ms 

gamma (>30 Hz) 
562-437 ms 
325-112 ms 
87-0 ms 

0-162 ms 1162-1137 ms 675-725 ms 
1025-1062 ms 
1275-1337 ms 

 
 
 
Figure 5 shows power for epochs where the participant whose brain activity was time-locked 
to the epoch (Speaker 1) yielded the turn and the other party in the conversation (Speaker 2) 
began speaking, with zero denoting the onset of Speaker 2’s speech following a between-
speaker interval.  
 

 
Figure 5. Average power and significant clusters for all 32 channels for epochs where the participant yields the 
turn to the other speaker (Speaker 1 to Speaker 2) 
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The time and frequency ranges of the significant clusters in Figure 5 are summarized below in 
Table 3.  
 
Table 3. Summary of significant time-frequency components for epochs where the participant yields the turn to 
the other speaker (Speaker 1 to Speaker 2) 
 

  Power decreases Power increases 
  Before speech onset After speech onset Before speech onset After speech onset 

Fr
eq

ue
nc

y 
ra

ng
e 

delta (<4 Hz) 

 25-300 ms 1500-100 ms  
 
 
 
 

theta (4-8 Hz) 

 0-187 ms 
650-775 ms  
875-1500 ms 

1500-887 ms 300-475 ms 
1200-1312 ms 
 
 
 

alpha (8-12 Hz) 

  1262-1012 ms and 
975-850 ms 
 
 
 

 

beta (12-30 Hz) 

 50-225 ms 
775-850 ms 
975-1087 ms 
1212-1287 ms 
1312-1500 ms 

975-850 ms 
712-637 ms  
437-387 ms 
187-0 ms 

0-12 ms 

gamma (>30 Hz) 

 75-125 ms 
362-387 ms 
1012-1162 ms 
1250-1275 ms  

212-0 ms 
 
 
 
 

0-25 ms 

 
 
Figure 6 shows power for epochs where the participant whose brain activity was not time-
locked to the epoch (Speaker 2) continued speaking after a pause, with zero marking speech 
onset after a silence which was preceded by speech from the same speaker. Hence, these 
epochs involve situations where the participant whose brain activity is shown is a listener 
while the other party pauses and then continues speaking.  
 

 
Figure 6. Average power and significant clusters for all 32 channels for epochs where the other speaker 
continues after a pause (Speaker 2 to Speaker 2) 
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A summary of the time and frequency ranges for the significant clusters in Figure 6 are 
presented below in Table 4 (though due to the very large amount of clusters in some 
frequency ranges, not every cluster is presented in detail).  
 
Table 4. Summary of significant time-frequency components for epochs where the other speaker continues after 
a pause (Speaker 2 to Speaker 2) 
 

  Power decreases Power increases 
  Before speech onset After speech onset Before speech onset After speech onset 

Fr
eq

ue
nc

y 
ra

ng
e 

delta (<4 Hz) 
87-0 ms 
 
 

0-87 ms 1500-262 ms  

theta (4-8 Hz) 
75-0 ms 0-62 ms 

575-675 ms  
1012-1150 ms 

712-187 ms 
1450-1287 ms 

 

alpha (8-12 Hz) 
  712-187 ms 

 
 

 

beta (12-30 Hz) 
 Numerous Numerous 

 
 

 

gamma (>30 Hz) 
 Numerous Numerous 

 
 

 

5.2 Statistical analysis of power TFRs for listening 
vs. turn-taking 
In order to compare time-frequency power estimates for epochs where participants listened 
while the other speaker continued after a pause (Speaker 2 to Speaker 2) with those where 
they took over the turn from the other party (Speaker 2 to Speaker 1), an additional 
permutation cluster test with 1000 permutations was carried out to find clusters of power 
estimates that significantly differed between conditions. This comparison was intended to 
provide a contrast between turn-taking and a situation as close as possible to passive listening 
by computing power values for the difference between these two event types. 

 

 
Figure 7. Clusters of power values which significantly differed between epochs where participants continued 
their own turn after a pause, versus those where participants took over the turn from the other speaker, with 
topological maps showing the distribution of beta (12-30 Hz), alpha (8-12 Hz), delta (2-4 Hz) and gamma (30+ 
Hz) power over the scalp for four clusters of significantly decreased power. 
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One-way ANOVAs were carried out for each pair of frequency/time points in the TFRs, and samples 
with an F score which passed the chosen threshold (p < 0.01) were clustered based on their proximity 
to one another in time and frequency. The procedure corrects for multiple comparisons with 
permutations and cluster-level corrections, comparing the resulting clusters to a null distribution which 
assumes no difference between conditions. Regions where power differs significantly between the two 
event types are shown in Figure 7. The red regions are regions with significantly higher power in the 
turn-taking epochs, while the blue regions show areas of significantly decreased power in the turn-
taking epochs. Topological maps show the power distribution of four frequency bands in four 
time ranges where power in those frequency bands was significantly lower in the turn-taking 
epochs (Speaker 2 to Speaker 1) compared to the listening epochs (Speaker 2 to Speaker 2). 
The significant clusters shown in Figure 7 are summarized in Table 5, below.  
 
 
Table 5. Summary of significant clusters of power values for epochs where the other speaker continues after a 
pause (Speaker 2 to Speaker 2) which significantly differed between epochs where participants continued their 
own turn after a pause, versus those where participants took over the turn from the other speaker. 
 
 

  Power decreases 
  Before speech onset After speech onset 

Fr
eq

ue
nc

y 
ra

ng
e 

delta (<4 Hz) 
 
 

460-633 ms 
 
 

theta (4-8 Hz) 
 
 

 
 
 

alpha (8-12 Hz) 
807-680 ms 
 

 
 
 

beta (12-30 Hz) 
913-853 ms 
680-560 ms  
253-80 ms 

 

gamma (>30 Hz) 
746-706 ms 1746-1800 ms 

 
 

 
Power was significantly higher in the turn-taking epochs compared to the listening epochs 
over a large swath of all frequency ranges. Several smaller clusters of significantly decreased 
activity were also observed: from 746-706 ms before speech onset and 1746-1800 ms after 
speech onset in the small portion of the gamma band included in the analysis (30-40 Hz), 
from 913-853 ms, 680-560 ms and 253-80 ms before speech onset in the beta (12-30 Hz) 
band, from 807-680 ms before speech onset in the alpha (8-12 Hz) band, and from 460-633 
ms after speech onset in the part of the delta band included in the analysis (2-4 Hz).  
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6. Discussion 

6.1 Method discussion 
 
As one aim of this project was to assess the feasibility of the method, namely the use of EEG 
methodologies in spontaneous conversation, a reflection on the strengths and weaknesses of 
this method is particularly relevant.  
The greatest strength of the method was also a significant challenge, namely, the fact that 
participants engaged in entirely spontaneous dialogue. The two main concerns with this 
method, factors which have stood in the way of such a method being implemented for this sort 
of research in the past, were 1) the possible introduction of EMG artifacts from the muscle 
activity involved in speech production, and 2), the infeasibility of maintaining the sort of tight 
experimental control which is usually required for EEG studies.  
Independent components analysis (ICA) was able to remove muscular artifacts from the data, 
though it is difficult to be sure of the extent to which muscle activity was successfully 
separated from brain activity. In the future, more sophisticated methods of removing muscle 
artifacts could be implemented, such as Canonical Correlation Analysis (Vos et al., 2010). A 
somewhat unexpected source of artifacts which cropped up during the piloting phase of the 
study was eye movement artifacts. During piloting, participants sat facing one another. 
However, this resulted in a large number of horizontal eye movements which were 
troublesome to separate from the brain activity, hence the decision to sit participants back-to-
back looking at a fixation cross. Of course, another consequence of this setup is that 
participants were not able to see one another, and hence could not react to visual cues that 
might signal the start of a turn.  
As for the uncontrolled nature of the “stimuli”, the only option was to accept that no 
meaningful events based on the actual content of the dialogue could be used without 
substantial annotation work and to instead look at turn-taking events, using structural aspects 
of the conversation rather than analyzing its content. One issue with preparation of the data 
for analysis that should be considered when working with this (or similar data) in the future is 
that the turn-taking events occurred in a wide range of different contexts. The length of 
pauses, gaps or overlaps before the onset of speech varied, and some turn changes occurred 
after a gap while others occurred after an overlap. Narrowing down some of these parameters 
might result in cleaner, less noisy data. The segmentation into periods of silence and speech 
also proved to be somewhat troublesome. The automatic segmentation tool provided by 
ELAN sometimes failed to correctly identify segments of silence or speech within the 
specified parameters, perhaps because it was not designed to segment audio from the throat 
microphones used in this study and expected a noisier signal. Based on a visual inspection of 
the segmented audio, the end result seemed acceptable. However, no detailed evaluation of 
the quality of the segmentation was carried out. This may have resulted in some 
miscategorized turn-taking events, introducing more noise.  
However, this study has resulted in the creation of a rich corpus of over 7 hours of 
spontaneous spoken dialogue, with synced electrophysiological data; both breathing activity 
and brain activity. The breathing activity could prove helpful in answering questions about the 
time course of turn-taking events, and a possible connection between breathing behavior and 
brain activity could be examined in the future. For example, Mandel et al. (2016) speculated 
that the transient power increases in the 10 Hz component of the mu oscillation that they 
observed preceding the end of a conversation partner’s turn might be related to respiratory 
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motor preparation. They were not able to confirm this speculation, but it could be addressed 
by looking at brain activity in conjunction with breathing. This could also potentially clarify 
whether the changes in alpha activity that was observed preceding turn-taking in this study 
was related to motor or non-motor aspects of turn preparation (i.e., whether they corresponded 
to the ~10 Hz oscillation of the mu rhythm or to a non-motor alpha component).  
The data collected from the accelerometers on participants’ throats was primarily used to 
obtain clean audio data for segmentation into silence and speech. However, as noted by 
Heldner et al. (2018) measures of vocal quality could also potentially be extracted from such 
data. It is possible that this might provide an additional source of cues related to turn-taking. 
 Annotation of the content of the dialogues would have proven incredibly time consuming, 
and was outside of the scope of this thesis project. However, selective annotation of parts of 
the dialogue (for example, isolating questions and asking native speakers of Swedish to 
pinpoint where in an utterance a listener could have sufficient information to form a response) 
could allow for the same sort of questions that Bögels and Levinson (2017) posed about the 
time course of production planning to be answered in the context of fully spontaneous 
dialogue.  
Finally, the fact that a full set of data has been collected for both parties in the conversation 
means that various forms of coordination between participants in the conversation could be 
investigated in the future. Coordination of breathing during conversation, for example, has 
been found to relate to whether or not an attempt to take over the turn from another speaker 
succeeds (Rochet-Capellan and Fuchs, 2014). Perhaps there is also some insight to be gleaned 
into the brain activity that relates to this coordination of breathing cycles. Ahn et al. (2018) 
also found phase synchronization in EEG and MEG data between participants in their study 
who engaged in interactive counting. Data collected for this study could be used to address 
whether such phase synchronization takes place in more complex, spontaneous conversation. 

6.2 Results discussion 
 
The results of the time-frequency analysis are somewhat hard to interpret in light of the sheer 
number of significant time-frequency clusters. Addressing the potential significance of every 
single change in power in every frequency band around each type of turn-taking event would 
be laborious and probably not provide much clarity. Instead, components relevant to the 
research questions will be addressed and a few other components which may correspond to 
turn-taking, auditory processes or speech production will be briefly discussed.  
The most specific question about the neural correlates of turn taking was whether increased 
power in the 10 Hz component of the mu rhythm, and/or alpha suppression, would be 
observed prior to the onset of a speaker’s turn. There is no evidence of alpha suppression 
before the onset of a participant’s turn in the time-frequency results for individual event types. 
Rather, there seem to be increases in alpha power in a variety of situations—before yielding 
the turn, before turn onset when taking the turn, and before the other speaker continues after a 
pause.  
The power increase in the alpha band before taking a turn, however, may correspond to the 
increase in the 10 Hz component of the mu rhythm observed by Mandel et al. (2016). As in 
their study, this increase occurred at around 1 second before the onset of a turn. While it 
covered a broader frequency band in the results presented here, this band did include 10 Hz. It 
was also accompanied by an increase in beta activity around 20 Hz, which could correspond 
to the 20 Hz component of the mu rhythm. The distribution of alpha activity on the scalp at 
this time interval does not help much with disambiguating between the kind of non-motor 
alpha component observed by Bögels et al. (2015) and the mu rhythm. The distribution of 



25 
 

activity across the scalp does not necessarily correspond to sources of activity in the brain 
(Jatoi and Kamel, 2018), so interpreting such a relationship should be done with caution 
anyhow, but the topography of the pre-turn alpha activity observed in this study shows 
activity in electrodes over the motor cortex as well as at occipital electrodes. This could mean 
that this activity reflects a mix of motor and non-motor turn preparation processes, but given 
the timing, the fact that an increase rather than a decrease in power was observed, and the 
likelihood that non-motor alpha would be too distributed in time to observe, it seems more 
likely that the activity is related to motor preparation of some sort.  
Relative to the baseline of average power, there was also a period of decreased beta activity 
right around speech onset when the participant whose brain activity was being measured 
began their turn following a between-speaker interval, which aligns with another of Mandel et 
al.’s (2016) observations about the mu rhythm, namely that decreased activity in the 20 Hz 
component occurs during speech. It has already been noted that topological maps of EEG 
activity are not an accurate reflection of brain sources (Mandel and colleagues used MEG 
rather than EEG). However, the beta suppression is distributed over electrodes on the center 
and left side of the head, a similar pattern to that observed by Mandel et al. (2016). This is far 
from conclusive but is at least consistent with Mandel and colleagues’ findings. 
Another pattern of activity in the alpha band was observed, however, when comparing epochs 
where the participant takes over the turn following a between-speaker interval (Speaker 2 to 
Speaker 1) to those where the other speaker continues speaking after a pause (Speaker 2 to 
Speaker 2). Alpha power was significantly lower between 807 and 680 ms before Speaker 1 
took their turn, compared to when Speaker 2 continued after a pause (which could be 
considered something of a “control” since Speaker 1 is a listener in the latter scenario). Once 
again, however, the suppression is distributed both occipitally/parietally on the scalp, and over 
centrally- located electrodes above the motor cortex. 
While it is a bit difficult in all of the cases discussed above to be sure of the source of the 
activity, it is nonetheless encouraging that this spontaneous conversation paradigm was able 
to find activity in the frequency and time ranges where activity related to turn preparation 
processes has been found previously with more constrained paradigms.   
The various changes in power in the other frequency bands are somewhat harder to interpret. 
Theta and delta activity seem to have differential roles in dealing with speech that is difficult 
for the listener to understand, with the theta band seeming to relate to speech clarity while 
delta relates to speech comprehension (Etard and Reichenbach, 2019). Delta activity, which 
increased in power over particularly large swaths while the participant whose brain activity 
was measured was actively speaking, also seems to be involved in attention and working 
memory, possibly increasing during the suppression of afferent signals (perception of one’s 
own motor activity) which interfere with internal concentration (Harmony, 2013). Perhaps 
this relates to the need to continue attending to the other speaker while speaking (possibly 
made more difficult by the lack of visual cues due to the back-to-back position, or even by the 
various pieces of equipment such as breathing bands and microphones the participants had to 
wear during recording).  
Finally, there is evidence that gamma and beta activity are involved in timing cues and the 
perception of rhythm (Fujioka, 2009), both of which are relevant in conversation. It is 
important to note that only the lower 10 Hz of the gamma frequency band (which extends to 
100 Hz) was included in the analysis, making it difficult to draw conclusions about gamma 
activity. However, one might speculate that the lower beta power around 1 second before 
taking a turn, relative to the same point before the other speaker continued after a pause, 
might be related to predicting the end of the other speaker’s turn or timing the beginning of 
one’s own turn.  
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The inclusion of relatively large epochs and a wide range of frequency bands in the analysis 
made for a fairly wide net, and consequently, a complex array of results that are not easy to 
interpret. However, it has also provided plenty of fodder for future investigations of turn-
taking in spontaneous conversation. The inclusion of breathing data in the analysis, together 
with more specific hypotheses about some of the time/frequency regions outside of the alpha 
band, should allow for a clearer interpretation of these data in the future. 

6.3 Ethics discussion 
This study was approved by the Swedish Ethical Review Authority and carried out in 
compliance with the General Data Protection Regulation 2016/679 (GDPR). No ethical issues 
arose during the course of the study.  

7. Conclusions 
One of the aims of this thesis was to find neural correlates of different types of turn-taking 
events. Based on previous findings, the following questions were posed: 

1. Can evidence of power increases in the 10 Hz component of the mu rhythm and/or 
suppression in the alpha band be found preceding the start of a speaker’s turn during 
spontaneous conversation?  

2. Can other spectral EEG components be found in connection to the onset of a speaker’s 
turn? 

While it was a bit difficult to determine the source of the activity observed in the alpha band 
(and hence to distinguish between non-motor alpha and motor-related mu components) 
activity was observed in the expected frequency ranges at expected times preceding the start 
of a turn, making the answer to the first question a tentative “yes”. In addition, a wide variety 
of other frequency components were observed, the interpretation of which was too complex to 
address fully but which provided potential avenues for more targeted investigations of other 
time/frequency ranges. 
The second aim was to evaluate the limitations of the spontaneous conversation paradigm for 
neuroimaging studies of turn-taking and seek to surmount some of those limitations. The 
questions that were posed in relation to this aim were as follows: 

1. Which issues with the spontaneous conversation paradigm will prove to be most 
troublesome in practice, and to which degree can these issues be mitigated without 
sacrificing spontaneity altogether? 

2. How might the hours of synchronized audio, EEG and breathing data collected for this 
study be mined for additional insights into turn-taking in conversation?  

The paradigm did present significant challenges: noisy data, muscle artifacts, a lack of 
experimentally controlled events for EEG analysis. However, it ultimately proved possible to 
carry out with a few small adaptations to the setup (such as sitting participants back-to-back 
and instructing them to gaze at a fixation cross to avoid more complex eye movements) and 
the use of turn-taking events generated by automatic segmentation of the audio data in lieu of 
traditional, experimentally controlled events.  
Finally, possible future uses of the dataset produced in the course of the study were discussed. 
This rich set of electrophysiological data paired with hours of spontaneous conversation could 
be used to answer a range of questions regarding the neural correlates of breathing activity 
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and its relation to turn-taking, phase synchronization between participants in a conversation, 
etc. 
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