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Future climate biogeochemical projections indicate large changes in the ocean with
environmental conditions not experienced at present referred to as novel, or may even
disappear. These climate-induced changes will most likely affect species distribution via
changes in growth, behavior, evolution, dispersal, and species interactions. However,
the future risk of novel and disappearing environmental conditions in the ocean is poorly
understood, in particular for compound effects of climate and nutrient management
changes. We map the compound risk of the occurrence of future novel and disappearing
environmental conditions, analyze the outcome of climate and nutrient management
scenarios for the world’s largest estuary, the Baltic Sea, and the potential consequences
for three charismatic species. Overall, the future projections show, as expected, an
increase in environmental novelty over time. The future nutrient reduction management
that improves the eutrophication status of the Baltic Sea contributes to large novel
and disappearing conditions. We show the consequences of novel and disappearing
environmental conditions for fundamental niches of three charismatic species under
different scenarios. This first step toward comprehensively analyzing environmental
novelty and disappearing conditions for a marine system illustrates the urgent need to
include novelty and disappearing projection outputs in Earth System Models. Our results
further illustrate that adaptive management is needed to account for the emergence of
novelty related to the interplay of multiple drivers. Overall, our analysis provides strong
support for the expectation of novel ecological communities in marine systems, which
may affect ecosystem services, and needs to be accounted for in sustainable future
management plans of our oceans.

Keywords: novelty, rate of change, cumulative stressors, species distribution, disappearing conditions,
management

INTRODUCTION

Future climate projections indicate that large land areas may undergo climate conditions not
experienced at present, referred to as novel or no-analog climates, while other known climate
conditions may disappear (Williams and Jackson, 2007; Mora et al., 2013). Likewise, the ocean is
likely to experience large climate-induced changes, such as higher ocean temperatures, an increase
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in the number of marine heatwaves, changes in sea ice and
sea level, and shifts in biogeochemical provinces (IPCC, 2019;
Reygondeau et al., 2020).

These climate-induced compound events (Ridder et al., 2020)
will most likely cause changes in physiological, behavioral,
evolutionary, and dispersal characteristics of species, their
absolute and relative abundances in addition to changes in
their interactions (Lurgi et al., 2012; Blois et al., 2013;
Pinsky et al., 2020). Niche theory predicts that species
react individualistically to environmental changes resulting
in sometimes unexpected changes in species distribution,
disruption of existing communities, and formation of novel
species associations, as experienced in the last deglaciation
(Jackson and Overpeck, 2000; Williams and Jackson, 2007).

In addition, coastal areas and estuaries worldwide are largely
a�ected by anthropogenic activities such as nutrient loads
from land, fisheries, coastal constructions, maritime transport
and activities, and hazardous substances (Blenckner et al.,
2015; Halpern et al., 2015; Breitburg et al., 2018). Di�erent
combinations of these factors, together with climate-induced
changes, are likely to further increase the rate of novel
environmental conditions not experienced before, and the
disappearance of some present environmental conditions. In
the future, novel conditions may emerge in the tropics and
in estuaries, such as the Baltic Sea (Reygondeau et al., 2020).
In semi-enclosed seas, species are unlikely to shift to higher
latitudes, due to the enclosed water body characteristics, and
other environmental constraints such as salinity. This increases
the risk of species extinction in these ecoregions.

To better understand the risk of future novel and disappearing
conditions of estuarian ecosystems in the face of global climate
change and anthropogenic pressure, we aim to study these
potential future risks in the Baltic Sea, one of the world’s
largest semi-enclosed seas, located in Northern Europe. It
is also one of the fastest-warming seas in the Northern
Hemisphere (Rutgersson et al., 2014) and is a�ected by multiple
anthropogenic pressures such as eutrophication, contamination
by hazardous substances, and unsustainably high fishing intensity
(Elmgren et al., 2015; Reusch et al., 2018). Earlier studies
indicate that climate change, eutrophication, and overfishing,
have resulted in structural and functional changes of food webs
(Pecuchet et al., 2019; Törnroos et al., 2019), and ecosystem
regime shifts in di�erent parts of the Baltic Sea (e.g., Möllmann
et al., 2009; Lindegren et al., 2012; Olsson et al., 2015; Eklöf et al.,
2020). Recently, it has been found that novel biotic and abiotic
conditions have increasingly appeared in the Baltic Sea in the
past decades (Ammar et al., 2021). Future Baltic Sea projections
indicate large increases in seawater temperature, decreases in
salinity (Meier et al., 2012; Andersson et al., 2015; Saraiva et al.,
2019) with severe changes in species and food-webs (Niiranen
et al., 2013; Bauer et al., 2018, 2019). However, the risk of
novel and disappearing environmental conditions in the future
is yet to be analyzed.

Here, we map the compound risk of the occurrence of future
novel and disappearing environmental conditions analyzing
the outcome of climate and nutrient management scenarios
for the Baltic Sea. We calculate three environmental risks

indices (a) local change, (b) novel environmental conditions,
and (c) disappearing environmental conditions at the Baltic
Sea scale for two periods: the mid-future (2030–2049) and
the far future (2080–2099). We then assess the contribution
of salinity-, temperature-, and eutrophication-related factors
to the emergence of future novelty in di�erent scenarios.
Finally, we explore the impact of novel and disappearing
environmental conditions on the fundamental niches of three
charismatic species.

MATERIALS AND METHODS

Regional Climate Model Data
We used the output from the biogeochemical model RCO
(Rossby Centre Ocean model)-SCOBI, which consists of the
physical Rossby Center Ocean (RCO) (Meier et al., 1999; Meier
et al., 2003) and the Swedish Coastal and Ocean Biogeochemical
(SCOBI) models (Eilola et al., 2009; Almroth-Rosell et al.,
2011). RCO-SCOBI is a 3D model of the Baltic Sea with a
3.7 km horizontal (2 nautical miles) and 3 m vertical resolution.
The model describes the dynamics of temperature, salinity,
nitrate, ammonium, phosphate, three phytoplankton groups,
zooplankton, detritus, and oxygen (Eilola et al., 2011; Almroth-
Rosell et al., 2015). Atmospheric forcings were generated by
the regional model RCA4-NEMO (coupled Rossby Center
Atmosphere Version 4 and Nucleus for European Modeling of
the Ocean models (Dieterich et al., 2019; Gröger et al., 2019). An
ensemble of four global circulation models (GCM) has been used
and downscaled by the regional model RCA4-NEMO (Saraiva
et al., 2019). Here, downscaled output from only one GCM was
used, namely from the global Earth System Model MPI-ESM-LR
(Max Planck Institute Earth System Model—Low Resolution1)
with the purpose to focus on the approach of calculating novelty
and disappearing environmental conditions. We are aware that
other models from the ensemble members would show di�erent
results, but results from model A (i.e., MPI-ESM-LR) are very
close to the ensemble mean in SST and at the lower (less
extreme) range of salinity changes (Saraiva et al., 2019). The
future projections were forced by two greenhouse gas (GHG)
emission scenarios (Representative Concentration Pathways RCP
4.5 and RCP 8.5) and two nutrient load scenarios [Baltic Sea
Action Plan (BSAP) and current reference load (REF)]. The REF
load scenario assumes a future (2006–2098) land use and socio-
economic situation, and thereby nutrient load situation, that
is unchanged compared to the historical period (1975–2005),
but where nutrient loads can change due to changes in the
climate and runo�, projected by the hydrological model E-HYPE
(Hydrological Predictions for the Environment2, Hundecha et al.,
2016). The BSAP load scenario assumes that nutrient sources
are reduced following the BSAP nutrient reduction targets of
the HELCOM Baltic Sea Action Plan, and maintained constant
(independent of the runo�) at that level after 2020 (HELCOM,
2007; Gustafsson et al., 2011).

1https://www.mpimet.mpg.de
2http://hypeweb.smhi.se
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We analyzed the model output of ten environmental variables:
sea surface and bottom temperature, sea surface and bottom
salinity, bottom oxygen concentration, mixed layer depth (the
depth at which the temperature deviated from the surface value
by 0.5�C, see Fu et al., 2012), halocline depth (calculated as the
depth of the greatest salinity gradient, Väli et al., 2013), andwinter
nutrient (i.e., phosphate, nitrate, and ammonium) concentrations
for each of the projection grid for the period 1975–2099.

Local Change, Novelty, and Disappearing
Environment Calculations
We define three di�erent time periods for our analysis: a
historical period (1980–1999), a mid-future period (2030–2049)
and a far-future period (2080–2099). Following the definitions
used inWilliams et al. (2007), the dissimilarities between di�erent
time periods are quantified by the Standardized Euclidean
Distance (SED):

SEDij =

vuut
nX

k = 1

(bkj�aki)2

s2k

where, aki and bkj are the historical period and future period
means for environmental variable k at gridpoints i and j and sk
is the standard deviation of variable k for the historical period.
We assume that changes in these ten variables together reflect
important environmental conditions that are relevant for changes
in the structures and functions of species in the Baltic Sea
(Törnroos et al., 2019; Pecuchet et al., 2019).

Local change is calculated as change at each gridpoint,
i.e., i = j. The novelty of the environment is calculated by
comparing the environmental conditions in one of the future
for each gridpoint to the historical period for all gridpoints
and retaining the minimum SED. A high minimum SED
indicates locations where the novelty in the future environment
is high, i.e., future conditions bear little resemblance to historical
(1980–1999) conditions at any location. Conversely, the level
of disappearing environment is identified by comparing each
gridpoint at a historical period to all gridpoints in both future

periods and retaining the minimum SED. A high value in the
novel environmental indicate places where the historical (1980–
1999) environmental conditions may disappear, i.e., they have no
close counterpart anywhere in the future simulations (Williams
et al., 2007).

Contribution to Novelty
We categorized the contribution to novelty into three variable
classes, (a) salinity-related factors (surface and bottom salinity,
halocline depth), (b) temperature-related factors (surface and
bottom temperature, mixing depth), and (c) eutrophication-
related factors (phosphate, dissolved inorganic nitrogen, and
bottom oxygen concentrations) for each scenario for mid- and
far-future periods.

Species Niches
We explored the impact of novel and disappearing environmental
conditions on the fundamental niches of three key species in the
Baltic Sea, i.e., cod (Gadus morhua), eelgrass (Zostera marina L.)
and starfish (Asterias rubens), to test in a simple way how they
could be a�ected by the projected novel conditions. These three
species are chosen as they are charismatic species that represent
three trophic groups: (a) cod, a highly valued commercial fish
species in the open Central Baltic Sea; (b) eelgrass, a macrophyte
providing carbon storage and nursery habitats in coastal areas;
and (c) starfish, a benthic species controlling for example blue
mussel’s population in the southern coastal areas. To estimate
the fundamental niche of these three species, changes in the key
variables (Table 1) a�ecting the species survival and distribution
are plotted on spatial maps and niche space plots.

RESULTS

Local Change, Novel, and Disappearing
Conditions
Local changes are primarily larger in the Northern basins. Under
the RCP 4.5-BSAP scenario, the local changes in the dissimilarity

TABLE 1 | Species characteristics for cod, starfish, and eelgrass.

Species Current
distribution

Physiological
tolerances

Depth of occurrence Model variables used Source

Cod (Gadus morhua)
reproductive volume,
volume suitable for the
successful
development of the
early life stages

Southern and
Central Baltic Sea

Sal > 11 PSU and
oxygen > 2 ml l�1

Salinity above 11 PSU Suitable salinity and
oxygen for reproduction

Nissling and Vallin,
1996; Wikström et al.,
2016

Eelgrass (Zostera
marina L.)

Coastal areas of
the Baltic Sea

Sal > 5 PSU to 15–25
PSU,
temperature > 0C

Depth between 1 and
10 m depth

Surface salinity vs.
surface temperature

Boström et al., 2014;
Salo et al., 2014

Starfish (Asterias
rubens)

Southern Baltic Sea Sal > 8 to 36 PSU & All
ranges of Temperature
in the Baltic Sea

20–90 m Bottom temperature
and salinity

Casties et al., 2015

The current spatial distribution, physiological tolerances, water depth of occurrence, and the modeled variables used to characterize their niche in future projections and
literature sources are presented.

Frontiers in Marine Science | www.frontiersin.org 3 October 2021 | Volume 8 | Article 745722



fmars-08-745722 September 29, 2021 Time: 13:20 # 4

Blenckner et al. Marine Novelty

of all environmental variables together are first (2030–2049) high
in the Northern Central basin and later (2080–2099) highest (>4
SED) in the Northern basins (Bothnian Bay and Sea), Central
Baltic Sea, and Gulf of Finland, and decreases toward the south
(Figures 1, 2). In contrast, the local change in the RCP 4.5-
REF scenario is in general lower than in the corresponding
BSAP-scenario, except in Bothnian Bay and parts of the Western
Central Baltic Sea in 2080–2099.While similar patterns as RCP4.5
were found under the RCP 8.5 scenarios for 2030–2049, local
changes are largest (>4 SED) for 2080–2099 in most of the Baltic
Sea basins (except for Kattegat, the most south-western basin),
independent of the nutrient load scenarios (Figures 1, 2). The
highest absolute changes are found in the 2080–2099 period for
the increases in surface water temperature (with up to 6�C in the
RCP 8.5) and decreases in sea surface and bottom salinity by a
Baltic Sea wide average decrease of �1.2 PSU (Figure 3). The 20
year-mean halocline depth increases by almost 3 m in the Central
Baltic Sea in the RCP 8.5 scenario (2080–2099) compared to the
historical period.

In both climate scenarios, local changes are larger in the BSAP
scenarios than in the REF scenarios. In the BSAP scenarios,
improving bottom oxygen concentrations (e.g., up to 2.2 ml l�1

in the Central Baltic and up to 1.8 ml l�1 in the Gulf of Finland
by 2080–2099) as well as changing nutrient concentrations caused
by the lower nutrient inputs, add to the climate-induced changes
in water temperature and salinity. Bottom nitrate concentrations
are increasing in the Central Baltic Sea (up to 3 mmol m�3

NO3, whereby bottom ammonium concentration is projected to
decrease all over the Baltic Sea (mean –1.4 mmol m�3 NH4,
largest in the Central Baltic, �3 to �4 mmol m�3 NH4 during
2080–2099). Surface nitrate concentration is increasing in the
Northern basins (by 2.7 mmol m�3 NO3), Gulf of Finland (2
to 2.7 mmol m�3 NO3) and Riga (4.5–4.9 mmol m�3 NO3)
in both climate BSAP scenarios, whereby surface phosphorus
concentration decreases over the whole Baltic Sea (mean 0.3
mmol m�3 PO4). In the REF scenarios, an increase in the
bottom oxygen concentrations in the Central Baltic Sea (around
1 ml l�1) and Gulf of Finland (around 1.3 ml l�1), together

FIGURE 1 | Local change (A–D), novel (E–H), and disappearing (I–L) environmental conditions using the sum of the Standard Euclidean Distances of the 10
environmental variables given for two climate scenarios (RCP 4.5 and 8.5) and two nutrient load scenarios, BSAP and REF, for the period 2030–2049 compared to
the baseline 1980–1999.
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FIGURE 2 | Local change (A–D), novel (E–H), and disappearing (I–L) environmental conditions using all 10 environmental variables together under two climate
scenarios (RCP 4.5 and 8.5) and two nutrient load scenarios, BSAP and REF, for the period 2080–2099 compared to the baseline 1980–1999.

with decreases in bottom ammonium concentrations in the
whole Baltic Sea (mean �1 mmol m�3) were projected. Surface
phosphorus concentrations are almost unchanged (Baltic Sea
mean �0.1 mmol m�3) in comparison to the 1980–1999 period.

The degree of environmental novelty varies across the
di�erent scenarios. The highest novelty is calculated for the
RCP 8.5 scenario for both nutrient load scenarios during the
2080–2099 period. As expected, novelty relative to the baseline
(1980–1999) is always higher in 2080–2099 compared to the
2030–2049 period. For the BSAP scenario, the novelty is highest
for the Gulf of Riga, Bothnian Sea and parts of the Central
and Southern Baltic Sea, whereby the REF scenario projects less
novelty in the Southern Baltic but higher novelty in the Bothnian
Bay in comparison to the BSAP scenario (Figure 1). Under the
RCP 4.5 and BSAP assumptions, a higher novelty than the RCP
4.5-REF scenario is projected due to the improving nutrient and
oxygen conditions almost over the whole Baltic Sea.

The highest levels of disappearing environmental conditions
(Figures 1, 2) occupy an area of the Gulf of Finland, Central
and Southern Baltic Sea under RCP 8.5 scenarios during the
2080–2099 period (Figure 2). The highest values are calculated

for the BSAP scenario, which has even higher dissimilarity values
than under novel conditions. These disappearing conditions in
the BSAP scenario are associated with the improvements and by
that the disappearing of the hypoxic areas in combination with
surface temperature increase and decrease of bottom salinity. The
distribution of disappearing environments is lowest in the RCP
4.5-REF scenario.

Overall, di�erences between scenarios in the short-term are
primarily due to di�erences between the nutrient scenario for
the local change, novelty and disappearing conditions. However,
in the long term, di�erences between the two climate scenarios
become more pronounced.

Contribution to Novelty Over Time
The overall strongest contributors to novelty for the whole Baltic
Sea change over time and depending on the scenario (Figure 4).
During the 2030–2049 period, the eutrophication-related factors
and temperature contribute most to novelty (Figure 4). For the
BSAP scenarios, with higher change in nutrient and oxygen
conditions, the contribution from the eutrophication factors
dominate. For the REF scenarios, novelty is lower and is
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FIGURE 3 | Local, absolute changes between the historical period (1980–1999) and two future periods (2030–2049 and 2080–2099) for two climate scenarios
RCP4.5 and RCP8.5 and two nutrient load scenarios: BSAP and REF for bottom oxygen, sea surface and bottom temperature and salinity are given.

spread over eutrophication-, temperature- and partly salinity-
related factors. Spatially, the di�erent factors are distributed
heterogeneously over the entire Baltic Sea area. During the 2080–
2099 period, the salinity contribution is increasing on top of the
eutrophication and temperature-related factors, in particular for
the two RCP-8.5 scenarios. Spatially, salinity contributes most to
novelty in the southern Central Baltic Sea, whereby temperature
contributes most in the North (Bothnian Sea) and in the deepest
areas of the Central Baltic Sea.

Potential Species Responses
The projected changes of novel and disappearing environmental
conditions a�ects the three key species fundamental niches
di�erently. Cod (Gadus morhua) reproduction is primarily
a�ected by the size of the RV. The two most contrasting
projections indicate; (i) a larger RV with the RCP 4.5-BSAP
scenario (Figure 5B), mainly caused by the improved bottom
oxygen concentration in combination with minor decreases in
salinity, or (ii) a reduced RV with the RCP 8.5-REF scenario
(Figure 5B), mainly caused by larger decreases in bottom
salinity (>4 PSU) in combination with a minor increase in

bottom oxygen concentration, in comparison to the historical
conditions (Figure 5A).

Species-specific fundamental niche space for eelgrass
(Zostera marina L.), calculated based on surface salinity and
temperature, indicates minor changes (for spatial distribution see
Supplementary Figure 1) between the historical and mid-future
period (Figure 5D). In contrast, surface temperature is projected
to increase largely in the RCP 8.5 scenario during the 2080–2099
period (Figure 5E), with substantially fewer areas suitable
for seagrass (Supplementary Figure 2). For starfish (Asterias
rubens) the future projected niche changes, calculated based
on bottom salinity and bottom temperature, are even larger,
in particular, due to changes in bottom temperature in both
mid and far future periods (Figures 5F,G). If the starfish will
not adapt to higher bottom temperatures and lower salinities,
there might be a risk that this species will become extinct in
the Baltic Sea, as the 2080–2099 conditions are outside the
current reported niche space (Figure 5G). Spatially, less change
is visible but most likely due to a vertical contracted range
with acceptable bottom temperature and salinity conditions
(Supplementary Figures 3, 4).
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FIGURE 4 | The contribution of salinity (Sal, including surface and bottom salinity and halocline depth), temperature (Temp, including surface and bottom
temperature and mixing depth), and nutrients and oxygen (Nut, including nutrients and bottom oxygen) related factors to total environmental novelty given for two
climate scenarios (RCP 4.5 and 8.5) and two nutrient load scenarios, BSAP and REF, for 2030–2049 (A–H) and 2080–2099 period (I–P). In the bottom a triangle
figure is presented to illustrate the interactions between the contribution components.

Frontiers in Marine Science | www.frontiersin.org 7 October 2021 | Volume 8 | Article 745722



fmars-08-745722 September 29, 2021 Time: 13:20 # 8

Blenckner et al. Marine Novelty

FIGURE 5 | Potential species responses to projected climate and nutrient scenarios. Changes of spatial mean cod reproductive volume projections (A–C) for the
historical (1980–1999, A) and two future (2080–2099) scenarios, the RCP 4.5-BSAP (B), and RCP 8.5-REF (C). Niche dimensions are given for eelgrass with surface
temperature and salinity (D,E) and for starfish with bottom temperature and salinity (F,G) for the 2030–2049 period (RCP 4.5; D,F) and for the 2080–2099 period
(RCP 8.5, E,G). The current niche space is represented as black convex hull as well as the historical (1980–1999) annual means (blue data points) and future annual
means in red (red data points are given for 2030–2049 range in panels D,F, 2080–2099 in panels E,G).
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DISCUSSION

Overall, the future projections show, as expected, an increase
in novelty over time. The highest Baltic Sea-wide novelty is
projected for both RCP 8.5 scenarios for the 2080–2099 period
compared to the 1980–1999 baseline. Spatially the highest novelty
is projected for the Bothnian Bay, Gulf of Riga and north
to southern Central Baltic Sea (Figure 2) for the RCP 8.5-
BSAP scenario. For the RCP 8.5-REF scenario, the novelty is
higher in the Bothnian Bay and slightly lower in the other
basins than the RCP 8.5-BSAP scenario (Figure 2). However,
the contributions to the novelty are somewhat di�erent. In
general, the decrease in salinity contributes to novelty in both
RCP 8.5 scenarios. However, in the RCP 8.5-REF scenario, the
temperature has the highest contribution. The latter corresponds
well with the absolute changes of up to 6�C and decreases in
sea surface and bottom salinity by a Baltic Sea-wide average
of �1.2 PSU in the 2080–2099 period (Figure 3). Earlier
studies have shown earlier pronounced warming during the
summers in the northern Baltic Sea but with large overall
uncertainties in the salinity projections (Meier et al., 2006, 2019;
Saraiva et al., 2019).

The nutrient reduction management in the BSAP scenarios
improves the eutrophication status of the Baltic Sea (Meier
et al., 2019; Murray et al., 2019; Saraiva et al., 2019). For
the RCP 8.5-BSAP scenario, the contribution to novelty is
largely related to the reduction in nutrients (Figure 4). This
is associated with the improvements of the bottom oxygen
concentration in combination with surface temperature increase
and bottom salinity decrease and likely a�ecting the cod
distribution (Figure 5, see text below). Saraiva et al. (2019)
found a decrease in primary production (-44%), nitrogen
fixation (-96%), and hypoxic area (-32%) under the RCP
4.5-BSAP scenario in comparison to the current conditions.
These profound reductions explain why the nutrient reductions
contribute primarily to the emergence of novel environmental
conditions. Even larger changes have been found in the
disappearing conditions, in particular for the far future period
of the RCP 8.5-BSAP scenario for Gulf of Finland, Central,
and Southern Baltic Sea (Figure 2). The highest disappearing
environmental conditions are calculated for the BSAP scenario,
considering the decrease of nutrient load, disappearing hypoxic
condition, in addition to disappearing cool water temperature,
and decreasing salinity.

Species Responses
Novel and disappearing environmental conditions will have
consequences on species distributions, leading to a decrease in
the overall spatial distribution for some species. In contrast, other
species will expand their range, including invasive species (Pinsky
et al., 2020). These changes will favor novel species interactions
with consequences on ecosystem functions (Beaugrand et al.,
2015; Poloczanska et al., 2016; Törnroos et al., 2019). Besides
the gains and losses of certain species, changes in species
abundances can be crucial. For instance, declines in abundances
for thermally or salinity restricted species, especially in estuaries,
may occur, owing to reduced performance and population

declines as individuals die, fail to reproduce, or move to more
suitable locations (Cheung et al., 2013; Bates et al., 2014; Antão
et al., 2020). Additionally, in estuaries like the Baltic Sea,
species range shifts are limited as, at some point, a physical
boundary, i.e., land, limits further poleward distributions and
the decrease in salinity may further constrain the distribution.
Examples from other Estuaries showing distributional changes of
zooplankton in the Gironde estuary (Chaalali et al., 2013), of fish
in South African estuaries (James et al., 2013), or that a number
of fish species associated to estuaries in European waters have
migrated northward over the last 30 years (Nicolas et al., 2011).

In the Baltic, many marine species live at the lower range
of their tolerance limits; hydrological factors mainly determine
species’ distribution and population size (Dutz and Christensen,
2018). Salinity is, thus, a fundamental factor determining on
top of temperature the abundance and occurrence of species
in the Baltic Sea (Möllmann et al., 2000; Viitasalo et al., 2015;
Mäkinen et al., 2017). Around 8000 years ago, the Baltic Sea was
colonized during the transformation of the post-glacial Ancylus
Lake into the brackish water (Zillén et al., 2008), with some
10% of marine species present in the North Sea and beyond,
establishing local populations (Johannesson and André, 2006).
This colonization has been possible due to rather dramatic
genetic shifts (Barth et al., 2019) and local adaptation (Leder
et al., 2021). Besides, the thermal tolerance might depend on the
life stage. For example, Dahlke et al. (2020) found that spawners
and embryos are the most temperature-sensitive stages in the life
cycle of fish. Some species may benefit from climate warming by
exhibiting abundance increases and expanding their geographic
ranges (Bates et al., 2014; Antão et al., 2020; Pinsky et al., 2020).
Overall, the genetic behavioral, phenological adaptation potential
is significant and determines how species will respond and adapt
to future novel and disappearing environmental conditions.

In our simple projections for cod, the two most contrasting
projections indicate either a larger RV with the RCP 4.5-BSAP
scenario (Figure 5B), covering an area with high novel conditions
mainly caused by the improved bottom oxygen concentration
in combination with minor decreases in salinity. A reduced RV
with the RCP 8.5-REF scenario (Figure 5B), covers an area with
high disappearing conditions, i.e., decreases in bottom salinity
(>4 PSU) in combination with a minor increase in bottom
oxygen concentration (Figure 3). Species-specific fundamental
niche space for eelgrass indicates small changes between the
historical and mid-future period (Figure 5D), whereby in
particular surface temperature is projected to increase mainly in
the RCP 8.5 scenario during the 2080–2099 period (Figure 5E).
The latter changes could lead to smaller coastal habitat areas
where eelgrass can survive. For starfish, the future projected
niche changes are even larger, in particular, due to changes
in bottom temperature in both mid and far future periods
(Figures 5F,G). If the starfish do not adapt to higher bottom
temperatures and lower salinities, there might be a risk that this
species extinct in the Baltic Sea, as the 2080–2099 conditions
are outside the current reported niche space (black convex
hull, Figure 5G).

The novel conditions of lower production (BSAP scenarios)
in combination with novel temperature and salinity conditions
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may also a�ect the species survival and species interactions, and
overall habitat availability. In a few food-web model projection
studies changes in habitat, biodiversity and species distribution
in the Central Baltic Sea estimated that under the nutrient
reduction scenario, the projected habitat and biodiversity are
higher compared to the worst-case nutrient scenario. In the
latter, the projected bottom oxygen concentrations are low, with
severe consequences for benthic organisms (e.g., Saduria sp.)
and adult cod habitat (loss of 25–75%) (Bauer et al., 2018,
2019). These food-web projections are interesting and relevant
but depend on today’s assumptions of driver-species knowledge
and therefore embed a considerable uncertainty. Kotta et al.
(2019) used a di�erent approach by linking experimental data
with observations to create a species distribution model of
two interacting species (a macroalga-herbivore association), and
they find a decrease in both species due to salinity decreases,
even if one is more salinity tolerant. This example nicely
illustrates that it is essential to account for species interactions
in future projections.

Overall, understanding the ecological impacts of novel
environmental conditions will depend on (a) the fundamental
niche of the species and if there is still room for adaptation,
(b) if the change and rate to novel environmental conditions
allow species to adapt, or (c) if the species cannot adapt and
will eventually die (Oliver et al., 2019). Further, more knowledge
on the species ‘ability to cope with or adjust to changing
environmental conditions, i.e., its adaptive capacity, is needed
in general (Thurman et al., 2020) and in particular for the
planning of specific management (e.g., design marine protected
area network, Jonsson et al., 2020).

Method Contributions and Limitations
We are aware of the limitations using only one model
scenario and not an ensemble of models (Williams and
Jackson, 2007; Reygondeau et al., 2020), and by looking at
20-year averages, which is a short time interval relative to
the time scales of natural variability in the system (e.g.,
Kniebusch et al., 2019). However, we attempted to illustrate
that novelty and disappearing environmental conditions play an
essential role in marine systems. They can have considerable
consequences for species distribution and ecosystem function
in the future, which could have implications for society.
We are not using a threshold that distinguishes the novel
from non-novel conditions (Williams and Jackson, 2007),
which can be highly species- and context-specific (Figure 4).
However, such thresholds would be important to define if the
concept of novelty was to be used for concrete management
purposes. We are aware that the dissimilarity approach (i.e.,
calculating SED) focusing on the Baltic Sea wide scale might
be an abstract algorithm of novelty as di�erent SEDs values
can have di�erent consequences for species. Therefore, it
would be of high importance to develop more local “non-
abstract” novelty indicators in future research that, at the
same time, can also account for complexity, like multiple
niche factors (Fitzpatrick et al., 2018). Further, no extreme
events were considered as we calculated the SEDs based on
average values of the whole period (e.g., 2080–2099), even

though it is known that, for example, heatwaves can a�ect
marine ecosystems largely (Frölicher and Laufkötter, 2018;
Smale et al., 2019).

CONCLUSION

Our analysis provides a first step toward comprehensively
analyzing environmental novelty and disappearing conditions
for a marine system, and with this contributes to projected
global studies that simulate changes in biogeochemical provinces
and high novel conditions in the future (Reygondeau et al.,
2020). As this study clearly shows, there is a risk for marine
systems that due to novel and disappearing environmental
conditions in the future, the species compositions and
interactions will lack current analogs with consequences
of further biodiversity loss and ecosystem services (e.g.,
fisheries). Therefore, there is an urgent need to support e�orts
that include novelty and disappearing projection outputs
of Earth System Models, allowing a better understanding
of how and where novel and disappearing environmental
conditions might occur in marine ecosystems. Our results
further show that adaptive management is needed to
account for the emergence of novelty due to the interplay
of multiple drivers, particularly climate-adaptive management
actions on nutrient reductions and adjusting species-related
baselines for management under novel and disappearing
conditions. More research is needed to study compound
e�ects of species in more detail to define more realistic
management targets for the latter. Overall, our analysis
provides strong support for the expectation of novel ecological
communities in the marine system, which likely a�ects
the services the ocean provides to humans and needs,
therefore to be accounted for in sustainable management
plans of our oceans.
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