Reducing the ecological impact of computing through
education and Python compilers
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We read with attention the comment by Zwart on The ecological impact of high-
performance computing in astrophysics [1]. We fully agree with its take-home message:
scientists should be mindful of their carbon footprint. One of the proposed solutions is to avoid
the Python programming language. We advocate that this would be counterproductive and
that scientific programs written in Python can be efficient and energy friendly. We argue that
advancement of compiler technology, human factors and education are much more important
than choice of language.

To support his idea, Zwart presents a benchmark of the N-Body problem with an inefficient
implementation in Python, running 50 times slower than a C++ implementation. As Python
users concerned about our ecological impact, we worked on similar benchmarks on the same
problem. In contrast to Zwart, we (i) consider efficient implementations in Python and Julia
and (ii) properly measure the energy consumption with dedicated hardware equipped with
wattmeters.

Before focusing on the N-Body problem, let us recall what “Python” is and why it is so successful.
Indeed, Python is one of the most used and loved languages for science and data analysis. It is
a general-purpose, dynamic language oriented towards communication between humans and fast
prototyping. The language was designed to boost productivity. Strong open-source communities
use Python and built a rich scientific ecosystem of efficient libraries.

Zwart (2020) characterizes languages as being “interpreted” or “compiled” but these categories
make sense only for specific implementations. Some interpreters compile parts of the code
during the execution (just-in-time compilation, JIT) [2] and dynamic languages can also be
compiled ahead-of-time (AOT). However, the most standard way to execute Python code is to
interpret it with the reference implementation called CPython. Due to the lack of a built-in
JIT compiler, CPython is relatively slow. Note that this inefficiency of the interpreter has a
weak effect on the overall performance of most programs since total elapsed time and energy
consumption are often dominated by computations done in optimized libraries. For numerics,
the NumPy library [3] is used to describe algorithms with high-level code, which avoids too
frequent interactions with the interpreter.



In many cases, very few lines of code dominate the total computation. This is usually known as
the 80/20 rule and provides support for two software development principles: (i) “premature
optimization is the root of all evil” [4] and (ii) “measure, don’t guess”. These principles also
apply for energy efficiency. For most Python programs, it would be counterproductive and
expensive to manually rewrite them in C++, with a small gain/cost ratio.

However, some algorithms require low-level code and explicit loops. For example, for the N-Body
problem, the computation of the acceleration of each particle involves a loop over all other
particles. Few lines are repeated N?/2 times per time-step. Zwart (2020) considered 10000
time-steps and N = 16384, so the program is dominated by 1,342,177,280,000 executions of a
simple and inexpensive computation. Using CPython for this hot loop makes the whole program
inefficient. Good news for Python: it is straightforward to use efficient alternatives. For our
benchmark, we use three tools: (i) Pythran [5], a Python-NumPy AOT compiler transpiling to
C++, (ii) Numba [6], a Python-NumPy JIT compiler based on LLVM (same compilation target
as Julia) and (iii) PyPy [7], an alternative Python interpreter with a JIT.

16384 particles, 10 N-Body time units
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Figure 1: Efficiency in terms of COs production and elapsed time for implementations in Python, Julia, C4++
and Fortran. Energy consumption measurements were carried out on Grid’5000 clusters with 2.30 GHz Intel
Xeon E5-2630 processors and converted from kWh to CO4 using 283 ¢ CO5 / kWh. Optimizations were activated
for all implementations with flags like -Ofast, -march=native and --check-bounds=no. We use gcc 8.3.0, Julia
1.5.3, Python 3.8.5, Pythran 0.9.8, Numba 0.52 and an unreleased version of PyPy including optimizations
described in [8].

Fig. 1 is similar to Fig. 3 in Zwart (2020): the CO; production is plotted as a function of the
elapsed time for ten implementations. The C++ and Fortran implementations (green stars) are
taken from the website http://www.nbabel.org/ and were used by Zwart (2020). Note that these
implementations could have been further optimized, but are representative of code written by
many scientists. We consider five implementations in Python (red markers). We would like to
emphasize that: (1) These implementations are fully written in Python. The implementations
using Pythran and Numba are written in Python-NumPy but NumPy is only used for its arrays
as a data-structure and not for high-level functions. (2) Four implementations in Python are
faster than the C+4 and Fortran implementations. The implementation labelled “Pythran
naive” (simple NumPy code accelerated only by decorating one function with @transonic. jit
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[9]) is only 3 times slower than the Fortran implementation. (3) All Python implementations
are simpler to reason about, read and write than the C++ and Fortran implementations.

For comparison, we also consider three implementations in Julia (blue circles): the implementa-
tion labelled “Julia” is comparable with the “Pythran” and “Numba” implementations and could
have been written by scientists with similar skills. We did not include a Julia implementation
similar to “Pythran naive” because it is inefficient. “Julia optimized” and “Julia parallel” have
been proposed by Julia users after a long discussion on a Julia forum.

The four points close to the bottom-left corner correspond to two parallel implementations using
Pythran+OpenMP and Julia executed using 6 and 12 CPU cores. We consider in Fig. 1 the
energy consumption of the cores used (6 or 12 for these runs and 1 for the sequential jobs),
which make sense on shared clusters wherein one can reserve only the needed cores. We see that
parallelism with threads has only a moderate impact on energy consumption since the increase
in power consumption partly counterbalances the decrease of elapsed time. For example, the
12-threaded Pythran version is 10 times faster than the single-threaded one but produces only 2
times less COs.

Our work shows that the performance of scientific programs depends less on languages than
on time spent on optimization and developer skills to correctly use the right tools. These
benchmarks demonstrate that dynamic languages like Python can actually be good solutions
to easily obtain good performance while retaining simplicity and readability. We think that
minimizing the ecological impact of scientific computing is mainly limited by human factors:
time, work, knowledge and skills. For example, scientists have to be able to use job schedulers
and shared clusters optimized in terms of energy consumption. They should know how to
profile their code to discover which parts can potentially be optimized. Therefore, time and
money should be invested in education and tooling to minimize the overall ecological impact of
computing, irrespective of the underlying language.
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