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Abstract
Modern healthcare is the result of scientific advancement across disciplines and has enabled us to understand the rationale 
behind many diseases and how to treat or cure them; but still a myriad of unanswered questions remains. Especially 
infectious diseases play an important role in healthcare as they pose a constant threat for global health and well-being. This 
was painfully highlighted in this year's ongoing COVID-19 pandemic with more than 40 million people infected and over 
1 million deaths. Pandemics like this have not only devastating effects on global health but also economy.

Therefore, scientific research in the field of infectious diseases is paramount to ensure outbreak control and surveillance 
of emerging threats. Current healthcare relies heavily on the diagnosis of infectious diseases in centralized healthcare 
centers thereby overlooking the access of molecular diagnostics for other areas such as airports, home-testing and especially 
the developing world with its limited resources. Towards this, various isothermal nucleic acid amplification technologies 
have been developed that hold the promise to bring state-of-the-art molecular diagnostics into these areas as they are 
versatile, sensitive and specific, and cost-effective. One such technique is rolling circle amplification which was used in 
this thesis.

This research work provides an overview of the developments in biochemistry, related disciplines and their combination 
to design methods for diagnostic platforms tackling infectious diseases. The studies conducted in this work can be 
considered as individual modules for addressing challenges, like typing of pathogens and disease-related antibodies, and 
inexpensive bulk as well as digital quantification and simplified assay schemes. These approaches and their combinations 
aim to bring rolling circle amplification-based assay schemes into the molecular diagnostic field and towards decentralized 
healthcare.

Keywords: molecular diagnostics, infectious diseases, point-of-care, digital quantification, fluorescence detection, 
rolling circle amplification, padlock probes, microfluidic enrichment.
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Introduction

Modern healthcare has come a long way from magical treatments to evidence-
based personalized medicine. Healthcare would not exist without the advances
in science starting from ancient times and continuously on-going since then.
Today, we know the rational behind many diseases and how to treat or cure
them, but still a myriad of unanswered questions remain. This is what makes
scientific research in these areas so important for global health and well-being.

Almost 10% of our genetic information stems from viruses [1]. That be-
ing said, it is not surprising that some diseases are as old as humanity itself.
Throughout our evolution, infectious diseases have been a constant threat, es-
pecially when causing devastating outbreaks or pandemics, which makes them
account for every sixth death [2]. One does not need to look back far: since
early 2020, SARS-CoV-2 results in a devastating global pandemic of COVID-
19 with more than 40 million people infected and over 1 million deaths [3].
This pandemic tragically highlighted that despite significant advances in the
fields of medicine and science during the last century, there remains a stagger-
ing number of infectious diseases, including HIV/AIDS, tuberculosis, malaria
and others, that remain a burden to mankind. More than 30 million people have
incurable HIV/AIDS, more than 2 billion people are infected with tuberculosis
and 40% of the world population is at risk for malaria [4–6]. For these reasons,
there is a clear need for diagnostic tools to better tackle existing and emerg-
ing infectious diseases by providing more diagnostics coverage to diagnose,
isolate and treat infected patients worldwide.

This thesis aims to illustrate how discoveries in biochemistry and research
across disciplines are combined to design methods for diagnostic applications
tackling infectious diseases with focus on one particular method. The first
part of this thesis will provide a short introduction into infectious diseases and
biochemical concepts that enabled modern molecular healthcare. Thereafter,
technologies for the diagnosis of infectious diseases are presented, starting
from traditional diagnostics to current nucleic acid amplification technologies
found in clinical and research laboratories. This will provide ground to focus
on an isothermal amplification technology, rolling circle amplification (RCA),
its principle and developments but also remaining challenges. Finally, a sum-
mary of the present investigations will be presented, followed by a conclusion
and outlook of these technologies for the field of infectious disease diagnos-
tics. The investigations on RCA included in this thesis can be considered as
individual modules for addressing challenges, like typing of pathogens and an-
tibodies, and inexpensive bulk as well as digital quantification and simplified
assay schemes towards decentralized diagnostics.
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Biochemistry of molecular diagnostics

Already at the level of pathogens, the diversity of life becomes apparent - size,
shape, function, habitat, etc. The field of biochemistry deals with this do-
main of science, trying to unravel how biomolecules interact to form living
organisms solely governed by the physical and chemical laws of the nonliving
universe. In other words, it describes the molecular logic of life shared by all
organisms and lays the foundation for the understanding of infectious diseases
and development of diagnostics which is the focus of this thesis.

The unifying entity of life are a universal set of biomolecules that carry
out a gazillion functions from storing genetic information to accelerating bio-
chemical processes. Nucleic acids are the universal language of livings cells
and organisms to reproduce themselves for countless generations. All genetic
information is encoded by molecular building blocks that are made of a five-
carbon sugar, a nitrogenous base or nucleobase, and a phosphate group. These
nucleotides are Adenine (A), Cytosine (C), Guanine (G), Thymine (T) and
Uracil (U), and they can be arranged as linear strings with various combina-
tions of nucleotides. By combining them, nature encodes the blueprint for
every organism with everything that defines it. They have a particular fea-
ture by interacting pairwise with one another via hydrogen bonds. C interacts
preferably with G, while A interacts with T (in DNA) and U (in RNA). These
interactions not only give rise to the double-helix structure of DNA but are
also the fundamental principle for nucleic acid amplification technologies dis-
cussed in this thesis. Just like a manual, also nucleic acids are read in a defined
direction, from the 5’ end to the 3’ end. The 5’ and 3’ end correspond to the
5’-phosphoryl and the 3’-hydroxyl terminal group, respectively (see Figure 1).

There are two main types of nucleic acids - DNA and RNA. DNA can be
considered as the lowest level of information flow as it is the storage for all
genetic information encoding for the many biomolecules that define every cell
and organisms on this planet. The information is organized in distinct units,
called genes which comprise of a long sentence/sequence of three-letter words
(e. g. GGA TAC CTT triplets), each corresponding to one of twenty amino
acids which make up proteins. However, for this to happen, DNA needs to get
transcribed into RNA, more specifically into messenger RNA (mRNA) which
has a chemically different backbone than DNA (the five-carbon sugar bears a
2’ hydroxyl group) and uses the nucleobase U instead of T. RNA is not only
the carrier of information but can also have catalytic or structural functions [7].
Unlike the transcription from DNA to RNA, going from mRNA to a protein
requires translation carried out by specialized organelles that link amino acids
together as defined by the triplets in the RNA sequence. This linear sequence of
amino acids in a protein produces a protein’s unique three-dimensional struc-

12



Figure 1. Structure and composition of nucleic acids. RNA is a single-stranded
molecule, while DNA is double stranded where complementary strands are held
together by hydrogen bonds. Both nucleic acids consist of of a sugar-phosphate
backbone with nucleobases that enable the complementary base pairing. Created
with BioRender.com.

ture and thereby function. The connection between the nucleic acids and a
protein (DNA to RNA to protein) is called the central dogma of biosciences
(see Figure 2).

This deep understanding of biochemistry has led to many scientific break-
throughs in the field of fundamental and applied biosciences. Especially in
healthcare and infectious disease diagnostics this has opened the development
of novel technologies to detect pathogens and diagnose diseases. As illustrated
by the central dogma, by detecting proteins one can make predictions on the
nucleic acid sequence and vice versa. This is also the principle of evolution,
despite the near-perfect fidelity of genetic replication, infrequent mistakes in
the DNA or RNA replication process lead to changes in the nucleotide se-
quence, termed genetic mutation. A genetic mutation changes the instructions
for a cellular component and may be harmful to the new cell. However, a
mutation can also lead to a better equipped cell to survive in its environment.

13



Figure 2. Representation of the central dogma with the flow of information
from DNA to mRNA to protein via transcription and translation respectively. In
translation, the mRNA sequence is read in triplets (codons) which encode for one
of the twenty amino acids. Of the 64 codons, 61 represent amino acids and the
remaining three represent stop codons. Meaning that most amino acids are indi-
cated by more than one codon which is known as redundancy. Redundancy helps
to minimize the harmful effects of genetic mutations that can lead to incorrect
protein synthesis. Created with BioRender.com.

This holds especially true for microorganisms with small genomes and high
turn-over rates that can spontaneously evolve into pathogens able to circum-
vent the host immune system or cells as their surface proteins with altered
amino acid sequence and shape are no longer recognized by the host’s defense
mechanism(s) [8].

The word pathogen derives from the Greek word pathos "suffering" and
genes "producer of", and is in the broadest sense anything that can cause a
disease. Typically, it describes an infectious microorganism or agent, such
as virus, bacterium, or fungus. While a virus needs a host for reproduction by
hijacking the host’s cells, bacteria and fungi can perform cell division (mitosis)
as they are autonomous. However, not all of them have to be pathogenic,
e. g. while most bacteria are harmless or even beneficial for humans (digestive
system, skin flora, ...), a relatively small list is pathogenic. Pathogenicity is the
potential of a pathogen to cause a disease and dependents on a multitude of
factors.

Viruses are among the smallest pathogens and display great diversity in
their range of hosts, habitat, size, genes, mechanisms of infection, and capsids.
They are typically between 20 and 300 nanometer in length and come in a
range of genomic types that are either classified directly by their genome or the
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manner of mRNA synthesis (Baltimore classification): double-stranded DNA
(Class I), single-stranded DNA (Class II), double-stranded RNA (Class III),
positive sense single-stranded RNA (Class IV), negative sense single-stranded
RNA (Class V), single-stranded RNA with a reverse transcriptase (Class VI),
and double-stranded DNA with a reverse transcriptase (Class VII) [9; 10]. This
also explains their need for a host cell to replicate as their size limits them to
house the whole biochemical machinery for mitosis (compare animal or bac-
terial cell size to viruses in Figure 3A). This hijacking of the host cell makes
viruses pathogenic as they reprogram the cell to work for them [11; 12]. Promi-
nent examples include influenza virus causing seasonal flu, measles virus re-
sponsible for measles and HIV leading to incurable AIDS [13]. Due to their
small and often single-stranded genome, their genetic information has lower
fidelity and repair mechanisms when compared to higher organisms [8]. This
explains also the sudden emergence of altered viruses with higher pathogenic-
ity or entirely new viruses in the case of genetic shifts [14].

Bacteria come in a large variety of sizes typically between 0.15 and 5
micrometer in length, some species even up to 700 micrometer, and unlike
viruses, their genome is encoded on a single chromosome (double-stranded
DNA) and ranges from approximately 600 kb to 9.5 Mb [15]. However, they
have the ability to carry and share genes via plasmids, even among other bac-
terial species, which give them the ability to adapt to changing food sources or
environmental conditions (see Figure 3A). These plasmids are also the cause
for equipping bacteria with resistance against certain antibiotics. Antimicro-
bial resistance has become a major global health concern of the 21st century
and could make bacterial infections a leading cause of death [16; 17]. Two ex-
amples include Klebsiella pneumoniae and Staphylococcus aureus which are
common intestinal bacteria and skin flora bacteria, respectively, that can cause
life threatening diseases. Resistance to last resort treatment (carbapenem an-
tibiotics) for Klebsiella pneumoniae has spread to all regions of the world.
Also, methicillin-resistant Staphylococcus aureus (MRSA) bacteria spread and
infected patients are 64% more likely to die than people with drug-sensitive in-
fections [18]. Bacteria can either directly affect the cells of their host, produce
cell damaging endotoxins, or cause a strong immune response that leads to host
cell damage. One of the most devastating bacterium is Mycobacterium tuber-
culosis which causes tuberculosis and pathogenic Streptococcus as one of the
causes for pneumonia, both resulting in million of infected patients every year.

The importance of developing infectious disease diagnostics is illustrated
by the number of new pathogens over the past 40 years - approximately 50 new
infectious disease agents have been identified, comprising of viruses, bacteria
and protozoa. This high number stems not only from favored spread due to
globalization but also scientific advances which are discussed in greater detail

15



Figure 3. A Schematic illustration of Eukarya, Bacteria and viruses, on the
example of a generic animal cell, Escherichia coli (E. coli) cell, and Zika, In-
fluenza and SARS-CoV-2, respectively. Organisms are not drawn to scale to one
another; the scale bar below each organism type illustrates the approximate size.
Also the complexity reduces with the size of the organism; while Eukarya have
well-defined nuclei and membrane-bound organelles, bacteria and viruses lack
those. Bacteria in turn are more complex than viruses and have the ability for
autonomous reproduction. Created with BioRender.com. B World map of word
clouds based on ProMED’s infectious disease surveillance in mid 2020. Image
was adapted and reproduced with permission from the International Society for
Infectious Diseases (Tyron Silver Lorthe, 2020).

16



in following sections (see Figure 3B) [19; 20]. Also this year’s Nobel price
in Medicine and Physiology which was awarded to Harvey J. Alter, Michael
Houghton and Charles M. Rice "for the discovery of Hepatitis C virus", high-
lights the importance of research in this area. HIV/AIDS counts to one of the
more recently emerged pathogens which infected almost 80 million people and
caused more than 30 million deaths till date [21; 22]. In response, various gov-
ernmental and non-governmental organizations have developed global strate-
gies to tackle the threat of infectious diseases. Important examples of such
programs include the Global Outbreak Alert and Response Network (GOARN)
by connecting more than 80 countries to effectively identify and monitor out-
breaks by introducing standards for disease control and prevention [23; 24];
and the Integrated Disease Surveillance and Response (IDSR) and the Service
Availability and Readiness Assessment (SARA) programs which were started
by the WHO, Centers for Disease Control and Prevention (CDC) and the par-
ticipating countries. These programs all together focus on the basic healthcare
interventions to achieve the millennium development goals [25]. Important
here are also the 2030 Sustainable Development Goals (especially, Goal 3,
Good Health and Well-Being) to interrupt disease outbreaks in low-income
countries [26; 27]. However, despite the progress of biomedical technologies,
accurate identification of unknown pathogens is still a major challenge as re-
cent epidemics and outbreaks illustrated by the Influenza 2009 pandemic [28],
the Ebola outbreak [29] and the current SARS-CoV-2 pandemic [30]. Fig-
ure 3B illustrates a world word map of the most used infectious diseases terms
for the first half of 2020. The goals of these programs are clear and one of
the major keys for achieving them is the development of novel diagnostic tools
[21] which is the focus of this thesis and the present investigations.

In the next section, a general description of the field and methods for de-
tecting infectious diseases is given by introducing the broad field of in vitro
diagnostics consisting of traditional diagnostics (phenotyping of cells and de-
tection of proteins) and nucleic acid based amplification technologies. Next,
isothermal amplification technologies are presented which hold the promise to
overcome current limitations for resource-limited diagnostics. Finally, focus
is put on the rolling circle amplification technology which was chosen for the
work presented in this thesis.
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In vitro diagnostics

In vitro diagnostics (IVD) are tests that can detect conditions and infections.
They are performed on samples such as blood, urine or sputum that have been
collected from a patient; so tests performed outside a patients’ body. These
tests have become the central enabler of modern healthcare in many health-
care settings to answer three questions - (i) whether the patient is infected
by a pathogen, (ii) if so, with what, and (iii) how to treat. These questions
are answered either by direct detection of pathogens or using biomarkers.
Biomarkers are unique indicators for the state of a disease or condition and
therefore play a crucial role in clinical diagnostics; here, the term will be used
to describe molecular biomarkers - biomolecules. Depending on the type of
biomarker, they can either be from the host or from the pathogen of interest
which causes the disease. Especially, RNA and antibodies as biomarkers for
detecting COVID-19 have gained public attention and are good examples to il-
lustrate the difference of a host response and a biomarker unique to a pathogen.
The nucleic acid content of a pathogen, such as SARS-CoV-2 can be detected
earlier than antibodies the host produces as an immune system defense re-
sponse to the pathogen; however, the antibodies are longer detectable even
after an infection [31]. In this section, some of the IVD technologies currently
used in clinical microbiology are presented with a focus on diagnostic stew-
ardship characteristics such as complexity, sensitivity and specificity. Figure 4
provides a simplified overview of the different methods.

Traditional diagnostics

Traditional diagnostics describe a field of methods that have been around for
several decades for clinical diagnostics and are therefore established in most
clinical laboratories as routine methods. These methods can be divided into
microbial culture, microscopy and biochemical tests.

Microscopy of samples in the form of smear tests allows quick and simple
quantification of pathogens; however, if often lacks the needed sensitivity and
discrimination of pathogens, such as in the case of Malaria [32]. Therefore,
simple methods have been developed to increase the number of pathogens.
The culture of microorganisms is one of the oldest techniques, and besides
for the use of food preparation, such as bread and beer, has become the gold
standard for many microbiological diagnostic methods [33]. It has a broad ap-
plication field from samples such as urine, stool and sputum to detect urinary
tract infections, diarrheal and food-borne diseases and strep throat, respec-
tively. Culture-based methods are often combined with microscopy to allow
phenotypic identification of microorganisms which can be aided using selec-
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Figure 4. Overview of in vitro diagnostic methods. Traditional clinical mi-
crobiology relies mainly on culture methods in conjunction with microscopy
and staining, enzyme linked immunosorbent assays (ELISAs) and rapid anitgen
detection tests (RADTs), and mass spectrometry which allows rapid identifica-
tion of pathogens. Modern molecular diagnostics are dominated by PCR-based
systems; however also next-generation sequencing (NGS) became an important
part of modern healthcare as it allows the surveillance of known and emerging
pathogens with highest precision. Created with BioRender.com.

tive media that allow growth of only one type of microorganism [34]. This
means that a single viable cell or viral particle can be expanded in culture to
reach concentrations that are readily detectable by downstream optical meth-
ods or simple visual inspection. These methods include Gram staining and
media color changes based on biochemical reactions specific for that organism
[34]. For viral culture, cells are inoculated with the viral sample and cytopathic
effects on the host cells observed. For direct viral identification, electron mi-
croscopy is used which relies on the characteristic morphology of viruses [35].
Since a minimum number of viral particles is required, this method often relies
on viral culture prior to identification, and the instrumentation for electron mi-
croscopy is expensive. A benefit of culture-based methods is that they distin-
guish between alive and dead pathogens and can therefore make more reliable
predictions on the state of an infection which is in contrast to nucleic acid-
based diagnostics that are discussed in a later section. Furthermore, it allows
to detect the emergence of unusual microorganisms or organisms with antibi-
otic resistance, and has therefore a crucial role for optimal antibiotic treatment
of patients as well as in outbreak control by warning medical authorities from
emerging diseases [16; 20]. In this context, pure bacterial or viral culture is of-
ten required for technologies such as sequencing and proteomic studies which
offer important information for disease surveillance and emergence [20; 36].
Additionally, the technological advancement of machine learning and artificial
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intelligence (AI) as well as introduction of microfluidics and automation have
allowed higher throughput of culturing methods making them invaluable in
modern clinical microbiology laboratories [33; 37]. While culture-based meth-
ods have many benefits, they also have disadvantages by being time consuming
and often delivering less diagnostic information than molecular methods.

Mass spectrometry has become an indispensable standard method in clin-
ical microbiology over the last decades as it allows the direct detection of
pathogens with high sensitivity and minimal sample preparation [38; 39]. All
mass spectrometry types rely on the principle of measuring the mass to charge
ratio, m/z, by production, selection, fragmentation and detection of the charged
ion species. The most commonly used types of mass spectrometry in clinical
microbiology are electrospray ionisation (ESI) and matrix-assisted laser des-
orption/ionisation (MALDI) together with the mass analyzer, time-of-flight
(TOF). In this type of analyzer, the flight time of ions to reach the detector
is related to the m/z ratio of the ion [40]. Sample preparation and analysis
require only a few minutes and can be performed in a high-throughput fash-
ion, and new approaches from crude sample are continuously being developed
which makes this technique so attractive for routine disease diagnostics [41].
Although it often outperforms phenotypic methods by reducing the delay of
results and giving accurate identification of species even at resource-limited
settings [42], it is still limited by the cost and portability for true point-of-care
(PoC) diagnostics.

Immunological methods are yet another gold standards in clinical micro-
biology as they offer rapid identification of diseases with minimal sample
preparation steps [43]. The most commonly used assays in this group include
the detection of a disease through enzyme immunoassays (EIA) and enzyme-
linked immunosorbent assays (ELISA). Two types of analyte are usually dis-
tinguished: microbial antigens and patient antibodies [44]. Immunological
methods are often combined with lateral flow assays to allow for easy-to-use
diagnostic assays, examples are flow strips to detect antibody levels in serum
or pathogens of respiratory tract infections directly from sputum samples [45].
The assays are based on the capture of pathogens using specific antibodies
and subsequently colorimetric or chemiluminescence signal generation. Due
to their simplicity, many immunoassay-based diagnostics receive CLIA (Clin-
ical Laboratory Improvement Amendments) waivers which makes them ideal
for PoC diagnostics for infectious disease diagnostics [46]. However, the rela-
tively low sensitivity of immunoassays for antigen detection is limited by the
quality of the identification antibody, such as low dissociation constant to ac-
curately detect low levels of pathogen [47].
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Nucleic acid-based diagnostics

While the presented traditional diagnostic methods still play an important role
in modern infectious disease diagnostics, molecular diagnostics have become
the gold standard in many situations as they offer high sensitivity, specificity
and diagnostic conclusiveness. This stems from the molecular fingerprint-
ing technique which relies on sequence-specific hybridization chemistry rather
than phenotypic characterization. Nucleic acid-based assays use DNA probes
which are short, single-strand segments of DNA that are designed and synthe-
sized to hybridize complementary to target sequences of pathogens. In this
section, molecular diagnostic methods are described with a focus on isother-
mal amplification which hold the promise to overcome current limitations for
the adaption of molecular diagnostics in low-resource settings.

Polymerase Chain Reaction

The most widely used technology is polymerase chain reaction (PCR) which
exponentially amplifies a selected nucleic acid target using a set of nucleic
acid primers [48]. It achieves amplification through a thermostable DNA
polymerase and multiple cycling rounds through three different temperature
phases: denaturation of the double-stranded DNA, annealing of primers and
elongation of the primers. Therefore, each cycle results theoretically in a dupli-
cation of the target sequence which in return serves as the template the primers
in the next round making PCR highly sensitive and accurate [48]. It has proven
outstanding performance for various diseases, applications and different sam-
ple types, such as saliva, blood or stool samples [49; 50]. For this, PCR re-
quires extraction methods to process the sample and to minimize the matrix
interference which can lead to reduced detection sensitivity [51]. Traditionally,
PCR has been quantified using gel electrophoresis and intercalating dyes, but
variations like quantitative PCR (qPCR) have enabled the real-time detection
of evolving amplification products for quantification of initial input template.
Towards higher multiplexing capabilities, PCR can be combined with another
set of universal primer to perform two consecutive rounds of PCR, termed
nested PCR. The second set of primers targets the amplification products of
the first PCR reaction thereby adding more stringency [52]. Yet another tech-
nology to increase the multiplexing capability of PCR is emulsion PCR where
the reaction is performed in droplets of a water/oil emulsion, or through digiti-
zation of the reaction in microwells [53; 54]. PCR is not limited to DNA only
and can be used for targeting RNA when combined with reverse transcription
(RT), RT-PCR, to enable the precise quantification of RNA templates [52].

In the past decades, these massive developments have allowed PCR-based
diagnostic platforms to become of high value for PoC laboratories, though,
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these laboratories have to be located in close proximity to healthcare centers
[55]. The U. S. Food and Drug Administration (FDA) has cleared many of
the multiplex PCR platforms to probe respiratory specimens, stool samples
and blood cultures but only as “moderately complex” limiting their use in
resource-limited settings [56]. The same holds true for next-generation se-
quencing (NGS); although it has ultimate precision by reading the whole nu-
cleic acid sequence, its clinical use remains challenging as it requires high
and pure concentrated genetic content, thus requiring target enrichment or
pre-amplification, typically using PCR [57; 58]. Despite advancements and
benefits, PCR-based methods are exclusively found in or close-by centralized
healthcare centers as low- and middle-income countries often lack the required
resources and infrastructure at the primary care level [56; 59]. Therefore, a lot
of effort has been put into the development of alternative technologies that try
to combine the low requirements of immunoassay technology with the high
sensitivity and specificity of PCR-based methods to bring nucleic acid ampli-
fication technologies outside centralized healthcare centers for the implemen-
tation in resource-limited settings [60]. This is where isothermal amplification
assays come into play.

Isothermal amplification methods

Isothermal amplification methods have emerged as a promising alternative to
PCR-based methods as they achieve efficient amplification at constant temper-
ature without the need for thermal cycling [61]. The first isothermal amplifica-
tion assays appeared around 30 years ago with promising sensitivity and speci-
ficity, and have ever since been tried to render to comply with the ASSURED
(Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-
free and Deliverable to end-users) criteria. Criteria characterizing an ideal
diagnostic test for resource-limited settings [59; 62]. As mentioned earlier,
several higher-level projects and campaigns exist, such as GOARN and Goal 3
of the Sustainable Development Goals to not only interrupt outbreaks in devel-
oping world countries but prevent them by making predictions of emerging and
re-emerging pathogens [27; 63]. Ultimately this should allow to guide patient
management for disease activity, progression and therapy efficacy [56].

In this section, selected isothermal amplification assays are presented and
discussed towards their current potential for the use at the PoC. While all nu-
cleic acid amplification technologies have in common to use either an RNA
and/or DNA polymerase, their assay characteristics in terms of complexity or
temperature can vary. Therefore, this section contains a table summarizing the
presented isothermal amplification technologies and their key parameters (see
Table 1).
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Table 1. Overview of isothermal amplification methods and some of their general
characteristics. Depending on the assay mode and application, some of the char-
acteristics might differ, such as amplification time and sensitivity. Here, we de-
fine efficiency as the fold-change of probe/target during amplification (Adapted
from Neumann et al., chapter under review).

Assay Assay time Efficiency Temperature Sensitivity Ref.

LAMP 100.3 h 9 65 �C 1 copy [64; 65]
NASBA/

TMA
1.5–2 h 106–109 41 �C < 1 IFU [66–68]

NEAR/
EXPAR

100.5 h 6–108 60 �C 1 copy [69–71]

SDA 0.5 h > 107 37 �C 5 copies [72; 73]
10HDA 0.5–2 h 7 37 �C < 20 copies [74–76]

RPA > 0.1 h 107 37–42 �C < 5 copies [77–79]
10PSR 0.75–1 h 9 60–65 �C 1 copy [80–82]

SmartAmp2 0.3 h 100-fold to
PCR

60 �C 20 copies [83–86]

10SMART 1 h 3 41 � 10C 4 copies* [87; 88]
CAMP 0.3–1 h - 60–65 �C 10 copies [89; 90]

10SPIA 0.5–4 h 4 47–60 �C 10 copies [91; 92]
ICAN 1 h > 4-fold to

PCR
55 �C 10 copies [93; 94]

RCA/
C2CA

100.5–2 h 9 37–65 �C < 10 copies [95–98]

* Assay was run in crude sample without sample preparation.

Loop-mediated isothermal amplification (LAMP) uses a set of four to six
designed primers (inner and outer primers) that recognize six sequences on
a target DNA or RNA (termed RT-LAMP) to establish an exponential am-
plification [64; 99]. LAMP is initiated by the two inner loop primers which
consist of two distinct sequences corresponding to the sense and antisense se-
quences of the target DNA which allows them to prime not only the reaction
but also themselves at a later stage by forming a loop. After the non-cycling
step, the two outer primers displace the synthesized strands and thereby cre-
ate templates for the cycling amplification step. LAMP is characterized by
cauliflower-like DNA amplicons (various stem-loops) and high amplification
rates of 3-fold every half cycle that can even be further accelerated by the ad-
dition of an extra primer set [99; 100]. Reaction times range from a few min-
utes to around 1 h (depending on sensitivity requirements and initial amount
of template DNA/RNA) and it achieves amplification efficiencies of 109 [64].
The reaction is generally performed at 60–65 �C to ensure a dynamic equi-
librium of primer annealing/invasion and DNA amplification when using Bst
DNA polymerase [62].
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Nucleic acid sequence based amplification (NASBA), or self-sustained se-
quence replication (3SR), is an amplification method that produces RNA am-
plicons from an RNA template via a self-sustained retroviral replication mech-
anism making it ideal for RNA virus diagnostics [66; 101]. Another variant of
NASBA is transcription mediated amplification (TMA), which underlies the
same principle as NASBA, but uses an enzyme with dual activity of reverse
transcriptase and RNase H. Three enzymes are needed for NASBA, a reverse
transcriptase, RNase H and T7 RNA polymerase, as well as two primers flank-
ing the RNA sequence of interest. One primer includes a T7 promoter se-
quence at its 5’ end and is used to initiate the reverse transcription of the RNA
template. Its 3’ end is complementary to the 3’ side of the target. The second
primer is shorter and is derived from the 5’ end of the target sequence. Thus,
both primers flank a target side of about 100–250 nucleotides [102]. After
the initial reverse transcription of the RNA template to complementary DNA
(cDNA), the RNA of the RNA-DNA hybrid is degraded by RNAse H, allow-
ing the complementary strand synthesis of cDNA. Here, NASBA enters the
cyclic phase, where the T7 RNA polymerase binds at the promoter region and
starts transcribing many RNA copies of the target sequence. Each of the newly
synthesized RNA molecules can become a new NASBA target resulting in an
increased amplification rate over time that can exceed PCR [67; 103]. The re-
action temperature is defined at 41 �C and known to generate 109 amplicons
[66].

Nicking enzyme amplification reaction (NEAR) combines a nicking en-
donuclease and DNA polymerase to enable the amplification of short oligonu-
cleotide sequences. The nicking enzyme recognizes part of the target site and
performs a nick downstream to create a primer with a melting point of 50–
60 �C and a length of 10-40 nt. This specifically chosen nick site results in an
insufficiently stable duplex making the reaction mechanism possible [69]. The
cleaved strand gets extended by a polymerase and then cleaved again, thereby
completing one cycle of the linear NEAR reaction. EXPAR (exponential am-
plification reaction) is the exponential version of NEAR [70; 71]. To establish
the chain reaction in EXPAR, a designed amplification template is introduced
consisting of two copies of the complement to the nicking enzyme recognition
site with a spacer region in-between. This results in annealing of the template-
target complex which gets subsequently nicked to produce a new strand that
can act as a primer every cycle [71]. EXPAR results in high amplification rates
of up to 109-fold in just a few minutes [104].

Strand displacement amplification (SDA) uses four primers to exponen-
tially amplify a target region but can also be further modified to contain dif-
ferent restriction sites which are needed for the strand displacement step [72].
SDA is achieved by designing the primers in a way that they flank the target re-
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gion on both DNA strands, one pair binding upstream to the other to create an
overhang. The second primer set binds to the overhang regions which contain
a restriction site after the second round of amplification to initiate the circular
mechanism. Therefore, each cycle consists of primer binding, extension of
the primer-target complex, nicking of the resultant (hemiphosphorothioate) re-
striction site, extension of the nick and displacement of the downstream strand
by the DNA polymerase [72]. To prevent the endonuclease from nicking the
generated strand, dATP aS is added instead of regular dATP as it cannot be
recognized by the endonuclease. SDA is generally performed at 37–42 �C in
less than 1 h [102].

Recombinase polymerase amplification (RPA) uses recombinase-primer
complexes to facilitate the strand exchange at the DNA target site by forming a
D-loop. This recombinase-assisted opening of the DNA duplex enables singe-
strand binding proteins (SSBs) to bind along the displaced template strand and
prevent re-annealing. Next, a DNA polymerase with strand displacement ac-
tivity extends the primers resulting in an exponential amplification mechanism
similar to PCR with amplicon lengths of 80–1,500 nt [77; 105; 106]. RPA
is typically performed at 37–42 �C to ensure a dynamic reaction balance of
the formation and disassembly of recombinase-primer complexes but has also
been reported at 25 �C [107].

All the previously presented isothermal amplification technologies have
been used extensively in different research areas, including infectious diseases.
Nevertheless, there are also a few other isothermal amplification assays that
have not yet been explored and studied as extensively as the ones mentioned
above.

Polymerase spiral reaction (PSR) is an isothermal amplification technique
that requires only one pair of primers and Bst DNA polymerase. The primers
are sequence-specific to the target as well as complementary to one another,
thereby generating template strands that are partially self-complementary at
their 5’ and 3’ ends. This assay setup is described to result in a spiral-like
amplification. The operating temperature is around 65 �C and has reported
yields of up to 109 copies in 1 h [80; 81].

Smart amplification process version 2 (SmartAmp2) consists of reaction
steps of self-priming and loop formation using 5 primers that remind of the
LAMP assay. Although similar to LAMP, SmartAmp2 allows single nu-
cleotide polymorphism (SNP) precision by using the Thermus aquaticus MutS
(TaqMutS) enzyme to identify mismatched primer-target hybrids as it binds
irreversibly to them, thereby preventing elongation. Most of the reported
SmartAmp2-based assays focus on the detection of SNPs for genotyping rather
than infectious diseases [60; 83; 84].

Signal mediated amplification of RNA technology (SMART) requires
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primers which include a target-specific region and another, shorter sequence
that can hybridize to the other primer. Additionally, one of the primers con-
tains a T7 RNA polymerase promoter region which becomes active once the
primers and target anneal to each other into a three-way junction and enable
Bst DNA polymerase to extend the shorter probe. Then, the active T7 RNA
polymerase promoter allows T7 RNA polymerase to generate multiple copies
from one RNA target. Introducing a second template and DNA polymerase
allows an exponential amplification [87]. Typical operating temperature is at
41 �C with amplification times of 1–2 h for RNA and DNA [87; 88].

Competitive annealing mediated isothermal amplification (CAMP) uses a
LAMP-like reaction scheme by entering an auto-cycling DNA synthesis of
strand displacement and self-priming reactions. CAMP requires only one
primer pair to initiate the cyclic amplification but, just as in LAMP, addi-
tional outer and loop primers (termed O-CAMP) for increased amplification
rate [89]. CAMP uses Bst DNA polymerase which shows highest activity at
a temperature of 65 �C to yield approximately 120 bp long amplicons. The
initiating cycle uses a set of N-linked primers and as the emerging strand is
self-complementary, it folds into a loop structure priming itself and addition-
ally serving as a primer for the forward primer. From this moment on the
reaction enters the exponential phase as a mixture of adjacent DNA strands
with various lengths is created that prime one another [89]. As Bst DNA poly-
merase is used, the integration of a reverse transcription step like in RT-LAMP
is possible for targeting RNA in a single tube reaction.

Single primer isothermal amplification (SPIA) uses a chimeric primer (3’
end RNA, 5’ end DNA), a DNA polymerase with strand-displacement activity
and RNase H to initiate a cyclic amplification. Primer extension on the DNA
target results in a newly synthesized strand with the RNA 5’ end being cleaved
by RNase H. This destabilizes the primer hybridization making the binding
site available for a new functional primer that gets extended and thereby dis-
placing the cleaved one; this step completes the amplification cycle of SPIA
[91]. Amplification is performed around 65 �C and has already been used for
infectious disease diagnostics [92; 108].

Isothermal and chimeric primer-initiated amplification of nucleic acids
(ICAN) uses a pair of chimeric DNA-RNA primers, a thermostable RNase H
and DNA polymerase for amplification [93; 94]. Similar to SPIA, the primers
hybridize to the target strands to initiate the elongation, subsequent cleavage by
RNase H and extension and primer displacement by the polymerase. Another
simultaneous amplification mechanism is the template switching amplifica-
tion when both, forward and reverse primers bind to the same double-stranded
DNA target and get elongated towards each other [109]. Just as SPIA, it is
performed at 65 �C and has been demonstrated for the detection of infectious
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diseases [110; 111].
All the presented isothermal amplification technologies have their advan-

tages and disadvantages for infectious disease diagnostics. Table 1 summarizes
key characteristics of these assays. In this thesis, another isothermal technol-
ogy was chosen which is described in the following section.

Biosensors for in vitro diagnostics

Biosensors can be seen as an intersection of traditional and modern diag-
nostics. They are analytical devices that enable the detection and analy-
sis of biomolecules by fulfilling three distinct functions: recognition of the
biomolecule of interest, transduction of this recognition into a measurable sig-
nal and the signal processing. The recognition element is often an enzyme,
antibody or nucleic acid, and the transduction element can be electrochemical
or optical among others [112; 113]. The concentration of biomolecule corre-
lates with the observed signal strength. Since their discovery, biosensors have
been developed for a wide range of applications and diseases in the biomedical
field [114; 115]. This vast development and popularity stems from their inte-
gration of many different technologies to develop promising platforms based
on traditional and nucleic acid-based assays.

Antigen-based biosensors for infectious disease diagnostic are one of the
most popular methods as minimal sample preparation is required. They gen-
erally use antibodies or aptamers as their recognition element to specifically
capture a surface marker of the pathogen. This type of biosensors are suit-
able for on-site testing especially when designed as lateral flow assays. Com-
mercial examples include Influenza and the recently FDA-approved Ebola de-
tection test [116–118]. Current research focuses also on the simple detec-
tion of SARS-CoV-2 using e. g. field-effect transistor based biosensors with
antigen-specific capture antibodies [119]. However, these biosensors are of-
ten only considered as companion diagnostics meaning that results should be
confirmed by the nucleic acid amplification-based gold standard. Yet another
type of diagnosis involves the detection of host antibodies like IgG and IgM
which can provide valuable information on disease progression and immune
response [120]. Nevertheless, while offering benefits antigen-based biosensors
have drawbacks of often lacking the needed sensitivity as well as specificity to
distinguish and reliable detect mutative pathogens.

Nucleic acid-based biosensors (or genosensors) offer higher sensitivity
and specificity than protein-based biosensors as they utilize sequence-specific
DNA probes [121]. Nucleic acid-based biosensors have been applied to a vari-
ety of different diseases, including Zika [122], influenza [123] and tuberculosis
[124]. Recently, the combination of isothermal amplification assays (RPA and
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LAMP) with CRISPR/Cas (clustered regularly interspaced short palindromic
repeats, CRISPR associated nucleases) has been demonstrated on a lateral flow
assay for the diagnosis of Zika and COVID-19 [125; 126]. However, they are
often more complex as they require sample preparation to release the nucleic
acid content.

Overall biosensors, both protein- and nucleic acid-based, offer great po-
tential for rapid and sensitive detection of infectious diseases. However, they
face major challenges in terms of integration of microfluidic solutions, sample
preparation and biofouling for accurate diagnosis of diseases like HIV/AIDS,
tuberculosis or Dengue fever [127; 128].
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Rolling circle amplification

Rolling circle amplification (RCA) is an efficient and well-exploited method to
amplify circularized DNA in an isothermal fashion. It has been used in a wide
range of applications, that not only include nucleic acid detection but also the
discovery of proteins and protein-protein interactions. It has many advantages
over other amplification methods, such as specificity and multiplexing capabil-
ity that allowed it to be used in a large application area, like in vitro detection
of nucleic acids in solution, in situ sequencing where transcripts are locally
amplified to gain spatial resolution of genetic markers [129], or the visualiza-
tion of proteins and their interactions by coupling oligonucleotide sequences
to antibodies or proteins [130; 131]. The present investigations included in
this thesis use RCA mainly for the visualisation of specific nucleic acid se-
quences (paper I–IV) but in paper V, RCA was used for signal amplification in
the context of antibody discovery.

Fundamentals of RCA

RCA is based on rolling circle replication (RCR), where a circular template
of DNA is replicated as a long single-stranded DNA concatemer that spools
off when a strand-displacing DNA polymerase amplifies this circular template
[132]. The resulting concatemeric amplicon consists of hundreds to thousands
of repeats of the circular template [97] which requires a highly processive
polymerase with strand displacement activity to generate such an amplicon,
an RCA product (often termed RCP), with thousands of kilobases long single-
stranded DNA [97]. The single-stranded RCA product collapses into a DNA
micro-ball and due to the high negative charge stemming from the phosphate
backbone it has minimal inter-molecular interactions. This single-molecule in-
tegrity makes RCA ideal for digital nucleic acid quantification [96; 133; 134].
RCA can be combined with padlock probes (PLPs), sequence-specific oligonu-
cleotides that bind in a circular manner to the target strand which can then be
linked covalently by a ligation step - hence the name padlock probe [135]. Just
like a key and a lock, a PLP-based RCA assay offers extreme stringency with
single base precision at the ligation step, therefore opening up the potential
for highly specific and multiplexed assays [136; 137]. Another added bene-
fit of PLPs is that their backbone can be designed freely to offer a range of
possibilities for detecting RCA products [138]. Dumbbell probes are similar
to PLPs but do not require ligation prior to amplification, thereby reducing
the procedural complexity of the assay but at the cost of specificity [60; 139].
Similarly, RCA can be combined with molecular inversion probes (MIPs) for
the highly multiplexed detection of SNPs and genotyping [140; 141]. Selector
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probes work exactly the opposite way as the target is circularized prior to lig-
ation using restriction sites and a circularization template [142]. Most often,
T4 DNA and Tth ligase are used for ligation on DNA templates while T4 RNA
Ligase II and SplintR ligase are favored for the detection of RNA molecules
[143; 144]. For amplification, f29 DNA polymerase and Bst DNA polymerase
are most commonly used due to their high processivity. f29 DNA polymerase
has the added benefit of having a 5’ to 3’ proofreading exonuclease activity
to allow for target primed RCA, being more processive and showing highest
activity at 37 �C with a half-life of up to 11 h [145; 146]. Due to the digital
quantification it offers (one target, one amplicon), RCA can also be used in
situ to allow for localized amplification of target molecules [129], or towards
sequencing in pathology at resource-limited settings [147]. Figure 5 illustrates
the schematics of padlock probing and RCA.

Figure 5. Schematic representation of the reaction mechanism of PLPs in con-
junction with RCA. Upon sequence-specific hybridization (I.-II.), a ligase locks
the PLP to its target template (III.) which allows subsequent amplification with a
DNA polymerase (IV.). The emerging concatemeric, single-stranded DNA am-
plicon is thousand of kilobases long and due to the high negative charge collapses
into a distinct nano-ball (V.). Created with BioRender.com.

While having the advantages of being specific and digital, RCA in combi-
nation with f29 DNA polymerase has a relatively limited incorporation rate,
producing approximately 1,000 copies of a circular template in 1 h [97]. For
lower detection limits several other RCA-based methods have been developed.
The reactions contain at least one additional primer targeting the emerging
RCA products. They are often referred to as ramified RCA (RAM) [95], hy-
perbranched RCA (H-RCA) [96], exponential RCA (eRCA) [148] and cas-
cade RCA [149]. While their reaction schemes differ slightly, they all re-
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sult in branch-like amplicons and increased amplification kinetics. Another
type of RCA includes consecutive rounds of RCA, termed circle-to-circle am-
plification (C2CA), to achieve higher sensitives compared to classical RCA
[150; 151]. RCA products generated in a first round of RCA contain restriction
motifs which allow the cleavage by a restriction enzyme assisted by restriction
probes. The generated RCA product monomers are re-circularized using the
excess of restriction probes as ligation template. These circularized monomers
can then be ligated and amplified again by another round of RCA. The C2CA
process of two consecutive rounds of RCA is illustrated in Figure 6. C2CA can
also be continued for more than two rounds, this allows to generate each initial
circular template hundreds to thousands of RCA products that can either be
quantified as RCA products or monomers [150; 152]. An advantage of C2CA
compared to other exponential RCA schemes is the high specificity and main-
tenance of the digital nature of RCA. The disadvantage are the multiple assay
steps as it combines a digestion reaction of the first RCA and a subsequent
ligation and amplification.

RCA is compatible with a number of surfaces, including glass [130; 153],
microbeads [154], polymers and membranes [155; 156] and combinations of
these [157], which are important for automation and integration into other
technologies. These features have made RCA attractive in research and de-
velopment of diagnostic platforms. RCA-based assays have already been used
for the detection of various pathogens and antimicrobial resistance screening
[152; 158–163]. Commercialization of RCA for infectious disease diagnos-
tics is also being explored for two different diagnostics settings. One targets
low-resource settings by offering a C2CA-based lateral flow assay for the de-
tection of multidrug resistant tuberculosis [164], while the other is specialized
on the automated identification of sepsis causing pathogens using a bench-top
instrument [165]. However, many challenges remain to render RCA to the AS-
SURED criteria and make it a useful diagnostics tool for the developing world
as described in a later section.

Detection of RCA products

Although RCA is a linear amplification reaction, or rather because it is, it offers
great performance for molecular diagnostics. The main benefits being the high
precision a PLP-based assay and the simple detection of RCA products with
sensors due to their size and spatially confined nature.

In general, technologies used for detection of RCA products are very ver-
satile and range from optical methods over electrochemical to magnetic signal
read-outs. Most often optical methods are used as RCA products collapse
into sub-micron sized coils that can be quantified digitally with low magni-
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Figure 6. Schematic representation of C2CA. A first amplification is performed
just as in single RCA (I.) but RCA products are then probed with digestion probes
and cut into monomers via a restriction enzyme (red; II). The excess of digestion
probes serves as ligation probes for the subsequent ligation (III.), followed by a
second amplification into RCA products (IV.-V.). Created with BioRender.com.
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fication. Nevertheless, many other methods have been explored for the de-
tection of RCA products or their monomeric units (see Figure 6 II.). These
non-optical methods include magnetic [166; 167] and optomagnetic measure-
ments [168; 169], electrical and electrochemical read-outs [156; 170; 171] and
also label-free methods such as quartz crystal microbalance (QCM) and sur-
face plasmon resonance (SPR) [172; 173].

RCA products are most often visualized by optical methods due to the in-
trinsically digital nature of RCA (see Figure 7). Additionally, they allow quick
and reliable detection, and therefore, are the focus of the investigation pre-
sented in this thesis. Among the first visualization tools were labeled dNTPs
that get incorporated into the nascent strand during the amplification reaction
[174]. Similarly, intercalating dyes like ethidium bromide and SYBR are ex-
tensively used either in combination with electrophoresis or often also real-
time detection [138; 175–178]. These dyes undergo a conformational change
when binding to nucleic acids which brings them into an active state to emit
fluorescence when excited in their corresponding wavelength [179]. Other
approaches include the use of detection probes which are specific oligonu-
cleotide sequences that can be modified with fluorophores, proteins or en-
zymes. These strategies offer higher specificity than just intercalating dyes
[180] as they require the sequence of interest to be present for hybridization
and are thus, ideal for visualization concatemeric RCA products [181]. A pop-
ular example are molecular beacons, which have a fluorophore and a quencher
attached to either ends of the detection probe. Upon specific hybridization the
fluorophore-quencher complex is disrupted and the resulting fluorescence sig-
nal can be quantified [182; 183]. The advantage of molecular beacons over
regular detection probes is their high signal-to-noise ratio as they emit fluo-
rescence only after hybridization which enables the real-time monitoring of
evolving amplification products. Fluorophores have also been substituted with
quantum dots owing to their higher quantum yield which can increase the de-
tection sensitivity [184]. The optical characteristics of RCA allow the devel-
opment of direct RCA product quantification tools, such as amplified single
molecule detection (ASMD) and microfluidic enrichment by membranes, par-
ticles or other surfaces. In ASMD, solutions of RCA products are quantified
by a confocal fluorescence microscope as they pass through a microchannel
[181], whereas in microfluidic enrichment, RCA products are quantified by
trapping them on a membrane while discarding the liquid and thereby greatly
enhancing the detection efficiency by confining the detection area [185]. Be-
sides these fluorescence-based methods, also chemiluminescent and colorimet-
ric read-outs have been explored. Especially the latter has scope towards low-
resource settings as no sophisticated optics are required, a color change can be
achieved e. g. by pH change, addition of enzyme labeled detection probes or
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formation of DNAzymes in the evolving RCA product [155; 161; 186]. How-
ever, these colorimetric assays often lack the needed diagnostic sensitivity as
pathogen concentrations can be extremely low and also the digital component
of RCA is lost [187].

Figure 7. Schematic representation of labeling RCA products with fluorophore-
fictionalized detection probes. The sequence-specific detection probes hybridize
to the submicron-sized RCA product to allow its visualisation as a bright spot
under a fluorescence microscope, thus enabling simple digital quantification. The
scale bar corresponds to 10 mm. Created with BioRender.com.

In general, RCA products can be distinguished in two different modes -
analog/bulk or digital quantification. An analog, or bulk read-out, provides a
proportional relation of the measured signal to the sample concentration and
is commonly performed using spectrophotometry, fluorimetry or non-optical
methods. A digital read-out is one in which the sample is quantified as a dis-
crete number of biological entities in a given samples (0, 1, 2, 3, ...). This
is usually achieved by partitioning the sample into small containers and then
measuring each container separately to get a discrete number of the sample
such as in digital PCR [188]. However, RCA provides the benefit of being in-
herently digital as one generated RCA product correspond to a single recogni-
tion event [96]. This makes RCA a very powerful technology for digital quan-
tification of nucleic acids and other biomolecules. Figure 8 compares analog
and digital quantification of RCA products.

Both quantification modes have their advantages and disadvantages. Ana-
log quantification has the benefit of generally being easier to integrate as it
is simple and compatible with a number of methods, such as electrochemi-
cal [189] or label-free [190] methods. However, digital quantification brings
the benefit of generally higher signal-to-noise ratios leading to improved de-
tection limits and therefore assay sensitivity. Here lies the biggest difference
between both detection modes. For diseases where low numbers of pathogens
are expected, a digital mode is preferred, such as in monitoring of HIV/AIDS
patients. However, when the concentration of biomolecules is not critically
low, then bulk measurements can be applied. Especially due to their simpler
integration into PoC platforms, they have attracted much attention in this area.
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Figure 8. Comparison of digital versus analog quantification of RCA prod-
ucts. A Analog quantification of RCA products where the concentration of
biomolecules is proportional to the measured bulk intensity. Analog enrichment
on microbeads allows to increase the concentration of RCA products by physi-
cal or affinity-based capturing. B Digital quantification of RCA products where
the concentration of biomolecules equals the number of RCA products. Digital
enrichment on a membrane allows to increase the RCA product concentration by
physically retaining them while discarding the solution. Created with BioRen-
der.com.
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A digital RCA assay has also benefits over a other digital technologies
like digital PCR as it does not require sophisticated methods for partitioning
and the subsequent digital quantification of these reaction containers, and can
therefore be developed towards inexpensive DNA analysis platforms [185].
Nevertheless, the sensitivity of RCA assays is often limited by the inefficiency
of detection methods, especially for digital quantification at low concentra-
tions which is comparable to finding a needle in a haystack. Therefore, differ-
ent enrichment strategies have been explored for the analog as well as digital
quantification of RCA products. These were either developed (bulk enrich-
ment, paper III) or further developed (digital enrichment, paper I and II) in
this thesis. Both enrichment principles are illustrated on the right-hand side
in Figure 8. The rationale behind both enrichment methods is to increase the
concentration of RCA products by discarding the liquid while retaining the
amplicons. Both methods aim to solve existing challenges towards simpler
quantification of RCA products; however, other challenges exist, such as sam-
ple preparation and reagent shelf-life which are briefly discussed in the next
section among other challenges.

Developments of RCA towards decentralized diagnostics

Although the isothermal RCA assay itself is simple, it requires additional effort
to render it more user friendly from a sample-to-result perspective in terms of
sample preparation and instrumentation requirements. Towards this, an eRCA-
based platform with integrated microfluidic has been developed that allowed
the detection of RNA from lysates without prior extraction [191]. Towards
assay simplification, f29 DNA polymerase has been encapsulated in pullu-
lan on a paper substrate to increase enzyme stability at room temperature for
over 15 days. It further has been combined with a colorimetric reaction; how-
ever, this limited the sensitivity to 10 pM [155]. Similarly, RCA has been
explored for lateral flow-based read-outs for the quantification of tuberculosis,
which are a simple and cost-effective alternative to fluorescence-based meth-
ods [192]. To increase the sensitivity of RCA, a biochip has been developed
based on biomimetic periodic nanocrystals that enhanced the fluorescence sig-
nal by more than seven orders of magnitude compared to standard RCA [193].
Such approaches could readily be integrated into platforms using miniaturized
optical detection units, such as photodiodes (paper III) or portable mobile-
phone microscopy [147]. Another suitable approach for these sensors is mi-
crofluidic enrichment which was presented in an earlier section [185]. Yet,
other developments include electrochemical sensors which have shown yoc-
tomole sensitivity for the detection of Ebola virus [171], and automation of
RCA-based assays by different microfluidic solutions [157; 194]. Other solu-
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tions include to use the high specificity and signal amplification offered by the
relatively new and popular CRISPR/Cas method to develop powerful tools for
the specific detection of nucleic acids at the PoC [195–197]. More, interesting
developments are expected to come, especially since this year’s Nobel price in
Chemistry was awarded to Emmanuelle Charpentier and Jennifer A. Doudna
"for the development of a method for genome editing" (CRISPR/Cas).

Although a lot of efforts have been put forth in the development of RCA-
based solutions for infectious diagnostics, many challenges remain to make
the assay setup simpler, more sensitive and higher multiplexed to meet the
requirements for PoC diagnostics. In the next section, some of these open
challenges are addressed in the present investigations.
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Present Investigations

I - A padlock probe assay for detection and subtyping of
seasonal influenza

Detecting a virus reliably is crucial for patient health and to limit the spread
by infected individuals. Another dimension besides diagnosis is the surveil-
lance of circulating strains to predict potential outbreaks more reliable. As
thoroughly discussed in previous sections, modern viral diagnostics are dom-
inated by NAATs which have replaced time consuming viral cell cultures or
inadequately sensitive immunoassays. RT-PCR is being considered as the gold
standard owing to its high sensitivity and specificity. However, because of the
genetic variations and drift especially of RNA viruses, these assays require
continuous validation to ensure reliable detection of all variants. Here, NGS
has the potential to overcome these limitations, yet it still remains challenging
in clinical settings as pure and high nucleic acid concentrations are needed. In
this work, we propose a PLP-based assay for the clinical detection and subtyp-
ing of RNA viruses in conjunction with microfluidic enrichment for reliable,
simple digital quantification.

In this study, we used viral RNA from cell culture and nasopharyngeal
patient extracts to develop an assay for the detection of influenza. The viral
genome was targeted by RNA fragment- and subtype-specific PLPs that can
readily be amplified after ligation via RCA. The assay comprised of two rounds
of ligation and amplification as illustrated in Figure 6. We applied this assay
to detect and subtype seasonal Influenza using the most common influenza A
subtypes and Influenza B lineages - H1N1 and H3N2, and Yamagata and Vic-
toria, respectively. Furthermore, the bioassay sensitivity was increased by the
increased number of PLPs without losing specificity. Additionally, we com-
bined the bioassay with a new version of the simple and cost-effective method
to digitally quantify the concentration of RCA products (see Figure 8B). Our
approach of using multiple PLPs in conjunction with microfluidic enrichment
allowed us to reach 100% specificity and a sensitivity of 77.5% for detect-
ing influenza and up to 73% for subtyping the seasonal variants on patient
nasopharyngeal swab samples.

This multiplexed approach based on PLP/C2CA combined with an inex-
pensive digital read-out presents a proof-of-concept for the detection and sub-
typing of seasonal Influenza. Translating the assay onto a routine robotic sta-
tion could establish the assay as a promising diagnostic tool for seasonal in-
fluenza detection and surveillance of virus circulation. Additionally, the use of
this methods is versatile and readily translatable to other viruses or pathogens.
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II - Digital rolling circle amplification-based detection of
Ebola and other tropical viruses

Most viruses have a high turnover rate due to their small genome size which
allows rapid replication in the host cell. This enables viruses to quickly adapt
or change their appearance (especially the outer capsid surface proteins) to cir-
cumvent the immune system of a host or in some cases being able to jump
from one host species to another. In 2020, this became apparent with the sud-
den emergence of the SARS-CoV-2 virus which caused a global pandemic in
just a few months. While high- and middle-income countries are able to deal
with such outbreaks due to their developed infrastructure and strong economy,
low-income countries cannot. Therefore, tropical viruses like Dengue virus
have caused devastating outbreaks over the past century resulting in high mor-
tality, and pointing out the lack of available diagnostics to enable treatment
and isolation of infected individuals.

Towards decentralized diagnostic solutions, we developed an assay for the
simultaneous detection of Ebola, Zika and Dengue virus. We used extracted
viral RNA from cell culture and patient blood samples to develop two assays
based on PLP/RCA and PLP/C2CA. For both assays, the PLPs were designed
in a way to target all genes of the viruses to increase sensitivity and detection
robustness (compare to paper I). Additionally, to potentially understand the
infection dynamics of Ebola virus-infected patients, PLPs were added to al-
low the differentiation between viral RNA and messenger RNA. These design
elements enabled the multiplexed detection of all three viruses with high speci-
ficity via the PLP/C2CA approach. Similarly, PLP/RCA was able to differenti-
ate between the two RNA types in patient samples. Towards the requirements
for PoC diagnostics, the microfluidic enrichment chip was developed further
by introducing a passive flow setup to enable a digital nucleic acid read-out
without the requirement for an external pump. The new version was bench-
marked against the version of paper I and showed superior performance.

The developed approach provided evidence for the potential use of
PLP/RCA-based methods in resource-limited settings. Furthermore, RCA in
conjunction with passive microfluidic enrichment could enable cost-effective
and easy-to-use digital diagnostics towards decentralized testing.
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III - Silica bead-based microfluidic device with integrated
photodiodes for the rapid capture and detection of rolling
circle amplification products in the femtomolar range

The quantification of nucleic acid sequences at the PoC is becoming an increas-
ing demand for a variety of biomedical applications especially in infectious
disease diagnostics as mentioned in paper II. Microfluidics have revolutionized
the field by providing miniaturized bioassays enabling the integration of many
assay steps onto a small device (lab-on-a-chip). When it comes to the read-out,
most commonly optical fluorescence-based methods are used owing to their
high sensitivity and specificity when combined with fluorescent probes. How-
ever, the equipment necessary is typically expensive and non-portable, thus
creating a barrier to interface with miniaturized bioassays for decentralized di-
agnostics. Photodiodes can overcome this limitation since they are portable,
affordable and reusable, which makes them ideal for the integration into bioas-
says.

Motivated by these technologies, we proposed the combination of PLPs
and RCA, together with microfluidic trapping of RCA products and a
photodiode-based read-out. As RCA results in submicron-sized DNA am-
plicons they can be captured on silica microbeads to selectively isolate and
concentrate them on a defined area in continuous flow (see Figure 8A). Plac-
ing an amorphous photodiode beneath this capture area enabled us to measure
the fluorescent emission of enriched RCA products by it. A linear response
of the fluorescence intensity and RCA product concentration over time was
confirmed with femtomolar sensitivity for viral RNA detection. Additionally,
the developed bulk read-out method was benchmarked against a commercially
available instrument for digital quantification with excellent correlation. Addi-
tionally, different amplification times corresponding to different sizes of RCA
products were tested and a detection limit was found to be at around 40 min
amplification.

This work sets a precedent for rendering the quantification of nucleic acids
for resource-limited settings by using isothermal assay schemes and affordable
semiconductor technology. It holds the promise to potentially bring infectious
disease diagnostics outside centralized laboratories and into rural areas.
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IV - Isotachophoretically-driven rolling circle amplification
unit for nucleic acid detection

The integration of nucleic acid amplification tests is essential for developing
simple diagnostic platforms. Integration is usually achieved by translating an
assay from a tube setup involving manual pipetting steps to a multi-chamber
microfluidic chip where liquid handling is being controlled by a pump sys-
tem. However, while it miniaturizes and automates the assay, it often leads to
complex setups around the actual device itself. Solutions have been proposed
for one-chamber assay setups while still allowing multiple assay steps. How-
ever, these still require a pump and multiple loading steps for performing an
assay. Electrophoretic methods allow the transport of charged molecules in
an electric field. One such technique is isotachophoresis (ITP) which allows
the simultaneous separation and focusing of analytes in a given sample which
makes it a powerful tool for nucleic acid amplification assays.

In this study, we combined RCA with ITP to increase the bioassay kinet-
ics and sensitivity, and aim to simplify RCA by reducing the number of assay
steps. We hypothesized that the increased kinetics offered by ITP would be
ideal to increase the detection efficiency of RCA and to potentially combine a
3-step RCA assay (see Figure 5 and 7) into a single step. For this, we first de-
veloped an ITP-RCA buffer system that would enable the focusing of nucleic
acids via ITP while simultaneously allow for the enzymatic reactions to take
place. Next, we proved that ITP can be used to focus and detect differently-
sized and -concentrated RCA products in real-time down to 5 min and 100 fM,
respectively. Finally, we demonstrated the real-time detection of evolving am-
plicons using pre-ligated PLP/target complexes with 1 pM sensitivity and com-
pared these results with a commercial instrument for quantitative nucleic acid
amplification. In the outstanding experiments, we aim to integrate the ligation
step to develop a one-step RCA assay without the need for multi-step processes
and sophisticated microfluidics.

This work provided proof-of-concept for the benefits of combining RCA
with ITP as a detection method for RCA product quantification as well as
amplification. We expect this setup to have a potentially wide range of appli-
cations including the quantification of other biomolecules, such as RNA and
proteins. Therefore, future work could focus on increasing the RCA efficiency
by alternative assay designs and integrating a simple heater element towards
the miniaturization of the setup.
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V - Evaluation of immuno-rolling circle amplification for
multiplexed detection and profiling of antigen-specific anti-
body isotypes

The discovery and characterization of antibodies has become essential for di-
agnosis and development of therapeutic solutions in many biomedical areas,
such as autoimmune and infectious diseases. This has been highlighted dra-
matically in this year’s pandemic for the development of disease diagnostics
and their treatment. Parameters like specificity, affinity and isotype are crucial
information for antibody studies and can be obtained from screening plasma
samples or populations of B cells. Current technologies are exclusively focus-
ing on the discovery of abundant immunoglobulins, namely IgG, and are based
on bulk measurements.

To tackle this need, we developed a digital screening platform utilizing
RCA for the detection of antigen-specific antibody isotypes in solution and se-
creted from single cells. For this, we designed antibody-oligonucleotide con-
jugates (AOCs) that would allow the identification of specific antibodies and
subsequent detection via RCA (immuno-RCA). We designed three AOCs for
the detection of human antibody isotypes IgA, IgG and IgM. To validate this
approach, we used an autoimmune disease as a model and the auto-antibodies
(here, antigen) were the target molecules. We used antigen-coated glass slides
to capture target antibodies, identified them by specific AOC binding and vi-
sualized via an RCA assay. The method achieved a specificity for isotyping of
> 90% and an LoD of 0.3 ng/mL for detecting antigen-specific IgG. A dilution
series of a plasma sample of a patient confirmed the multiplexed detection of
the three isotypes with higher sensitivity compared to ELISA. Finally, we per-
formed single cell analysis of human B and hybridoma cells for the detection
of secreted antibodies using microengraving. Our method achieved an average
detection of 23.3 pg/mL of secreted antibodies per hour.

The developed immuno-RCA provides a new dimension for the screening
of surface-captured antibodies from B cells by adding the possibility to isotype
the expressed antibodies. It provides a versatile platform for the identification
and quantification of B cells and their antibody expression that could also be
rendered towards the diagnosis of infectious diseases and their surveillance,
such as COVID-19.
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Conclusion and Outlook

This thesis has provided an overview of the biochemical and historical context
of healthcare and the molecular tools and technologies that have been devel-
oped for tackling infectious disease diagnostics with a focus on isothermal nu-
cleic acid amplification assays. It should provide an idea of the considerations
and challenges that have to be taken into account when developing diagnos-
tics for the developing world. The studies presented in this thesis represent
different angles how to approach the development of novel molecular tools to
advance infectious disease diagnostics. PLP/RCA-based assays were chosen
for all investigations owing to their isothermal and intrinsic digital amplifica-
tion as well as high specificity and multiplexing capability. Nevertheless, this
technology is not being used in the broader scope of biomedical applications
as excess as PCR-based methods, mainly due to a lack of proof-of-concept
studies. The investigations included in this thesis aimed to address some of
these limitations by proposing digital and bulk enrichment solutions as well as
multiplexed assay schemes for disease diagnostics.

In paper I, the design of PLPs and the adaption of microfluidic RCA prod-
uct enrichment has shown good clinical performance for subtyping of sea-
sonal influenza viruses highlighting the specificity of the technique. The as-
say design and simplified read-out scheme has the possibility to allow robust
multiplexed disease diagnostics and can potentially be translated to automated
systems. In paper II, the microfluidic enrichment approach was developed fur-
ther towards the needs of infectious disease diagnostics in resource-limited set-
tings by introducing capillary force driven enrichment. This concept showed
promising results for the digital quantification of tropical viruses with a reg-
ular epifluorescence microscope and low magnification; tools that are already
existent in most laboratories. In paper III, the concept of enriching RCA prod-
ucts from a solution was translated to microfluidic trapping of these on silica
beads, and combined with a cost-effective photodiode as a miniaturized and
simple read-out. Paper IV adapted isotachophoresis, which has been particu-
larly useful in the microfluidic concentration of biomolecules, to simplify and
improve the RCA assay. The reduced complexity and increased kinetics of
the assay open up possibilities for RCA to be applied for rapid detection of
nucleic acids. And finally, paper V adapts RCA for the detection and isotyp-
ing of antigen-specific antibodies, and therefore combines the advantages of
isothermal nucleic acid amplification for signal enhancement with the ease of
protein-based diagnostics. This assay can be readily translated to other dis-
eases or pathogens, such as the detection of antibodies against SARS-CoV-2
or the virus itself from plasma.
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As described throughout this thesis, modern healthcare has tremendously
improved during the past decades due to developments in various disciplines.
However, infectious diseases still pose a constant threat worldwide which has
led to international efforts in research and development for new tools and plat-
forms, especially of molecular ones. The emergence of isothermal amplifica-
tion assays has been very valuable to tackle infectious diseases. Nevertheless,
to develop solutions that are also suited for developing countries one has to
look beyond just the assay characteristics and into the areas of microfluidics
and engineering. A multidisciplinary approach is key as diagnostics can be
technically demanding, especially when integrating multiple assay steps onto
a single chip, so called lab-on-a-chip platforms.

The investigations conducted in this thesis have touched on different as-
pects in the development of such platforms. In paper I, an assay design is
presented to increase the sensitivity and robustness as well as allow for multi-
plexed detection of pathogens which could be especially valuable for surveil-
lance of highly mutative diseases. Additionally, the use of a microfluidic en-
richment approach significantly increased the efficiency for detecting clinical
samples and simplified the digital quantification of nucleic acids with RCA in
general. While simplifying the detection, this technology required the use of
an external pump to push the liquid through the membrane while trapping the
RCA products. Therefore, towards elimination of the required syringe pump,
in paper II, a miniaturized vertical-flow system was developed, where the assay
solution was directly added to the membrane surface and RCA products in so-
lution enriched by capillary flow. The adaption of dried bioassay components
could potentially enable simplified and instrument-free systems [155]. More-
over, mobile-phone based fluorescence microscopy would be an ideal addition
to such simple assay designs [147; 198]. Being cost-effective and portable
makes them ideal for the use in tropical virus diagnostics in the remote or
low-income areas of the world.

The enormous development of the semiconductor technology, which
pushed the mobile-phone industry, also enabled the development of new low-
cost and miniaturized sensors. In paper III, thin-film photodiodes were com-
bined with microfluidic enrichment on silica beads towards portable and in-
tegrated analytical devices. While bulk measurements do not offer digital
quantification, they often come with the added advantage of being simpler and
therefore easier to integrate. As previously mentioned, mobile-phone based
systems are on the raise but until then miniaturized sensors will be advanta-
geous for lab-on-a-chip formats. An overarching improvement would be to
adapt direct RNA detection [199] and assay automation [157] approaches to
further simplify the workflow of paper I–III.

Electrophoretic methods are a powerful and proven tool for molecular re-
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search as they enable the enrichment of proteins and nucleic acids on a con-
fined area. In paper IV, ITP was used to locally increase the concentration of
reactants and thereby increase reaction kinetics and detection sensitivity. The
importance lies in the simplification of the assay by focusing only molecules
of interest towards sample preparation free assays without the need for com-
plicated microfluidic setups and moving parts. Other isothermal nucleic acid
amplification test have been combined with isotachophoresis, like LAMP and
RPA [200; 201]. The latter was demonstrated on a paper-based setup for the
simultaneous extraction and amplification of nucleic acids from serum. These
studies could become of increasing interest for rapid and simple diagnostic
assays.

Protein-based diagnostics have the advantage of allowing rapid detection
without the need for extraction compared to nucleic acid-based methods. How-
ever, they often suffer from low sensitivity and multiplexing capability. Paper
V is aiming to tackle this using PLP/RCA as a mean to increase the signal
strength and allow for higher multiplexing schemes when compared to clas-
sical ELISA. The technology could be readily translated for the detection of
other antibodies, such as antibody titer screening or for the detection of viruses,
bacteria and other disease causing agents by targeting the whole agent or spe-
cific capsid/membrane antigens.

The investigations described in this thesis represent a step forward in the
adaption of PLP-based assays to build methods and solutions that can be used
as powerful alternatives to conventional molecular diagnostics. The develop-
ments in these studies could be picked up by a broad audience, adapted and
further developed in other fields where the quantification of biomolecules is
of high importance. With an optimistic view, continuous efforts in the field
of nucleic acid amplification technologies can contribute to push forward the
biomedical field towards democratizing molecular diagnostics for infectious
diseases.
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Populärvetenskaplig samman-
fattning

Dagens sjukvård är resultatet av vetenskapliga framsteg i olika discipliner. Det
har vidare möjliggjort en djupare förståelse för sjukdomsutveckling och hur
sjukdomar kan behandlas och botas. Många frågor återstår att besvaras vilket i
synnerhet gäller infektionssjukdomar som utgör ett konstant hot mot sjukvår-
den. Detta har inte minst varit tydligt med årets COVID-19-pandemi, vilket har
orsakat 40 miljoner sjukdomsfall och 1 miljon dödsfall. Pandemier har stora
konsekvenser inte enbart på världshälsan men också på världsekonomin.

Forskning inom infektionssjukdomar är av den anledningen av största vikt
för utbrott kontroll och i kartläggningen av framväxande hot. Modern di-
agnostik av infektionssjukdomar sker på centraliserade vårdcentraler vilket
medför att molekylär diagnostik inte finns tillgängligt på andra viktiga kon-
trollpunkter såsom flygplatser, testning i hemmet och i tredje världen. Flertalet
teknologier baserat på isoterm nukleinsyraamplifiering har utvecklats i försök
att introducera toppmodern molekylär diagnostik till dessa områden. Dessa
metoder är mångfacetterade, känsliga, specifika och kostnadseffektiva. Ett ex-
empel är rolling circle-amplifiering som har använts i den här avhandlingen.

Den här avhandlingen går igenom utvecklingen i det biokemiska, rela-
terade discipliner och kombinationen av dessa för att utveckla diagnostiska
plattformar. Studierna utförda kan ses som individuella moduler för att ta itu
med specifika problem såsom typbestämning av patogener eller antikroppar,
kostnadseffektiv bulk, digital kvantifiering och förenklade analysscheman. Allt
detta i ett försök att föra rolling circle-amplifiering baserade analyser till den
molekylära diagnostiken och bredare användning utanför sjukvården.
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always cheering me up and your support. Anne, thanks for always checking
on me and all the fun we had together in- and outside the lab, even though I
am sometimes really hard to reach. Sharath, it was a pleasure to have you
around the past years and brighten up the lab like a supernova. You’re such a
great person, full of positive energy like a proton, and good vibes like a string
that it is contagious. I am very grateful to call you among my friends and
I am looking forward to a lot more stories together! Theresa, thank you so
much for all your help from joining academia to now finishing it up. So many
things happened over the years and we have been living in different countries
but nothing changes, you always support me. I am endlessly grateful for you
being there for me no matter what. You are the best! Cavendish and Momo,
thanks for all your energy and help on early mornings and through long nights.

Sara, thank you so much for your never ending support, your company
over the past years and believing in me when I just saw gray. I am so lucky that
you are always there for me even if it is just a smile, words cannot express my
gratitude. I am looking forward to our time in Sweden and all the adventures
to come!

Mami, Papi, Nils und Omi, vielen Dank für eure Unterstützung all die
Jahre. Danke, dass ihr mir immer alles ermöglicht habt und nur das Beste für
mich wollt. Ihr habt mich zu der Person gemacht die ich heute bin - selbstbe-
wusst und frei - und ohne euch wäre ich niemals so weit gekommen. Ich liebe
euch!

Thank you all!
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