Developing Student Representational Competence

John Airey
Trevor Volkwyn
Representations in Science
Representations in Science

• Science uses a wide range of semiotic resources
 Graphs, diagrams, language, mathematics, etc.

• Students need representative competence
 in all of these semiotic systems

• How can representative competence be developed?
Representational competence

- Building on the work of De Cock (2012) and Linder et al (2014)
- Created a new definition that we believe can offer simple guidance to teachers on how to develop representational competence
Representational competence (R) is the ability to appropriately interpret and produce a set of disciplinary-accepted representations of real-world phenomena and link these to formalised science concepts.

Representational competence

Disciplinary accepted representations

Representational competence (R)

Science concepts

Real-world phenomena

Airey & Volkwyn X-DBER March 2021
Why is this useful?

Gives teachers a structure for developing representational competence

Start with one vertex of the triangle and generate the other two
Representational competence

Disciplinary accepted representations

Science concepts

Real-world phenomena
Representational competence

Disciplinary accepted representations

Science concepts \rightarrow Real-world phenomena

Airey & Volkwyn X-DBER March 2021
Representational competence

Disciplinary accepted representations

Science concepts

Real-world phenomena

Airey & Volkwyn X-DBER March 2021
Similar to Jeopardy Physics
van Heuvelen & Maloney (1999)

Physics Active Learning Guide, Etkina & van Heuvelen
Definition:

Representational competence (R) is the ability to appropriately interpret and produce a set of disciplinary-accepted representations of real-world phenomena and link these to formalised physics concepts.

- Holistic R is a sum of discrete competencies:

$$R_{TOTAL} = R_{GRAPH} + R_{MATH} + R_{DIAGRAM} + \ldots$$
Start off with a *semiotic audit* of the generic meaning making potential of line graphs.
Meaning making potential R_{GRAPH}

Across four quadrants

(1) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Airey & Volkwyn X-DBER March 2021
• Graphs in 1-D kinematics

• Students have problems with 1-D kinematics graphs

• We have three graphs used in 1-D kinematics...
Representational competence

R_{GRAPH}

Position-time

Velocity-time

Acceleration-time

Airey & Volkwyn X-DBER March 2021
Representational competence

R_{GRAPH}

8 shapes \times 3 graphs \times 2 quadrants

= 48 possible meanings

Sets of "allowed states"

Airey & Volkwyn X-DBER March 2021
Representational competence in 1D-kinematics

The three graphs:

- Position-time
- Velocity-time
- Acceleration-time

R_{GRAPh} for 1-D kinematics

Kinematics concepts

Real-world motion

Airey & Volkwyn X-DBER March 2021
Trying it out...

iOLab Ansel 2020, Selen 2013
Task 1:

Given a situation with real-world motion, observe the shapes of the three graphs and explain these in terms of kinematics concepts.
Representational competence
Theme 4 – representational competence
Task 2:

Given a formal verbal description of how a kinematics concept changes over time, generate an example of the associated real-world motion and predict the shape of the three corresponding graphs.

Airey & Volkwyn X-DBER March 2021
Representational competence

Constant acceleration

Rolled iOLab on an inclined table
Representational competence

Task 3:
Produce the real world motion that generates these shapes for the three graphs.
Summary

- New definition of Representational Competence (R)
- Links representations, real world and science concepts in a triangle form
- \[R_{TOTAL} = R_{GRAPH} + R_{DIAGRAM} + \ldots \text{ etc.} \]
- Claim that we can practice representational competence by developing tasks from the triangle
• Semiotic audit—
 • What are the representations used?
 • What is the generic meaning making potential?

• R_{GRAPH} appeared to be effectively practiced and developed through our tasks

• Starting with the representations proved challenging

• Shows the complexity of achieving representational competence
Summary

• This was just for one representational system!

• Students need to coordinate meanings across representational systems too (Airey & Linder, 2009)
Acknowledgement

- Funding from the Swedish Research Council (VR 2016-04113) is gratefully acknowledged.
Thank you for Listening
References

