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Abstract
Requirements engineering has traditionally been stakeholder-driven. In addition to domain knowledge, widespread digitaliza-
tion has led to the generation of vast amounts of data (Big Data) from heterogeneous digital sources such as the Internet of 
Things (IoT), mobile devices, and social networks. The digital transformation has spawned new opportunities to consider such 
data as potentially valuable sources of requirements, although they are not intentionally created for requirements elicitation. 
A challenge to data-driven requirements engineering concerns the lack of methods to facilitate seamless and autonomous 
requirements elicitation from such dynamic and unintended digital sources. There are numerous challenges in processing 
the data effectively to be fully exploited in organizations. This article, thus, reviews the current state-of-the-art approaches 
to data-driven requirements elicitation from dynamic data sources and identifies research gaps. We obtained 1848 hits when 
searching six electronic databases. Through a two-level screening and a complementary forward and backward reference 
search, 68 papers were selected for final analysis. The results reveal that the existing automated requirements elicitation pri-
marily focuses on utilizing human-sourced data, especially online reviews, as requirements sources, and supervised machine 
learning for data processing. The outcomes of automated requirements elicitation often result in mere identification and 
classification of requirements-related information or identification of features, without eliciting requirements in a ready-to-
use form. This article highlights the need for developing methods to leverage process-mediated and machine-generated data 
for requirements elicitation and addressing the issues related to variety, velocity, and volume of Big Data for the efficient 
and effective software development and evolution.

Keywords  Requirements engineering · Requirements elicitation · Big Data · Automation

Introduction

Requirements elicitation is one of the most critical activities 
in requirements engineering, which, in turn, is a major deter-
minant of successful development of information systems 
[1]. In conventional requirements engineering, requirements 

are elicited from domain knowledge obtained from stake-
holders, relying primarily on qualitative data collection 
methods (e.g., interviews, workshops, and focus group dis-
cussions) [2]. The ongoing digitalization of organizations 
and society at large—as seen, for instance, by the prolifera-
tion of e-commerce and the advent of IoT—has led to an 
unprecedented and increasing amount of high-velocity and 
heterogeneous data, which is often referred to as Big Data 
[3].

The digital transformation has spawned new opportunities 
to consider this type of dynamic data from digital sources 
as potentially valuable sources of requirements, in addition 
to domain knowledge. Harnessing both traditional and new 
data sources in a complementary fashion may help improve 
the quality of existing or facilitate the development of new 
software systems. Nevertheless, conventional elicitation 
techniques are often time-consuming and not sufficiently 
scalable for processing such fast-growing data or capa-
ble of considering stakeholder groups that are becoming 
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increasingly large and global. This highlights the need for a 
data-driven approach to support continuous and automated 
requirements engineering from ever-growing amounts of 
data.

There have been numerous efforts to automate require-
ments elicitation from static data, i.e., data that are gener-
ated with a relatively low velocity and rarely updated. These 
efforts can be grouped according to the following three aims: 
(1) eliciting requirements from static domain knowledge 
(e.g., documents written in natural languages [4, 5], ontolo-
gies [6, 7], and various types of models, e.g., business pro-
cess models [8], UML use cases and sequence diagrams [9]), 
(2) performing specific requirements engineering activities 
based on requirements that have been already elicited (e.g., 
requirements prioritization [10], classification of natural lan-
guage requirements [11], management of requirements trace-
ability [12], requirements validation [13], generation of a 
conceptual model from natural language requirements [14]), 
or (3) developing tools to enhance stakeholders’ ability to 
perform requirements engineering activities based on static 
domain knowledge or existing requirements (e.g., tool-sup-
port for collaborative requirements prioritization [15] and 
requirements negotiation with rule-based reasoning [16]).

Several systematic reviews have been conducted on auto-
mated requirements elicitation from static domain knowl-
edge. Meth et al. conducted a systematic review on tool 
support for automated requirements elicitation from domain 
documents written in natural language, where they analyzed 
and categorized the identified studies according to an ana-
lytical framework which consists of tool categories, techno-
logical concepts, and evaluation approaches [17]. Nicolás 
and Toval conducted a systematic review of the methods and 
techniques for transforming domain models (e.g., business 
models, UML models, and user interface models), use cases, 
scenarios, and user stories into textual requirements [18]. In 
both of these reviews, the requirements sources contained 
static domain knowledge.

Much less focus has been placed on eliciting requirements 
from dynamic data, and data that were not intentionally col-
lected for the purpose of requirements elicitation. There are 
four main advantages to focus on dynamic data from such 
“unintended” digital sources. First, dynamic data-driven 
requirements engineering facilitates secondary use of data, 
which eliminates the need for collecting data specifically 
for requirements engineering, in turn enhancing scalability. 
Second, unintended digital sources can include data relevant 
for new system requirements that otherwise would not be 
discovered since utilizing such data sources allows for the 
collection of data from larger and global stakeholders who 
are beyond the reach of an organization relying on traditional 
elicitation methods [19]. Including such requirements, which 
a current software system is not supporting, can bring busi-
ness values in the form of improved customer satisfaction, 

cost and time reduction, and optimized operations [20]. 
Third, focusing on dynamic data allows for capturing up-
to-date user requirements, which in turn enables timely and 
effective operational decision making. Finally, dynamic 
data from unintended digital sources are machine-readable, 
which facilitates automated and continuous requirements 
engineering. A fitting requirements elicitation approach 
provides new opportunities and competitive advantages in a 
fast-growing market by extracting real-time business insights 
and knowledge from a variety of digital sources.

Crowd-based requirements engineering (CrowdRE) is a 
good example that has taken advantage of dynamic data from 
unintended digital sources. A primary focus of CrowdRE has 
been on eliciting requirements from explicit user feedback 
from crowd users (e.g., app reviews and data from social 
media) by applying various techniques based on machine 
learning and natural language processing [21]. Genc-Nayebi 
and Abran conducted a systematic review on opinion min-
ing from mobile app store user reviews to identify existing 
solutions and challenges for mining app reviews, as well as 
to propose future research directions [22]. They focused on 
specific data-mining techniques used for review analysis, 
domain adaptation methods, evaluation criteria to assess the 
usefulness and helpfulness of the reviews, techniques for 
filtering out spam reviews, and application features. Mar-
tin et al. [26] surveyed on studies that performed app store 
analysis to extract both technical and non-technical attrib-
utes for software engineering. Tavakoli et al. [27] conducted 
a systematic review on techniques and tools for extracting 
useful software development information through mobile 
app review mining. The aforementioned literature reviews 
only focus on utilizing app reviews, while leaving out other 
types of human-sourced data that are potentially useful as 
requirement sources. There is also a growing interest in 
embracing contextual and usage data of crowd users (i.e., 
implicit user feedback) for requirements elicitation. This 
systematic review, thus, broadens the scope of previous lit-
erature reviews by considering more diverse data sources 
than merely app reviews for requirements elicitation.

Another relevant approach to data-driven requirements 
engineering is the application of process mining capabilities 
for requirements engineering. Process mining is an evidence-
based approach to infer valuable process-related insights pri-
marily from event logs, discovered models, and pre-defined 
process models. Process mining can be divided into three 
types: process discovery, conformance checking, and pro-
cess enhancement [23]. Ghasemi and Amyot performed a 
systematic review on goal-oriented process modeling in 
which the selected studies were categorized into three areas: 
(1) goal modeling and requirements elicitation, (2) inten-
tion mining (i.e., the discovery of intentional process models 
going beyond mere activity process models), and (3) key 
performance indicators (i.e., means for monitoring goals) 
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[23]. Their findings indicate that the amount of research on 
goal-oriented process mining is still limited. In addition to 
explicit and implicit user feedback, as well as event logs and 
process models, there may be more opportunities to leverage 
a broader range of dynamic data sources for requirements 
engineering, such as sensor readings.

Zowghi and Coulin [24] performed a comprehensive sur-
vey on techniques, approaches, and tools used for require-
ments elicitation. However, their work exclusively focused 
on conventional, stakeholder-driven requirements elicitation 
methods. Our study instead investigated the data-driven 
requirements elicitation. More recently, Arruda and Mad-
havji [25] systematically reviewed the literature on require-
ments engineering to develop Big Data applications. They 
identified the process and type of requirements needed for 
developing Big Data applications, identified challenges 
associated with requirements engineering in the context of 
Big Data applications, discussed the available requirements 
engineering solutions for the development of Big Data appli-
cations, and proposed future research directions. This study 
is different from their work because we studied methods 
to elicit requirements from Big Data rather than eliciting 
requirements for Big Data applications.

To our knowledge, no systematic review has been per-
formed with an explicit focus on automated requirements 
elicitation for information systems from three types of 
dynamic data sources: human-sourced data sources, process-
mediated data sources, and machine-generated data sources. 
The aim of this study is, therefore, to perform a compre-
hensive and systematic review of the research literature on 
existing state-of-the-art methods for facilitating automatic 
requirements elicitation for information systems driven by 
dynamic data from unintended digital sources.

This review may help requirements engineers and 
researchers understand the existing data-driven requirements 
elicitation techniques and gaps need to be addressed to facili-
tate data-driven requirements elicitation. Those insights may 
provide a basis for further development of algorithms and 
methods to leverage the increasing availability of Big Data 
as requirements sources.

Definitions and Scope

In this study, dynamic data are defined as raw data available 
in a digital form that changes frequently and have not already 
been analyzed or aggregated. Dynamic data certainly include 
but are not limited to Big Data, which in itself is challenging 
to define [28]. In addition to Big Data, dynamic data also 
include data that does not strictly meet the 4 Vs of Big Data 
(i.e., Volume, Variety, Veracity, and Velocity) but are still 
likely to contain relevant requirements-related information. 
Domain knowledge includes, for example, intellectual prop-
erty, business documents, existing system specifications, 

goals, standards, conferences, and knowledge from custom-
ers or external providers.

This study excludes static domain knowledge that is less 
frequently created or modified and has been the primary 
focus of existing automated requirements engineering. 
Unintended digital sources are defined as sources of data 
generated via digital technologies that are unintended with 
respect to requirements elicitation. Thus, dynamic data from 
unintended digital sources are the digital data pulled from 
data sources that are created/modified frequently without the 
intention of eliciting requirements.

Of note is that the two terms “dynamic data” and “unin-
tended digital source” together define the scope of this 
systematic review. For example, although domain docu-
ments are often created without the intention of perform-
ing requirements engineering, they are not considered to be 
dynamic data and, therefore, outside of the scope of this 
study.

Dynamic data from unintended digital sources expand 
explicit and implicit user feedback, defined by Morales-
Ramirez et al. [29]. In their study, user feedback is consid-
ered as “a reaction of users, which roots in their perceived 
quality of experience”, which indicates the existence of a 
specific user is assumed. However, there are many devices 
which collect Big Data such as environmental IoT sensors to 
measure temperature, humidity, and pollution level, without 
interacting users. Since we foresee the possibility of elic-
iting requirements from such data sources, we decided to 
use a different term from the term “implicit user feedback”. 
To categorize the sources of data, we used human-sourced, 
process-mediated, and machine-generated data, following 
Firmani et al. [30].

Research Questions

To achieve the aim of the study, we formulated the main 
research question as follows: how can requirements elicita-
tion from dynamic data be supported through automation? 
The main research question has been further divided into the 
following sub-research questions:

•	 RQ1: What types of dynamic data are used for automated 
requirements elicitation?
–	 We focus on describing the sources of the data, but 

also study whether there have been attempts to inte-
grate multiple types of data sources and whether 
domain knowledge has been used in addition to 
dynamic data.

•	 RQ2: What types of techniques and technologies are used 
for automating requirements elicitation?
–	 We are interested in learning which underlying tech-

niques and technologies are used in the proposed 
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methods, as well as how they are put together and 
evaluated.

•	 RQ3: What are the outcomes of automated requirements 
elicitation?
–	 We assess how far the proposed methods go in auto-

mating requirements elicitation, the form of the out-
puts generated by the data-driven elicitation method, 
and what types of requirements are elicited.

This systematic review will advance scientific knowledge 
on data-driven requirements engineering for continuous sys-
tem development and evolution by (1) providing a holistic 
analysis of the state-of-the-art methods that support auto-
matic requirements elicitation from dynamic data, (2) iden-
tifying associated research gaps, and (3) providing directions 
for future research. The paper is structured as follows: the 
second section presents the research methods used in our 
study; the third section presents an overview of the selected 
studies and the results based on our analytical framework; 
the fourths section provides a detailed analysis and discus-
sion of each component of the analytical framework; the 
fifth section describes potential threats to validity; finally, 
the last section concludes the paper and suggests directions 
for future work.

Methods

A systematic literature review aims to answer a specific 
research question using systematic methods to consolidate 
all relevant evidence that meets pre-defined eligibility cri-
teria [3]. It consists of three main phases: planning, con-
ducting, and reporting the review. The main activities of 
the planning phase are problem formulation and protocol 
development. Before the actual review process started, we 
formulated research questions. The study protocol was then 
developed, conforming to the guideline of the systematic 
literature review proposed by Kitchenham and Charters [31]. 
The protocol included the following contents: background, 
the aim of the study, research questions, selection criteria, 
data sources (i.e., electronic databases), search strategy, 
data collection, data synthesis, and the timeline of the study. 
The protocol was approved by the research group, which 
consists of the first author and two research experts: one 
expert in requirements engineering and one expert in data 
science. The actual review process starts during the con-
ducting phase. The phase includes the following activities: 
identifying potentially eligible studies based on title, abstract 
and keywords, selecting eligible studies through full-text 
screening, extracting and synthesizing data that are relevant 
to answer the defined research question(s), performing a 
holistic analysis, and interpreting the findings. During the 

reporting phase, the synthesized findings are documented 
and disseminated to an appropriate channel.

Selection Criteria

Inclusion and exclusion criteria were developed to cap-
ture the most relevant articles for answering our research 
questions.

Inclusion Criteria

We included articles that met all the following inclusion 
criteria:

•	 Requirements elicitation is supported through automa-
tion.

•	 Requirements are elicited from digital and dynamic 
data sources.

•	 Digital and dynamic data sources are created without 
intention with respect to requirements engineering.

•	 Changes in requirements should involve the elicitation 
of new requirements.

•	 The article has been peer-reviewed.
•	 The full text of the article is written in English.

Exclusion Criteria

We excluded articles that met at least one of the following 
exclusion criteria:

•	 Requirements are elicited solely from non-dynamic 
data.

•	 The proposed method is performed based on existing 
requirements.

•	 Studies that merely presented the proposed artifact 
without any or sufficient descriptions of evaluation 
methods.

•	 Review papers, keynote talks, or abstracts of confer-
ence proceedings.

Data Sources

We performed a comprehensive search in six electronic 
databases (Table 1). In the first iteration, we searched 
Scopus, Web of Science, ACM Digital Library, and IEEE 
Xplore. Those databases were selected because they 
together cover the top ten information systems journals 
and conferences [17]. In addition, EBSCOhost and Pro-
Quest, which are two major databases in the field of infor-
mation systems, were searched to maximize the coverage 
of relevant publications, in line with a previous systematic 
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review in the area [17]. ProQuest and EBSCOhost include 
both peer-reviewed and non-peer-reviewed articles. We, 
however, considered only peer-reviewed articles to be con-
sistent with our inclusion criteria. The differences in the 
search field across databases are due to the different search 
functionalities of each electronic database.

Search Strategy

A comprehensive search strategy was developed in consulta-
tion with a librarian and the two co-authors who are experts 
in the fields of requirements engineering and data science, 
respectively. First, we extracted three key components from 
the first research question: requirements elicitation, automa-
tion, and Big Data sources and related analytics (Table 2). 
These components formed the basis for creating a logical 
search string. Big Data can refer either to data sources or to 
analytics/data-driven techniques to process Big Data. The 
term is also closely related to data-mining/machine-learn-
ing/data science/artificial intelligence techniques. We thus 
included keywords and synonyms that cover both Big Data 
sources and related analytics.

To construct a search string, keywords and synonyms 
that were grouped in the same component were connected 
by OR-operators, while each key component was connected 
by AND-operators, which means at least one keyword from 
each component must be present. The search string was 

adapted using the specific syntax of each database’s search 
function. The search string was iteratively tested and refined 
to optimize search results through trial search.

Study Selection

The entire search was performed by the first author (SL). 
Before starting the review process, we tested a small number 
of articles to establish agreement and consistency among 
reviewers. We then conducted a pilot study in which three 
reviewers independently assessed 50 randomly selected 
papers to estimate the sample size that is needed to ensure 
a substantial level of agreement (i.e., 0.61–0.80) based on 
the Landis and Koch-Kappa’s benchmark scale [32]. Each 
paper was screened by assessing its title, abstract, and key-
words against our selection criteria (level 1 screening). Dur-
ing level 1 screening, articles were classified into one of the 
three categories: (1) included, (2) excluded, or (3) uncertain. 
Studies that fell into category 1 and 3 proceeded to full-
text screening (level 2 screening) since the aim of the level 
1 screening was to identify potentially relevant articles or 
those that lack sufficient information to be excluded.

After each reviewer had assessed 50 publications, we 
computed the Fleiss’s Kappa to calculate the inter-rater 
reliability. We, however, did not discuss the results of each 
reviewer’s assessment. The Fleiss’s Kappa was used because 
there were more than two reviewers. The Fleiss’ Kappa 
was computed to be 0.786. Sample size estimation was 

Table 1   Data sources Electronic databases Search field Date of search

Scopus Title, abstract, keywords 2018-12-05
Web of Science Topic 2018-12-05
ACM Digital Library Title, author, abstracts, citations, and keywords 2018-12-05
IEEE Xplore Metadata (i.e., abstract, title text, and indexing terms) 2018-12-05
EBSCOhost Subject, keywords, title, abstract 2018-12-21
ProQuest Anywhere except full text 2018-12-21

Table 2   Search terms Key components Keywords and synonyms

Requirements elicitation “Requirements elicitation” OR “requirements analysis” 
OR “requirements identification” OR “requirements 
discovery” OR “requirements gathering” OR “require-
ments determination” OR “requirements collection” 
OR “requirements engineering” OR “system require-
ments”

Automation Automat* OR “computer aided” OR “computer assisted”
Big Data sources and related analytics “Big data” OR sensor* OR “Internet of Things” OR IoT 

OR “natural language processing” OR “data mining” 
OR “artificial intelligence” OR “data processing” OR 
“data science” OR “data analysis” OR “machine learn-
ing” OR “data driven” OR “data oriented” OR “graph 
analytics”



	 SN Computer Science            (2021) 2:16    16   Page 6 of 35

SN Computer Science

performed, following a confidence interval approach sug-
gested by Rotondi and Donner [33]. Using 0.786 as the point 
estimate of Kappa and 0.61 as the expected lower bound, the 
required minimum sample size was estimated to be 139. The 
value of 0.61 was used as the lower bound of Kappa because 
it is the lower limit of “substantial” inter-rater reliability 
based on the Landis and Koch-Kappa’s benchmark scale 
[32], which is what we had aimed for. Since we achieved 
a substantial level of agreement and did not discuss results 
not to influence each other’s decisions, each of three review-
ers independently continued to screen the remainder of the 
89 randomly chosen publications based on titles, abstracts, 
and keywords (level 1 screening). The overall Fleiss’ Kappa 
for reviewing 139 articles was 0.850, which indicates an 
“almost perfect” agreement, according to the benchmark 
scale proposed by Landis and Koch [32]. Since we were able 
to achieve a very high inter-rater reliability, the rest of the 
level 1 screening was conducted by a single reviewer (SL). 
However, all of the three reviewers discussed and reached a 
consensus on the articles which SL classified as uncertain or 
could not decide on with sufficient confidence.

Before conducting the level 2 screening, we discussed 
which information should be extracted from the eligible 
articles. Based on the discussion, we developed a prelimi-
nary analytical framework to standardize the information 
to be extracted. We tested this on a small number of full-
text papers and refined the data extraction form accordingly. 
In the level 2 screening, at least two authors reviewed the 
full-text of each paper that has been identified in level 1 
screening to assess its eligibility in the final analysis. In 
addition to keyword-based search on the databases, we also 
performed forward/backward reference searching of all the 
included studies. SL extracted data from all the eligible stud-
ies, while each of AH and JZ divided the data extraction task 
by half. This was done to ensure that data extracted by SL 
could be cross-checked by at least one of the two reviewers 
who have richer experiences and knowledge. Any disagree-
ments between the two reviewers were referred to the third 
reviewer and resolved by consensus.

To update the search results, an additional search was 
performed on July 3, 2020, using the same search query and 
introducing the two-level screening process (i.e., keyword-
based search followed by full-text screening). While filtering 
can be performed by specifying the publication date and year 
in some databases, in other databases, the search can only be 
filtered by the publican year. Thus, we manually excluded 
the studies that have been published before the date of the 
initial search. However, we did not perform a backward and 
forward reference search during the updating phase. We then 
applied the same selection criteria used for the initial search 
to identify the relevant studies.

Analytical Framework and Data Collection

After considering the selected articles, we iteratively devel-
oped and refined an analytical framework, which covers 
both design and evaluation perspectives, to answer our 
research questions. The framework consists of three com-
ponents: types of dynamic data sources used for automated 
requirements elicitation, techniquesand technologies used 
for automated requirements elicitation, and the outcomes of 
automated requirements elicitation. Table 3 summarizes the 
extracted data that are associated with each component of 
the analytical framework. Each component of the analytical 
framework is described in detail below.

Types of Dynamic Data Sources Used for Automated 
Requirements Elicitation

To answer RQ1, we extracted the following information: (1) 
types of dynamic data sources, (2) types of dynamic data, (3) 
integration of data sources, (4) relation of dynamic data to 
a given organization, and (5) additional domain knowledge 
that is used to elicit system requirements.

Types of Dynamic Data Sources  Dynamic data sources are 
categorized into one or a combination of human-sourced 
data sources, process-mediated data sources, and machine-
generated data sources [30]. This provides insights into 
which types of data sources have drawn the most or the least 
attention as potential requirements sources in the existing 
literature. The categorization also helps to analyze whether 
there exists any process pattern in the automated require-
ments elicitation within each data source type.

Human-sourced data sources refer to the digitized records 
of human experiences. To name a few, examples of human-
sourced data sources include social media, blogs, and con-
tents from mobile phones. Process-mediated data sources are 
records of business processes and business events that are 
monitored, which includes electronic health records, com-
mercial transactions, banking records, credit card payments. 
Machine-generated data sources are the records of fixed and 
mobile sensors and machines that are used to measure the 
events and situations in the physical world. They include, 
for example, readings from environmental and barometric 
pressure sensors, outputs of medical devices, satellite image 
data, and location data such as RFID chip readings and GPS 
outputs.

Types of  Dynamic Data  To understand what types of 
dynamic data have been used for eliciting system require-
ments in the existing literature, we extracted the specific 
types of dynamic data that were used in each of the selected 
studies and grouped them into seven categories. Those cate-
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gories are online reviews (e.g., app reviews, expert reviews, 
and user reviews), micro-blogs (e.g., Twitter), online dis-
cussions/forums, software repositories (e.g., issue tracking 
systems and GitHub), usage data, sensor readings, and mail-
ing lists.

Integration of  Data Sources  We explored whether the 
study integrates multiple types of dynamic data sources 
(i.e., any combination of human-sourced, process-medi-
ated, and machine-generated data sources). We classified 
the selected studies into “yes” if the study has used multi-
ple dynamic data sources, otherwise into “no.”

Table 3   Analytical framework

Components Extracted data Definition/description

Overview of the study General characteristics The number that is uniquely associated with the 
title, author (s), the name of journal/confer-
ence, and year of publication

Types of dynamic data sources used for auto-
mated requirements elicitation

Types of dynamic data sources • Human-sourced data sources
• Process-mediated data sources
• Machine-generated data sources

Types of specific dynamic data • Online reviews
• Microblogs
• Online discussions/forums
• Software repositories
• Usage data
• Sensor readings
• Mailing lists

Integration of data sources • Yes
• No

Relation of dynamic data to an organization 
of interest

• Internal
• External

Additional use of domain knowledge • Yes
• No

Techniques used for requirements elicitation Techniques(s) used for automation • Machine learning
• Rule-based classification
• Model-oriented approach
• Topic modeling
• Traditional clustering

Summarization/aggregation • Yes
• No

Visualization • Yes
• No

Intended degree of automation • Full-automation
• Semi-automation

Evaluation approach • Controlled experiment
• Case study
• Proof of concept
• Other concepts

Evaluation concepts • Completeness
• Correctness
• Efficiency
• Other evaluation concepts

Evaluation metrics Metrics that were used to evaluate a selected 
concept(s)

The outcomes of automated requirements 
elicitation

Expression of requirements • Identification and classification of require-
ments-related information

• Identification of candidate features related to 
requirements

• Elicitation of requirements
Additional requirements engineering activity 

supported through automation
• Yes
• No
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Relation of  Dynamic Data to  a  Given Organization  Under-
standing whether requirements are elicited from external or 
internal data sources in relation to a given organization is 
important for requirements engineers to identify potential 
sources that can bring innovations into the requirements 
engineering process and facilitate software evolution and 
development of new promising software systems. We thus 
classified the selected studies into “yes” if the platform is 
owned by the organization and “no” if it is owned by a third 
party.

Additional Domain Knowledge that was Used to Elicit Sys‑
tem Requirements  We assessed whether the study uses any 
domain knowledge in combination with dynamic data to 
explore the possible ways of integrating both dynamic data 
and domain knowledge. The selected studies were classified 
into “yes,” if the study uses any domain knowledge in addi-
tion to dynamic data, otherwise classified into “no.”

Techniques Used for Automated Requirements Elicitation

To answer RQ2, the following four types of information 
were extracted: (1) technique(s) used for automated require-
ments elicitation, including process pattern of automating 
requirements elicitation, (2) use of aggregation/summariza-
tion, (3) use of visualization, and (4) evaluation methods.

Technique(s) Used for Automation  Implementing promising 
algorithms is a prerequisite for effective and efficient auto-
mation of the requirements elicitation process. To identify 
the state-of-the-art algorithms, specific methods that were 
used for automating requirements elicitation were extracted 
and categorized into machine learning, rule-based classifi-
cation, model-oriented approach, topic modeling, and tradi-
tional clustering.

Aggregation/Summarization  Summarization helps navi-
gate requirements engineers to pinpoint the relevant infor-
mation efficiently out of the ever-growing amount of data. 
We thus assessed whether the study summarizes/aggre-
gates requirements-related information to obtain high-level 
requirements. If summarization/aggregation is performed, 
we also extracted specific techniques used for summariza-
tion/aggregation.

Visualization  Visualization facilitates requirements engi-
neers to interpret the results of data analysis efficiently 
and effectively as well as to gain (new) insights in data. 
We assessed whether the study visualizes the output of 
the study to enhance their interpretability. If visualization 
is provided, the specific method used for visualization was 
also extracted.

Evaluation Methods  To understand how rigorously the 
performance of the proposed artifact was evaluated, we 
extracted methods that were used to assess the artifact. Eval-
uation methods were further divided into two dimensions: 
evaluation approach and evaluation concepts and metrics 
[17]. The evaluation concept of each selected study was cat-
egorized into one of the following groups: controlled exper-
iment, case study, proof of concept, and other concepts. In a 
controlled experiment, the proposed artifact is evaluated in 
a controlled environment [34]. A case study aims to assess 
the artifact in-depth in a real-world context [34]. A proof 
of concept is defined as a demonstration of the proposed 
artifact to verify its feasibility for a real-world application. 
Other concepts refer to studies using other approaches to 
evaluate their artifact that does not fall into any category of 
the aforementioned evaluation approach. We also extracted 
evaluation concepts and metrics used for the artifact evalu-
ation. Evaluation concepts were classified into one or more 
of the following categories: completeness, correctness, effi-
ciency, and other evaluation concepts.

The Outcomes of Automated Requirements Elicitation

To answer RQ3, we assessed the outcomes of automated 
requirements elicitation by extracting the following informa-
tion: (1) types of requirements, (2) expression of the elicited 
requirements (i.e., in what form outputs that were generated 
by automated requirements elicitation were expressed), and 
(3) additional requirements engineering activity supported 
through automation.

Expression of the Elicited Requirements  To understand how 
the obtained requirements are expressed and how far the 
elicitation activity reached, outputs of automated require-
ments elicitation were extracted, which were grouped into 
the following categories: identification and classification 
of requirements-related information, identification of can-
didate features related to requirements, and elicitation of 
requirements.

Intended Degree of  Automation  Based on the degree of 
the proposed automated method, the selected studies were 
classified into either full automation or semi-automation. 
We classified the study as full automation if the study ful-
filled either of the following conditions: (1) the proposed 
artifact automated the entire requirements elicitation pro-
cess without human interaction, or (2) the proposed artifact 
only supports the partial process of requirements elicita-
tion; however, the part it addressed was fully automated. 
Semi-automation refers to having a human-in-the-loop for 
automating requirements elicitation, thus requirements 
are directed by human interactions.
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Additional Requirements Engineering Activity Supported 
Through Automation  Understanding to what extent the 
entire requirements engineering process has already been 
automated is essential to clarify the direction of future 
research that aims at increasing the level of automation in 
performing the requirements engineering process. We thus 
extracted the requirements engineering activity that was 
supported through automation other than requirements elic-
itation, if any.

Quality Assessment

We simply assessed the quality of the selected studies based 
on CORE Conference Rankings for conferences, workshops, 
and symposia, and SCImago Journal Rank (SJR) indicators 
for journal papers. We assumed that a study with a higher 
score of CORE or SJR has higher quality than one with a 
lower score. The papers that have been ranked A*, A, B, 

or C for the CORE index get the point of 1.5, 1.5, 1, and 
0.5, respectively. If a paper is ranked Q1 or Q2 for the SJR 
indicator, the paper receives 2 and 1.5, respectively, while a 
paper that is ranked Q3 or Q4 gets 1. If a conference/journal 
paper is not included in the CORE/SJR ranking, the paper 
scores 0 points.

Data Synthesis

We narratively synthesized the findings of this systematic 
review, which includes basic descriptive statistics and quali-
tative analyses of (semi-)automated elicitation methods that 
are sub-grouped by dynamic data source as well as identified 
research gap(s), and implications and recommendations for 
future research.

Fig. 1   Flow diagram of article 
selection

Table 4   The results of study identification for each electronic database

Results Database Duplicates identi-
fied (via Zotero)

Sub-total

Scopus Web of science IEEE Xplore ACM digital 
library

EBSCOhost Proquest

Initial search 686 508 347 94 201 12 458 1390
Additional search 236 112 101 12 10 2 473 401
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Results

Figure 1 shows a flow diagram of the article selection. We 
obtained 1,848 hits when searching the 6 electronic databases. 
We removed 458 duplicates, leaving 1,390 articles for level 1 
screening (Table 4). After level 1 screening, we identified 40 
articles to proceed to level 2 screening. The level 2 screen-
ing resulted in the inclusion of 29 articles for data extraction. 
We excluded the remaining eleven papers due to: the study 
not using dynamic data for requirements elicitation; the study 
being based on existing requirements that had already been 
elicited; the study not automating requirements elicitation to 
any degree; and the study proposing a method for automated 
requirements elicitation without sufficient evaluation.

In addition, a forward and backward reference search identi-
fied 1017 additional articles. Out of these, 22 articles met our 
inclusion criteria. Thus, a total of 51 papers were considered 
in the final analysis. Reasons for similar numbers of articles 
being identified in the query-based search and the backward/
forward search include: the studies using terms such as “elicit 
requirements”, “requirements”, “requirements evolution” 
instead of “requirements elicitation”; using keywords which 
cover only one or two of the three keyword blocks despite 
being relevant; using only the name of a specific analytics 
technique (e.g., Long Short-term Memory) and not more gen-
eral terms included in the identified keywords, e.g., machine 
learning.

To update the search results, we performed additional 
search and two-level screening, using the same search query 
process. The updated search identified 401 after removing 
duplicates (Table 4). Two-level screening resulted in includ-
ing 17 additional studies. However, we did not perform a 
backward and forward reference search during this phase. 
We also included one study that was not captured by the 
search query but was recommended by an expert due to its 
relevance to our research question. We, therefore, selected a 
total 68 studies to be included in this review.

General Characteristics of the Selected Studies

Of the 68 selected articles, conference proceedings are the 
most frequent publication type (n = 41), followed by journal 
articles (n = 16), workshop papers (n = 7), and symposium 
papers (n = 4). All selected studies except one (2009) were 
published between 2012 and 2020. Figure 2 depicts the 
total number of the included papers per publication year. 
Although the number of publications dropped in 2018, in 
general, there is an increasing trend of publications between 
2012 and 2019. For the year 2020, the result is shown as of 
July 3. A further observation is thus needed to confirm the 
increasing trend at the end of the year. The median score 

for study quality was 1 with the interquartile range of 0–1.5 
(Appendix 2).

Types of Dynamic Data Sources Used 
for Requirements Elicitation

Dynamic Data Sources Used for Automated Requirements 
Elicitation

Among dynamic data sources, human-sourced data sources 
have been primarily used as requirements sources. Among 
the three types of dynamic data sources, the vast major-
ity (93%, n = 63) of the studies used human-sourced data 
sources for eliciting requirements. Only four studies (6%) 
explored using either machine-generated (n = 2) or process-
mediated (n = 2) data sources. Almost all the studies focused 
on a single type of dynamic data source. We identified only 
one study attempting to integrate multiple types of dynamic 
data sources (1%).

The Specific Types of Dynamic Data Used for Automated 
Requirements Elicitation

The following seven data sources have been used for auto-
mated requirements elicitation: online reviews, micro-blogs, 
online discussions/forums, software repositories, software/
app production descriptions, sensor readings, usage data 
from system–user interactions, and mailing lists (Table 5). 
Online reviews are reviews of a product or service that 
is posted and shown publicly online by people who have 
purchased a given service or product. Microblogs, which 
are typically published on social media sites, are a type of 
blog in which users can post a message in a form of differ-
ent content formats such as short texts, audio, video, and 
images. They are designed for quick conversational inter-
actions among users. Online discussions/forums are online 
discussion sites where people can post messages to exchange 
knowledge. Software repositories are platforms for sharing 
software packages or source codes, which primarily contain 
three elements: a trunk, branches, and tags. This study also 

Fig. 2   Publication trend



SN Computer Science            (2021) 2:16 	 Page 11 of 35     16 

SN Computer Science

considered issue-tracking systems as software repositories, 
which are detailed reports of bugs or complaints written in 
the form of free texts. Sensor readings are electrical outputs 
of devices that detect and respond to inputs from a physical 
phenomenon, which results in a large amount of streaming 
data. Usage data are run-time data collected when users are 
interacting with a given system. Mailing lists are a type of 

electronic discussion forums. E-mail messages sent by spe-
cific subscribers are shared by everyone on a mailing list.

Figure 3 depicts the types of dynamic data that have been 
used for automated requirements elicitation. Online reviews 
are the most frequently used type of dynamic data for elic-
iting requirements (53%), followed by micro-blogs (18%) 
and online discussions/forums (12%), software repositories 

Table 5   Dynamic data used for automated requirements elicitation

Dynamic data Data descriptions

Online reviews • Online reviews included app reviews, reviews compiled by experts, and online user reviews. Among the 
studies which used online reviews, a majority of the studies used app reviews as the sources of potential 
requirements (75%) [35–54]. Of them, 14 used app reviews from multiple distribution platforms such as 
Apple AppStore and Google Play to increase the level of generalizability, while eleven used those from a 
single distribution platform, and one did not specify the number of app distribution platforms

• Of the studies which used online reviews, 17% (n = 6) extracted user reviews of software and video games 
[55], IoT products [56], compact cameras [57], internet security [58], Jira and Trello [59], and Jingdong.
com [60]. Expert reviews were used in the 8% (n = 3), of which two were from multiple platforms [61, 62], 
and one was from a single platform [63]

Microblogs • Microblog data from twitter, Facebook, and Weibo were used for automated requirements elicitation. Of 
total eleven studies that used twitter, four studies extracted only texts [64–67], while the rest extracted 
additional metadata [68–74]. The metadata include the number of retweets, likes, lexically similar tweets 
(i.e., duplicates), twitter followers and friends (i.e., social rank), replies to tweets, as well as hashtags, han-
dles (i.e., indicated by an @ appended with a username), and demographic data of the person who tweeted.

• Ali et al. [66] and Han et al. [75] used user comments on Facebook and Weibo, respectively. Seven out of 
11 studies that used microdata performed sentiment analysis of tweets [64–66, 68, 69, 72, 73]

Online discussion/forum Eight studies (12%) elicited requirements from different online discussion forums: online forum posts from 
the feature tracker of the Password Safe project on SourceForge [76], questions and answers on Stack 
Overflow [77], and feature requests from open-source forums of SugarCRM, SecondLife, and an Amazon-
like portal specifically developed for students [78], OpenOffice online discussion forum [79], the Reddit 
forum [80–82], and the VLC media player and Firefox web browser forums [83]

Software repositories Seven studies (10%) leveraged data from software repositories: the Apache OpenOffice issue tracking system 
[84], issues mined from the Android OS issue tracker [23], the natural language and features from the issue 
tracking system metadata of the four open-source projects [85], and GitHub [86], GitHub and JIRA issue 
tracker [87], and a data sink tank containing data from multiple software repositories (e.g., GitHub, JIRA, 
Jenkins, and SonarQube) [88, 89]

Software/app product descriptions Five studies (7%) used software product descriptions on Softpedia [90, 91], app change logs [92, 93], or app 
description page [94]

Sensor readings • Voet et al. [95] analyzed usage elements, which are the individual activities or parameters that are captured 
via a handheld grinder, equipped with sensors, for user-centered and data-driven product improvement. 
Features were extracted and selected from the usage elements and stored in the form of an array of the 
features per time window (i.e., the coefficients of an autoregressive model of order two). Those selected 
features were fed into a machine-learning algorithm to predict usage element states.

• Liang et al. collected [96] user context data (i.e., time, the location and motion state of the crowd mobile 
users) and the currently running apps (i.e., mobile applications running at a given time point) via the 
sensors of the smartphones and used to mine context-aware user requirements. User context data are struc-
tured as a 3-tuple, while the currently running apps are represented as the name of the apps. Context-aware 
user requirements take the form of user behavior patterns, which are represented as frequent item sets of 
user behavior (i.e., 4-tuples sets of user context and the name of the current running app(s)).

Usage data • Xie et al. [97] and Yang et al. [98] identified emerging or new user intentions based on users’ run-time 
behavioral patterns and the corresponding environmental context values, when using the Cooperative 
Research Environment (CoRE) system, an online library system that is modified based on an open-source 
web application called MyReview. Usage data were structured as a set of feature functions that are defined 
to reflect the relations between time-series user behavior (i.e., user actions) and the corresponding contex-
tual values and goals

• Wüest et al. [99] monitored the system usage to detect requirements violation and observed a sequence of 
feature usage to better understand user requirements

Mailing lists Two studies used mailing lists as requirements sources: Apache Common User List [100] and open-source 
software mailing lists [79]
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(10%), and software/app product descriptions (7%). Other 
types of dynamic data include sensor readings (3%), usage 
data from system–user interactions (4%), and mailing lists 
(3%).

Several studies used multiple types of human-sourced 
data to gain complementary information and improve the 
quality of the analysis. Wang et al. [92] assessed whether the 
use of app changelogs improves the accuracy of identifying 
and classifying functional and non-functional requirements 
from app reviews, compared to the results obtained from the 
mere use of app reviews. Although there were no additional 
positive effects of app changelogs on improving the accuracy 
of automatic requirements classification, their subsequent 
study [93] shows that the accuracy of classifying require-
ments in app reviews by augmenting the reviews with the 
text feature words extracted from app changelogs.

Takahashi et al. in [100] used Apache Commons User 
List and App Store reviews. However, those two types of 
datasets were used independently without being integrated to 
evaluate their proposed elicitation process. Moreover, Stanik 
et al. [65] used three datasets: app reviews, tweets written 
in English, and tweets written in Italian. On the other hand, 
Johann et al. [94] integrated both app reviews and descrip-
tions to provide information on which app features are or are 
not actually reviewed. In addition, Ali et al. [66] combined 
tweets for a smartwatch and Facebook comments of wear-
able and smartwatch.

Some studies used multiple types of software reposito-
ries. Morales-Ramirez et al. [84] used two types of data-
sets obtained from the issue tracking system of the Apache 
OpenOffice community and the feedback gathering system 
of SEnerCON, which is an industrial project in the home 
energy management domain. In their different study [79], 
open-source software mailing lists, and OpenOffice online 
discussions were used to identify relevant requirements 
information. Nyamawe et  al. [87] used commits from 
GitHub repository and feature requests from JIRA issue 

tracker, while Oriol et al. [89] and Franch et al. [88] consid-
ered heterogenous software repositories.

Only one study used multiple types of data sources (e.g., 
human-sourced data and machine-generated data). Wüest 
et al. in [99] used both app user feedback (i.e., human-
sourced data) and app usage data (i.e., process-mediated 
data).

Relation of Dynamic Data to an Organization of Interest

The majority of the studies used dynamic data that was 
external to the organization of interest. Of the 68 studies 
included in the analysis, 57 studies (85%) used dynamic data 
which was externally related to a given organization (i.e., 
data were collected outside of an organization’s platforms) 
[36–77, 80–82, 86–94, 96, 101]. Nine studies (13%) used 
dynamic data that were collected from platforms belonging 
to the organization: issue tracking systems [84, 85, 102]; 
user feedback from the online discussion and open-source 
software mailing lists [79]; sensors equipped with an intel-
ligent product which is also known as a product embedded 
information devices (PEID) [95]; software production forum 
[103]; user feedback tool [99]. On the other hand, only two 
studies (3%) used both internal and external dynamic data 
[78, 100].

Additional Use of Domain Knowledge Used 
for Requirements Elicitation

Only one study considered additional inclusion of domain 
knowledge in eliciting requirements. Yang et al. [44] com-
bined the app review analysis and the Wizard-of-Oz tech-
nique for the requirements elicitation process. The results 
indicate that integrating the two sources can complement 
each other to elicit more comprehensive requirements that 
cannot be obtained from either one of the sources.

Approaches for Automated Requirements Elicitation

Approaches Used for Human‑Sourced Data

Since human-sourced data are typically expressed in natu-
ral language, natural language processing (NLP) is com-
monly used for analyzing this type of data. All of the 63 
studies which used human-sourced information started the 
requirements elicitation process by preprocessing the raw 
data using NLP techniques. Data preprocessing typically 
involves removing noise (e.g., HTML tags) to retain only 
text data. Another critical data preparation activity is tokeni-
zation, which means splitting the text into sentences and 
tokens (words, punctuation marks, and digits), respectively.

Further analysis of the text using NLP typically involves 
syntactic analysis, such as part-of-speech tagging. Two 

Fig. 3   Types of dynamic data used for automated requirements elici-
tation
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studies have used speech-acts, which are acts performed 
by a speaker when making an utterance, as parameters to 
train supervised learning algorithms [79, 84]. For eliciting 
requirements, nouns, verbs, and adjectives are often identi-
fied since they are more likely used for describing require-
ments-related information than other parts of speech, includ-
ing adverbs, numbers, and quantifiers [40].

A common preprocessing activity is stopword filtering, 
which involves removing tokens that are common but carry 
little meaning, including function words (e.g., “the”, “and”, 
and “this”), punctuations (e.g., “.”, “?”, and “!”), and special 
characters (e.g., “#” and “@”), and numbers. Normalization 
is moreover often carried out by lowercasing (i.e., convert all 
text data to lowercase), stemming (i.e., reduce inflectional 
word forms to their root form such as reducing “play”, “play-
ing” and “played” to their common root form of “play”) and 
lemmatization (i.e., grouping the different inflected forms 
of words which are syntactically different but semantically 
equal to be analyzed as a base form, called lemma, such as 
grouping “sees” and “saw” into a single base form of “see”).

Once the text data have been preprocessed, features are 
typically extracted for the subsequent modeling phase. Fea-
ture extraction can be done using a bag of words (i.e., sim-
ply count occurrences of tokens without considering word 
order nor normalizing counters), n-grams (i.e., extract the 
contiguous sequence of n tokens such as bi-gram which 
indicates the extraction of token pairs), and collocations 
(i.e., extract a sequence of words that co-occur more often 
than by chance, for example, “strong tea”). To evaluate how 
important a word is for a given document, a bag of words 
are often weighted, using a weighting scheme such as term 
frequency-inverse document frequency (tf-idf), which gives 
high weights to words that have a high frequency in a par-
ticular document, while having a low frequency in an entire 
set of documents. Other common features are based on syn-
tactic or semantic analysis of the text (e.g., part-of-speech 
tags). Sentiment analysis, which is the automated process of 
identifying and quantifying the opinion or emotional tone of 
a piece of text through NLP, was used in 18 studies (38%), 
either to feed into algorithms as features to increase the 
accuracy of the algorithms or to understand user satisfaction.

After preprocessing the human-sourced data and extract-
ing features for data modeling, the next step of requirements 
elicitation was to perform either classification or cluster-
ing. Classification refers to classifying (text) data into pre-
defined categories related to requirements, for example, clas-
sifying app reviews into bug reports, feature requests, user 
experiences, and text ratings [38]. Classification has been 
performed using three approaches: machine learning (ML), 
rule-based classification, or model-oriented approaches. In 
the ML approach, classification is performed by a model 
built by a learning algorithm based on pre-labeled data.

In the ML approach, various learning algorithms auto-
matically learn statistical patterns within a set of training 
data, such that a predictive model is able to predict a class 
for unseen data. In most studies, ML relied on supervised 
ML. In supervised ML, a predictive model is built based on 
instances that were pre-assigned with known class labels 
(i.e., training set). The model is then used to predict a label 
associated with unseen instances (i.e., test set). A down-
side with supervised ML is that it typically requires a large 
amount of labeled data (i.e., ground-truth set) to learn accu-
rate predictive models.

To reduce the cost of labeling a large amount of data, 
a few studies used the active learning paradigm and semi-
supervised machine learning for classification. Active learn-
ing enables machines to wisely select unlabeled data points 
to be labeled next in a way that optimizes a decision bound-
ary created by a given learning algorithm and interactively 
queries the user to label the selected data points to improve 
classification accuracy. Semi-supervised learning is an inter-
mediate technique between supervised and unsupervised 
ML, which utilizes both labeled and unlabeled data in the 
training process.

Rule-based classification is a classification scheme that 
uses certain rules, such as language patterns. Rule-based 
classification excels in performing simpler tasks where 
domain experts can define rules, while classification using 
ML works well for the tasks which are easily performed 
by humans but where (classification) rules are hard to for-
mulate. However, listing all the rules can be tedious and 
needs to be hand-crafted by skilled experts with abundant 
domain knowledge. Moreover, rules might need to be refined 
as new datasets become available, which requires additional 
resources and limits scalability [77]. A model-oriented 
approach, which includes utilizing conceptual or meta-
models, are applied to define and relate the mined terms 
and drive classification.

On the other hand, clustering has been performed using 
either topic modeling or more traditional clustering tech-
niques. Topic modeling is an unsupervised (i.e., learn from 
unlabeled instances) dimension reduction and clustering 
technique, which aims to discover hidden semantic patterns 
in the collection of a document. Topic modeling is used to 
represent an extensive collection of documents as abstract 
topics consisting of a set of keywords. In automated require-
ments elicitation, topic modeling is mainly used for either 
discovering system features or grouping similar fine-grained 
features that are extracted using different approaches into 
high-level features. Traditional clustering is an unsupervised 
ML technique that aims to discover the intrinsic structure of 
the data by partitioning a set of data into groups based on 
their similarity and dissimilarity. Among the selected stud-
ies, traditional clustering has been mainly used to discover 



	 SN Computer Science            (2021) 2:16    16   Page 14 of 35

SN Computer Science

inherent groupings of features in requirements-related 
information.

Some studies have performed clustering after classifi-
cation. Classification was first performed to identify and 
classify requirements-related information, using machine 
learning or rule-based classification. Clustering is then 
applied to the identified requirements-related information 
(e.g., improvement requests), while ignoring data irrelevant 

to requirements, to discover inherent groupings of features, 
using topic modeling or traditional clustering. Table  6 
provides a more detailed description of the automated 
approaches proposed in each study.

Figure  4 depicts the descriptive statistics of the 
approaches for automated requirements elicitation used in 
the selected studies. For classification, the most commonly 
used approach was based on the ML approach (60%), 

Table 6   Summary of the automated requirements elicitation approaches for human-sourced data that is grouped by classification approach and 
clustering approach

Classification approach How

Machine learning • Classification with supervised learning has been performed in numerous studies [36, 38, 39, 42, 45, 47, 48, 50, 51, 
53, 55, 56, 58–60, 64–71, 77, 79–82, 84, 85, 87, 91–93, 103, 104] to classify textual data into pre-defined labels that 
are relevant for performing requirements elicitation, including identification of relevant requirements sources and 
stakeholders as well as extraction of candidate features.

• Frequently used learning algorithms were Naïve Bayes, multinomial Naïve Bayes, Support Vector Machine, and 
logistic regression. Decision tree and random forest were also used in some studies [45, 69, 85]. Several different 
algorithms are often applied in the same study to compare the performance of classification.

• Active learning based on uncertain sampling, which selects data points which a model is most uncertain about for 
manual labeling, was applied to classify app reviews into a feature request, bug report, rating, and user experience 
[35]. 

• A semi-supervised learning technique was used to classify app reviews into either functional or non-functional 
requirements [43].

Rule-based classification • Rule-based classification has been applied to identify and classify relevant requirements information, to identify 
software features [40, 41, 46, 61, 62], and to elicit requirements [94].

• Rule-based classification has been performed: using collocation finding algorithms [40, 46]; grammar-based and 
delimiter-based strategies [76]; phrase search [86]; conducting language pattern matching which results are post-
processed with Part-of-Speech tagging [57]; n-gram analysis [102].

It has also been performed based on language patterns [37, 61], or linguistic tags [62], propagation rules based on 
syntactic relations [41], or the SAFE patterns which consist of Part-of-Speech patterns and sentence patterns [94].

Model-oriented • A user-oriented conceptual modeling approach was used for conceptualizing potential requirements in the form of 
consumer preferences and classifying and ranking the preferences to identify software features [73]. Highly-ranked 
consumer preferences in the conceptual model were further transformed into a i* goal model to explicate early/high-
level system requirements [72].

• Q-rapids, which is a quality-aware agile software development framework, was used to perform data-driven elicita-
tion of quality requirements [88, 89]. The data collected from heterogeneous software repositories are fed into a 
quality model to compute the quality of the software. If the quality level violates the user-defined threshold, quality 
alert is automatically created. When the alert is raised, candidate quality requirements (QRs) are identified, using the 
QR pattern catalog. The catalog consists of a set of QR patterns, which are bound to the quality model for matching 
the appropriate candidate QR patterns with the raised quality alert. The candidate QR patterns are then presented to 
stakeholders to elicit QRs.

Clustering approach How
Topic modeling • Within requirements engineering, different topic modeling algorithms have been used, depending on the length of 

the data. Latent Dirichlet Allocation (LDA), which is a common topic modeling algorithm, has been applied to app 
reviews in the studies [40, 44, 46, 100]. Higashi et al. [54] improve LDA by keyword expansion. Zhao and Zhao 
[47] used hierarchical LDA to extract software features. However, LDA is not suitable for analyzing shorter texts 
such as tweets due to the sparsity of word co-occurrence patterns in the individual document

• To overcome the problem, the Biterm Topic Model (BTM) has been developed for short texts [105]. In one study 
[68], BTM was applied to tweets to discover topics that are related to users’ experiences.

Traditional clustering • K-means clustering has been used to extract software features from online reviews [41, 58, 63, 75, 78, 90], and to 
cluster informative app reviews [53]

Jiang et al. [41] used S-GN to cluster online reviews, while Cleland-Huang et al. in [78] used the modified Spherical 
K-Means to extract and cluster feature requests from threads in open discussion forums.

• Kang et al. [91] used the bagging clustering algorithm, which combines the EM, K-means, and MTree clustering 
algorithms for grouping similar data to select transfer instances. The transfer instances are further utilized to build 
classifier models.

Rule-based clustering One study [74] proposed an unsupervised clustering algorithm, which extracts basic context items from user feedback 
(e.g., the affected platform, device, app- and system version), using pre-defined keyword lists, word vector represen-
tations, and text patterns.
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followed by rule-based classification (17%) and model-
oriented approach (6%). For clustering, topic modeling 
(16%) was the most commonly used approach, followed 
by more traditional clustering techniques (13%) and unsu-
pervised rule-based clustering (2%).

In nine studies, two different approaches have been com-
bined. Two studies performed classification with supervised 
ML for filtering and subsequently conducted clustering 
with topic modeling [47, 68]. Guzman et al. [68] first ran 
Multinomial Naïve Bayes and Random Forest, which are 
both supervised learning algorithms, to extract tweets that 
request software improvement. Biterm Topic Model, which 
is a topic modeling used for short texts, was then used to 
group semantically similar tweets for software evolution. 
Zhao and Zhao [47] ran a supervised deep-learning neural 
network was first used to extract software features, and their 
corresponding sentiments and hierarchical LDA was subse-
quently to extract hierarchical software features with positive 
and negative sentiments.

Two studies performed classification using ML, which 
was followed by unsupervised clustering analysis [53, 58]. 
Jiang et al. [58] used Support Vector Machine, or a super-
vised machine-learning algorithm, for pruning incorrect 
software features that were extracted from online reviews. 
K-means clustering, an unsupervised clustering analysis, 
was then performed to categorize the extracted features 
into semantically similar system aspects. Sun and Peng 
[53] first used Naïve Bayes, a supervised machine-learning 
algorithm, for filtering informative comments, which were 
subsequently clustered using K-means, an unsupervised 
clustering analysis.

Jiang et al. [41] first performed rule-based classification 
based on syntactic parsing and sentiment analysis to extract 
opinions about software features and their correspond-
ing sentiment words. Subsequently, S-GN, whose base 

algorithms are a type of K-means clustering, was performed 
to cluster similar opinion expressions about software fea-
tures into a category which represents an overall, functional, 
or quality requirements. On the other hand, Bakar et al. [63] 
combined unsupervised clustering analysis and topic mod-
eling in which K-means was first run to identify the similar 
documents. They then performed latent semantic analysis, 
which is a type of topic modeling, to group similar software 
features within the documents.

Guzman and Maalej [40] and Dalpiaz and Parente [46] 
first extracted software features based on rule-based clas-
sification, which uses collocation finding algorithm and the 
LDA was subsequently applied to group similar software 
features. Zhang et al. [60] first used linear regressions based 
on supervised ML to select helpful online reviews. Then 
conjoint analysis (i.e., a statistical technique used in mar-
ket research to assess and quantify the consumers’ values 
on product features or service) was performed to assess the 
impact of the features from helpful online reviews on the 
consumers’ overall rating.

In several studies, visualization has been provided to help 
requirements engineers efficiently sift through and effec-
tively interpret the most important requirements-related 
information. Bakiu and Guzman [55] first performed the 
aggregation of features. The results were then visualized 
at two levels of granularity (i.e., high-level and detailed). 
Sun and Peng [53] first extracted scenario information of 
similar user comments and then aggregated and visual-
ized as aggregated scenario models. Software features [52] 
and technically informative information from the potential 
requirements sources [64, 86] were summarized, ranked, 
and visualized using word clouds. Luiz et al. [49] sum-
marized overall user evaluation of the mobile applications, 
their features, and the corresponding user sentiment polarity 
and scores in a single graphical interface. Oriol et al. [89] 
implemented a quality-aware strategic dashboard, which has 
various functionalities (e.g., quality assessment, forecasting 
techniques, and what-if analysis) and allows for maintaining 
traceability of quality requirements generation and docu-
mentation process. Wüest et al. [99] fused user feedback and 
correlated GPS data and visualize the fused data on a map, 
equipping the parking app with context-awareness.

Techniques Used for Process‑Mediated Data

The two studies that used process-mediated data focused on 
eliciting emerging requirements through observations and 
analysis of time-series user behavior (i.e., run-time obser-
vation of system–user interactions) and the correspond-
ing environmental context values [97, 98]. In both studies, 
Conditional Random Fields (CRF), which is a statistical 
modeling method, was used to infer goals (i.e., high-level 
requirements).

Fig. 4   Techniques used for requirements elicitation from human-
sourced data that are grouped according to classification (i.e., 
machine learning (ML), rule-based classification, and model-oriented 
approach) and clustering (i.e., topic modeling, traditional clustering, 
and rule-based unsupervised NLP)
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Xie et al. [97] proposed a method to elicit requirements 
consisting of the three steps. First, a computational model 
is trained and built based on pre-defined user’s goals in the 
domain knowledge, using supervised CRF to infer user’s 
implicit goals (i.e., outputs) from the observation and anal-
ysis of run-time user behavior and the corresponding envi-
ronmental values (i.e., inputs). After the goal inference, 
the user’s intention (i.e., the execution path) for achieving 
a given goal is obtained by connecting the situation (i.e., 
a time-stamped sequence of user behavior that is labeled 
with a goal and environmental context values) labeled with 
the same goal into a sequence. Finally, an emerging inten-
tion, which is a new sequence pattern of user behavior 
that has not been pre-defined or captured in the domain 
knowledge base, is detected.

An emerging intention can occur in three cases; when 
a user has a new goal; when a user has a new strategy 
for achieving an existing goal; when a user cannot per-
form operations in an intended way due to system flaws. 
Requirements, thus, can be elicited by validating emerging 
intentions by domain experts based on the analyses of goal 
transition, divergent behaviors from the optimal usage, and 
erroneous behavior.

In the analysis of goal transition, domain experts look 
at two goals that frequently appear consecutively based on 
the results of goal inference with a high confidence level 
assigned by the CRF and elicit requirements that make the 
goal transition smoother.

In the analysis of divergent behavior, domain experts 
focus on user behaviors that deviate from an expected way 
to operate the system because the user’s irregular behavior 
may indicate user’s misunderstanding of required opera-
tional procedures, dissatisfaction with the system, and 
emerging desires. Those divergent behaviors are given a 
low confidence level by the CRF model.

In the analysis of erroneous behavior, requirements 
can be elicited by investigating the error reports with 
high occurrences that may reflect users’ emerging desires 
that are not supported by the current system. In addition, 
requirements can be elicited from user behaviors, which 
are actually normal behavior but are mistakenly consid-
ered as erroneous due to the system flaws. The proposed 
method is assumed to be used in a sensor-laden computer 
application domain. Thus, it may also be applicable to 
machine-generated data. The main challenge, however, is 
to increase the level of automation for analyzing potential 
emerging intentions and users’ emerging requirements.

Yang et al. in [98] used CRF to infer goals based on a 
time-stamped sequence of user behavior that is labeled 
with a goal and environmental context values, which is 
called a situation. Based on the results of goal inference, 
intention inference was performed by relating a sequence 
of situations that are labeled as the same goal. When an 

intention has not been pre-defined in the domain knowl-
edge base, the intention is detected as an emerging inten-
tion and exported as possible new requirements for future 
system development or evolution.

However, the method proposed in both studies still 
requires a substantial degree of human oracles, which 
needs to be reduced in future research to increase the scal-
ability and promote the implementation of their approach 
in real-life settings. In addition, the proposed method 
does not yet support diverse requirements. The method 
proposed by Xie et al. [97], capture only emerging func-
tional but not non-functional requirements. The approach 
proposed in [98] can only support the identification of the 
low-level design alternatives (i.e., new ways of fulfilling 
a given intention).

Notably, Wüest et al. in [99] proposed to use both human-
sourced and process-generated data. Their approach is based 
on the control loop for self-adaptive systems for collecting 
and analyzing user feedback (i.e., human source data) as 
well as system usage and the location data (i.e., GPS data). 
The analysis is driven by rules or models of expected system 
usage. The system decides how to interpret the results of the 
analysis and modify its behavior at run-time, which allows 
for understanding changing user requirements for software 
evolution.

Techniques Used for Machine‑Generated Data

Voet et al. [95] first extracted goal-relevant usage elements 
as features, from the data recorded via a handheld grinder, 
a type of product embedded information devices (PEID) 
equipped with sensors and onboard capabilities. Feature 
selection was then performed to reduce system workload 
and improve the prediction accuracy of the machine-learning 
algorithm, compared to using raw sensor data. Specifically, 
the support vector machine classifier, which is a supervised 
machine-learning algorithm, was used to build and train the 
model to predict the four different usage element states. The 
model was then tested on the sensor data from the two dif-
ferent usage scenarios that have not been used for training. 
The collection of the predicted usage element states, or user 
profiles, can be analyzed manually or by clustering to iden-
tify the deviation from the intended optimal usage profile. 
Requirements can be inferred by analyzing users’ deviant 
behaviors.

Liang et  al. [96] mined user behavior patterns from 
instances of user behavior, which consist of user context 
(i.e., time, the location and the motion state of the crowd 
mobile users) and the currently running apps, using Apri-
ori-M algorithm, which is an efficient algorithm based on 
Apriori algorithm that is used for frequent item set mining. 
User behavior patterns, which infer emergent requirements 
or requirements changes, are ranked and used for service 
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recommendation. Service recommendation is performed 
periodically, using the service recommendation algorithm. 
The algorithm takes mined user behavior as inputs and out-
puts the apps to remind the user. In service recommenda-
tion, matching is performed between the current user con-
text and the context of user behavior patterns mined from 
mobile crowd users, according to the ranking order. If the 
two matches, the mobile app(s) in the user behavior patterns 
are automatically recommended to the user as solutions to 
meet the requirements inferred from user behavior patterns.

In summary, most of the existing solutions support the 
elicitation of requirements from a single data source, pri-
marily from human source data. There is a lack of methods 
to support requirements elicitation from heterogeneous data 
sources. In addition, only a few studies have supported con-
text-awareness and real-time data processing and analysis. 
Those features are crucial to enable continuous and dynamic 
elicitation of requirements, which are especially important 
for context-aware applications and time-critical systems such 
as health systems. Moreover, many studies lack the argu-
ment on how each proposed solution help processing a large 
volume of data.

Evaluation Methods

Evaluation methods include three components: evaluation 
approach, concept, and metrics. Of the 68 selected studies, 
controlled experiments were the most frequently applied 
approach for evaluating the proposed artifact (75%), fol-
lowed by a case study (19%) and a proof of concept (6%) 
(Fig. 5a).

Among the 51 studies that used controlled experiments, 
46 studies compared the results produced by the proposed 
artifacts against a manually annotated ground-truth set. For 
example, Bakiu and Guzman [55] compared the perfor-
mance of multi-label classification against a manually cre-
ated golden standard in classifying features extracted from 
unseen user reviews into different dimensions of usability 
and user experience.

Only three studies compared the performance of the pro-
posed artifact with the results of manual analysis without the 
aid of automation [57, 62, 78]. For example, Bakar et al. [62] 
compared the software features that were extracted using 
their proposed semi-automated method with those that were 
obtained manually.

Two studies conducted an experiment in different ways. 
Liang et al. [96] used a longitudinal approach for conduct-
ing an experiment. They compared obtained user behavior 
patterns with those that were collected after some time inter-
val to confirm the correctness of the Apriori-M algorithm. 
Abad et al. [44] compared Wizard-of-Oz (WOz) and user 
review analysis qualitatively. In a few studies [46, 88, 90], 
the proposed techniques have been evaluated with intended 
users. The rest of the studies used a case study or a proof of 
concept as an evaluation approach.

Most frequently used evaluation concept was correctness 
(78%), followed by completeness (74%), no/other metrics 
(13%), and efficiency (10%) (Fig. 5b). Other metrics, for 
example, include usability, creativity, the intended user’s 
perceived usefulness, and satisfaction. Most of the studies 
combined several evaluation concepts. Three different com-
binations of the concepts were identified: (1) completeness 
and correctness (n = 42), (2) completeness and correctness 
and efficiency (n = 7), and (3) correctness and efficiency 

Fig. 5   a Evaluation approach, b 
Evaluation concepts

Fig. 6   Final outcomes of automated requirements elicitation



	 SN Computer Science            (2021) 2:16    16   Page 18 of 35

SN Computer Science

(n = 2). In most cases, the correctness and completeness 
were assessed using precision (i.e., the fraction of correctly 
predicted instances among the total predicted instances) 
and recall (i.e., the fraction of correctly predicted positive 
instances among all the instances in actual class), respec-
tively. In addition, F-measure was also used to address a 
trade-off between precision and recall.

Efficiency has been assessed in terms of the size of train-
ing data [38, 39], the time to recognize and classify software 
features [76], the time required to identify relevant require-
ments information for both manual and automated analysis 
[57], the time taken to complete the extraction of software 
features [63], the time and space needed to build the clas-
sification model [48, 50, 51], and the total execution time of 
the machine-learning algorithm [78]. The user’s perceived 
efficiency was measured using a 5-point Likert scale [89]. 
(Fig. 6)

The Outcomes of the Automated Requirements 
Elicitation

Expression of Final Outcomes Produced by the Automated 
Part of Requirements Elicitation

Outcomes of the automated requirements elicitation have 
been classified into the following three categories: (1) iden-
tification and classification of requirements-related infor-
mation, (2) identification of candidate features related to 
requirements, and (3) elicitation of requirements (Table 7). 
Only 21% of the studies have enabled the automated elicita-
tion of requirements. A majority of the studies have resulted 
in automated identification and classification of require-
ments-related information (51%), or identification of candi-
date features related to requirements (28%) (Fig. 5).

Identification and classification of requirements-related 
information have been made by classifying dynamic data 
into different classes of issues based on; relevance to differ-
ent stakeholders for identifying responsibilities, the technical 
relevance for filtering only relevant data (e.g., classifying 
into either feature request or other), and types of technical 
issues to be inspected (e.g., classifying into feature requests, 

Table 7   Expression of final outcomes

Final outcomes Description of the final outcomes

Identification and classifi-
cation of requirements-
related information

• Although Portugal et al. [86] identified only the sources of requirements-related information, many studies further 
classify requirements-related information based on stakeholders, technical relevance, and types of requirements 
issues to be inspected such as feature requests and bug reports.

• A multi-label classification technique has been used in the studies [69, 70] to classify tweets into three high-level 
stakeholder groups (i.e., technical, non-technical, and general public) based on the relevance to each stakeholder 
group.

• In the studies [59, 71, 76, 77, 84], classification has been used to filter only system relevant data, which contrib-
utes to the significant reduction of data to go through. Filtering has been done, using supervised machine-learning 
algorithms [59, 71, 77, 84] and rule-based classification [76].

• More detailed classification than filtering has been performed in the studies [35, 37–39, 42, 43, 45, 50, 51, 
54–57, 64–66, 79–82, 87, 92, 93, 102–104, 106], for example, by classifying app reviews into bug reports, feature 
requests, user experiences, or text ratings [38], by classifying user reviews into specific dimensions of usability 
and user experiences [55], and by classifying app reviews into functional and non-functional requirements [43].

• Classification of requirements-related information has been done using machine-learning approach [35, 38, 39, 
42, 43, 45, 50, 51, 55, 56, 64, 79, 92], rule-based classification [37, 57, 102], and topic modeling [54]

Identification of candi-
date features related to 
requirements

• Identification of candidate features has been done, using rule-based classification [40, 46, 61, 62, 100], topic 
modeling [49, 52], traditional clustering (i.e., K-means [75] and the BIRCH algorithm [90]), a conceptual model 
[72, 73], and rule-based clustering [74].

• In the several studies, classification was first performed, using supervised machine learning [47, 48, 58, 60, 68] 
or ruled-based classification [41, 46] before identifying candidate software features using topic modeling [46, 47, 
68], traditional clustering [41, 58], word clouds [48], or conjoint analysis [60].

• In contrary, Kang et al. [91] used instance-transfer learning method. The method first performed the bagging clus-
tering algorithm to select instances, whose results are used for building a RNN model to predict missing features.

Elicitation of requirements • Requirements have been elicited at an abstract level in the form of textual descriptions [36, 44, 78, 94], goal mod-
els [72], and aggregated scenarios [53].

• In a few studies, requirements have been elicited at a lower level than the above studies. Liang et al. [96] inferred 
emerging requirements and requirements changes from mined user behavior patterns of crowd mobile users

• Xie et al. [97] and Yang et al. [98] elicited requirements in the form of emerging from users’ run-time behavioral 
patterns, while Voet et al. identified potential design changes from the usage profile that is mined from sensor data 
[95]
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bug reports, user experiences, and user ratings, and classify-
ing into functional or non-functional requirements). Some 
studies performed classification at a deeper level (e.g., clas-
sifying into four types of non-functional requirements (i.e., 
usability, reliability portability, or performance, or func-
tional requirements).

Identification of candidate features related to require-
ments refers to discovering functional components of a 
system. Features, however, typically have less granularity 
than requirements and do not tell what behavior, conditions, 
and details would be needed to obtain the full functional-
ity. They, thus, need to be further processed to become full 
requirements.

Elicitation of requirements has been done mostly at high 
level. Most of them elicited requirements at high level in 
the form of goals, aggregated scenarios, or high-level tex-
tual requirements. Franch et al. [88] and Oriol et al. [89] 
semi-automated the elicitation of complete requirements in 
the form of user stories and requirements specified in semi-
formal language.

Degree of Intended Automation

A proposed artifact was classified into the two levels of the 
intended automation: intended full automation or semi-auto-
mation. Of note is that we consider artifacts that support the 
automation of requirements elicitation either entirely or par-
tially. Artifacts are classified into intended full automation 
in the following two circumstances: (1) when the proposed 
part is automated without human intervention for comple-
tion or (2) when only minimum interactions are needed 
for completion. Minimum human interaction is defined as 
human oracles being in the loop once at the initial stage of 
the elicitation process, which includes the creation of the 
ground-truth set and conceptual models as well as the speci-
fication of a set of keywords and language patterns. Based 
on the definitions, the majority of the proposed methods 
(84%) were intended to be fully automated, while the rest 
are semi-automated methods that require human oracles to 
be in the loop for each iteration of the process.

Additional Requirements Engineering Activity Supported 
Through Automation

The majority of the selected studies exclusively focused on 
enabling requirements elicitation from dynamic data, with-
out considering other requirements engineering activities. 
Of the 68 studies included in the analysis, 50 studies (74%) 
exclusively proposed methods to enable automated require-
ments elicitation, while 18 studies (26%) supported other 
requirements engineering activities in addition to require-
ments elicitation. Prioritization was the most frequently sup-
ported additional requirements engineering activity (n = 11), 

followed by elicitation for change management (n = 7), and 
documentation (n = 2). More detailed information is pro-
vided in Table 8.

Discussion

We conducted a systematic literature review on the existing 
data-driven methods for automated requirements elicitation. 
The main motivations for this review were two-fold: (1) 
using dynamic data has the potential to enrich stakeholder-
driven requirements elicitation by eliciting new requirements 
which cannot be obtained from other sources, and (2) no 
systematic review has been conducted on the state-of-the-
art methods to elicit requirements from dynamic data from 
unintended digital sources. Of 1848 records retrieved from 
6 electronic database search and 1017 articles identified 
through backward and forward reference search, we selected 
51 studies that met our inclusion criteria and included in 
the final analysis to answer the following three research 
questions. RQ1: What types of dynamic data are used for 
automated requirements elicitation? RQ2: What types of 
techniques and technologies are used for automating require-
ments elicitation? RQ3: What are the outcomes of auto-
mated requirements elicitation? In the following sections, 
we provide a discussion of the main findings, the identified 
research gaps, and issues to be addressed in future research.

Table 8   Additional requirements engineering activity supported 
through automation

Requirements 
engineering 
activity

Description of activity supported through automation

Elicitation The majority of the studies have exclusively focused 
on requirements elicitation [35–40, 42–47, 50, 
51, 53–57, 59, 61–67, 69–71, 74–80, 82, 84, 86, 
90–96, 100, 103, 104].

Elicita-
tion plus 
additional 
activities

• Prioritization of the elicited requirements refers to 
ranking the elicited requirements according to a 
certain criterion to promote effective resource allo-
cation. Prioritization was supported in the studies 
[41, 48, 49, 52, 58, 60, 68, 72, 73, 81, 87–89].

• Elicitation for change management is to elicit 
emerging requirements for software evolution, 
which has been supported in the studies [52, 85, 
87, 97–99, 102].

• Documentation of quality requirements has been 
enabled by two studies [88, 89], by automatically 
specifying user stories or semi-formally written 
requirements in a product backlog, respectively.
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RQ1: What Types of Dynamic Data Are Used 
for Automated Requirements Elicitation?

Existing research on data-driven requirements elicitation 
from dynamic data sources has primarily focused on uti-
lizing human-sourced data in the form of online reviews, 
micro-blogs, online discussions/forums, software reposi-
tories, and mailing lists. The use of online reviews was 
substantially more prevalent, compared to other types of 
human-sourced data. The result indicates the current data-
driven requirements elicitation is largely crowd-based. On 
the contrary, process-mediated and machine-generated 
data sources have only, in some instances, been explored 
as potential sources of requirements. The predominance of 
human-sourced information is rather expected and can be 
explained by the following two reasons: (1) users’ prefer-
ences and needs regarding system are typically explicitly 
expressed in natural language, from which it is—relatively 
speaking—straightforward to obtain requirements compared 
to process-mediated and machine-generated data, and (2) 
there are abundant sources of human-sourced data that are 
publicly available and readily accessible.

Much more research is, thus, needed to develop methods 
capable of eliciting requirements from process-mediated 
and machine-generated data that are not expressed in natural 
language and from which requirements need to be inferred. 
There is still a lack of methods to infer requirements as well 
as evidence regarding the applicability of the proposed 
approach to more diverse types of process-mediated and 
machine-generated data. Process-mediated and machine-
generated data enable run-time requirements elicitation 
[19]. They also help system developers to understand usage 
data and the corresponding context, which allows elicita-
tion of performance-related as well as context-dependent 
requirements [19]. In addition, almost all of the studies have 
focused on using only a single type of dynamic data and 
typically also a single data source.

A few studies have utilized multiple human-sourced data 
sources; however, there has been only one attempt to com-
bine different types of dynamic data sources. As such, there 
is currently insufficient evidence that using multiple types of 
data leads to more effective requirements elicitation, but it 
remains an open issue that merits investigation. We believe 
that research in this direction would be highly interesting 
in an attempt to improve data-driven requirements elicita-
tion, both in terms of the coverage and quality of the elicited 
requirements. Utilizing semantic technologies can be useful 
for enabling the integration of heterogeneous data sources 
[107].

In addition, only one study integrated dynamic data and 
domain knowledge to elicit requirements [44]. The results 
from that study indicate the potential benefits of using 
dynamic data together with domain knowledge to elicit 

requirements that cannot be captured using either one of 
the data sources. It is likely that domain knowledge, which 
is typically relatively static but of high quality, can help 
to enrich data-driven requirements elicitation efforts from 
dynamic data sources. A larger number of studies are needed 
to confirm the impacts of integrating domain knowledge 
with dynamic data on the quality and diversity of outcomes 
obtained from the automated requirements process.

RQ2: What Types of Techniques and Technologies 
Are Used for Automating Requirements Elicitation?

Techniques Used for the Automated Requirement 
Elicitation

Human-sourced data are typically expressed in natural 
language, which is inherently difficult to analyze compu-
tationally due to its ambiguous nature and lack of rigid 
structure. In all the selected studies, human-sourced data 
have been (pre-)processed using natural language process-
ing techniques to facilitate subsequent analysis. Although 
the techniques used for preprocessing varies across studies, 
data cleaning, text normalization, and feature extraction for 
data modeling are frequently performed preprocessing steps 
in automated requirements engineering. Commonly used 
features include surface-level tokens, words, and phrases, 
but also syntactic (e.g., part of speech tags) and semantic 
features (e.g., the positive/negative/neutral sentiment of a 
sentence). After data preparation and feature extraction, data 
modeling or analysis for the purpose of requirements elicita-
tion is typically performed using classification or clustering, 
or classification followed by clustering.

Classification in the context of automated requirements 
elicitation involves either of the following three tasks: (1) fil-
tering out data irrelevant to requirements, (2) classifying text 
based on the relevance to different stakeholder groups, or (3) 
classifying text into different categories of technical issues, 
such as bug reports and feature requests. The classification 
tasks have been tackled using either rule-based approaches 
or machine learning, which is mostly done within the super-
vised learning paradigm. Although supervised machine 
learning can achieve high predictive performance in a well-
defined classification task, it requires access to a sufficient 
amount of human-annotated data. As a result, many studies 
involved human to annotate data into pre-defined classes. 
The labeling task, however, is labor-intensive, time-consum-
ing, and error-prone due to a considerable amount of noise 
and the ambiguous nature inherent in natural language [35].

Two solutions have been proposed to reduce the cost of 
labeling a large amount of data: active learning [35] and 
semi-supervised machine learning [43]. Dhinakaran et al. 
in [35] showed that classifiers trained with active learn-
ing strategies outperformed in classifying app reviews into 
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feature requests, bug reports, user rating, or user experi-
ence than the baseline classifies that were passively trained 
on the randomly selected dataset. Deocadez et al. in [43] 
demonstrated that three semi-supervised algorithms (i.e., 
Self-training, RASCO, and Rel-RASCO) with four base 
classifiers achieved comparable predictive performance as 
that of classical supervised machine learning in classifying 
app reviews into functional or non-functional requirements. 
Although there is not a sufficient number of studies to draw 
a generalizable conclusion, classification using active learn-
ing and semi-supervised machine-learning strategies may 
have similar potential as conventional supervised machine 
learning in identifying and classifying requirements-related 
information, but requires a much smaller amount of labeled 
data compared to conventional supervised machine learning.

Another issue that needs to be addressed when using 
supervised learning is that human-sourced data sources 
include a significant proportion of non-informative and 
irrelevant data. Eliciting requirements from this source 
is thus often compared to “looking for a needle in a hay-
stack” [70]. This leads to a highly unbalanced class dis-
tribution in terms of the non-informative and irrelevant 
data compared to the informative and relevant classes. 
The underlying class distribution largely affects the per-
formances of machine learning-based classifiers [42, 71]. 
In one study [42], the precision, recall, and F1 measures 
for the under-represented classes were worse than those 
for the better-represented classes. Given that the classes 
relevant to requirements are not represented equally in 
most real-life occasions, the issue needs to be addressed 
in future research. One possible solution to resolve this 
issue may be applying different sampling techniques such 
as Synthetic Minority Oversampling Technique (SMOTE) 
to the training set to increase the number of instances in 
the class with fewer observations [71, 84].

Contextualization may be another possible solution, 
which is done by filtering out non-informative and irrelevant 
data. Several studies [47, 53, 58, 68] have used supervised 
classification before performing finer-grained classification 
or clustering. Filtering out noisy data can improve the clas-
sification or clustering accuracy. It also helps requirements 
engineers pinpoint the data relevant to requirements by auto-
matically discarding non-informative data for requirements 
elicitation [69] as well as supports efficiently distributing 
data to the appropriate stakeholders within an organization 
[69]. Since contextualization can reduce the volume of data 
to be processed further, it mitigates the volume issue of Big 
Data.

Various supervised learning algorithms have been used 
to automate the requirements elicitation process. However, 
there is no “one-size-fits-all” algorithm that performs best 
for every single case, which is often referred to as the “No 
free lunch” theorem [108]. Experimenting and comparing 

many different algorithms for a specific problem demands 
time and domain knowledge related to machine learning 
from requirements engineers in addition to routine work. 
It would thus be helpful for them if the support tool were 
to accommodate functions that automatically identify and 
recommend the best algorithm among possible options.

Moreover, it would be even more valuable if the tool sup-
ports automatic optimization of the parameter configuration, 
which includes preprocessing, selection of machine-learning 
features, hyper-parameter settings, and evaluation metrics. 
Supervised machine learning has mainly been used for 
identifying and classifying data into pre-defined categories 
related to requirements. This is because supervised machine 
learning works well for tasks for which classification rules 
are difficult to formulate. Nevertheless, it requires a suffi-
cient amount of human-annotated data to build a reliable 
predictive model, which is a time-consuming and error-
prone task. On the other hand, rule-based classification, 
which was the second most frequently used classification 
approach, excels in performing simpler tasks for which rules 
can be formulated. In the literature, rule-based classifica-
tion has been used for identifying candidate features more 
frequently than identifying and classifying requirements-
related information. For rule-based classification to func-
tion well, however, sound domain knowledge is required to 
appropriately define rules that drive the classification pro-
cess and determine the effectiveness of the classification.

Clustering has been used primarily for identifying can-
didate features or grouping semantically similar features. In 
the selected studies, clustering has been performed, using 
topic modeling or traditional clustering, which can be valu-
able alternatives to supervised learning in the absence of 
labeled historical data. More than half the studies that used 
clustering first classified data into pre-assigned categories 
relevant to requirements, which was primarily done using 
supervised machine learning or rule-based classification. 
Clustering is subsequently performed on the requirements-
related information identified by classification, using topic 
modeling or traditional clustering. Those unsupervised 
machine-learning techniques, however, often lead to less 
accurate results than supervised leaning since there is no 
knowledge about output data.

The effectiveness of clustering can be affected by many 
factors (e.g., the number of clusters and selection of initial 
seeds), and evaluating unsupervised learning is problematic 
due to a lack of well-defined metrics. This may be a reason 
that classification is performed before clustering. Neverthe-
less, there are some efforts to ensure high quality of cluster-
ing. Cleland-Huang et al. [78] proposed the automated forum 
management (AFM) system that employs Stable Spherical 
K-Means (SPK) to mine feature requests from discussion 
threads in open source forums. In their study, Normalized 
Mutual Information (NMI) was computed to evaluate and 
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ensure the quality of the cluster. In addition, since the selec-
tion of initial seeds highly influence on clustering results, 
the problem is mitigated by applying consensus clustering 
for the initial clustering. On the other hand, Sun and Peng 
[53] used the recommended cluster number (RCN) to deter-
mine the optimal number of clusters. There are also other 
metrics available to evaluate the quality of clustering, such 
as the Silhouette index. However, the consensus has not been 
reached regarding which measure to use for the evaluation 
because it depends on the nature of data and the desired 
clustering task.

Moreover, only a small proportion of the studies sup-
ported the visualization of the obtained results. Data visu-
alization increases the interpretability of the results by lever-
aging visual capacity, which helps identify new and hidden 
patterns, outliers, and trends [16]. It also facilitates com-
munication among different stakeholders within an organiza-
tion. Providing visualizations, thus, is recommended to help 
requirements engineers understand the results and make a 
subsequent decision more efficiently and effectively.

Process‑Mediated and Machine‑Generated Data Sources

As described in the previous section (i.e., “RQ1: What types 
of dynamic data are used for automated requirements elici-
tation?”), our results indicate that there is a huge research 
gap in eliciting requirements from process-mediated and 
machine-generated data. Much more research should focus 
on exploring the methods to elicit requirements from data 
that are not written in natural language. Only two studies 
leveraged process-mediated data, both utilizing CRF, to infer 
goalswhich are high-level requirements. More research is 
need to develop methods and algorithms to elicit require-
ments from various types of process-mediated data.

Likewise, machine-generated data were used as require-
ments sources in two studies. Liang et al. [96] proposed to 
use the Apriori-M algorithm to infer context-aware require-
ments from behavior patterns that are mined from the run-
time behavior of the mobile user. The results of the analysis 
lead to provide the user solutions that satisfy the inferred 
requirements. On the other hand, Voet et al. [95] proposed a 
method to classify goal-relevant usage element states using 
supervised machine learning and infer requirements based 
on the deviation from the optimal usage profile, which can 
be detected by manual analysis or unsupervised clustering.

Given that IoT data are one of the main driving forces 
of Big Data generation, there is a pressing need to develop 
a framework to elicit requirements from IoT data. Apply-
ing semantic technologies may be a promising solution to 
help machines interpret the meaning of data by semantically 
representing raw data in a human/machine interpretable 
form [107], which can facilitate the automatic requirements 
elicitation from large volumes of heterogeneous IoT data.

Evaluation Methods

Rigorous evaluation is essential for ensuring that a proposed 
artifact meets its intended objectives, justifying its effective-
ness and/or efficiency, and identifying its weaknesses, which 
need to be rectified in future work. The artifacts proposed 
in most of the identified studies were primarily evaluated 
through controlled experiments. Controlled experiments 
eliminate the influence of extraneous and unwanted variables 
that could account for a change of the dependent variable(s) 
other than the independent variable(s) of interest. Thus, 
their two main advantages are: (1) they are the most power-
ful method for inferring causal relationships between vari-
ables, and (2) they can achieve high internal validity [109]. 
Nevertheless, their main disadvantage is that since they are 
typically conducted in an artificial environment, conclusions 
may not be valid in real-life settings, which threatens the 
external validity [109].

Most studies that used controlled experiments as an 
evaluation approach evaluated results derived from a pro-
posed artifact against a manually created ground-truth set. 
The quality of the ground-truth set, however, determines 
the performance of machine-learning algorithms. The 
majority of the studies, thus, recruited multiple annotators 
for the labeling task to obtain a “reliable” ground-truth 
set, which only contains peer-agreed labels. Some stud-
ies used an annotation guideline, performed a pilot run of 
classification tasks with small samples to avoid subjective 
assessment, reduce disagreements, and increase the quality 
of manual labeling [38, 39, 68].

Besides, a few studies compared the performance of 
automated analysis with a proposed artifact with the per-
formance achieved by solely relying on manual analysis 
without the aid of the proposed artifact. Groen et al. [57] 
justified the efficiency and scalability of automated user 
review analysis and emphasized the need of automation 
for analyzing a large volume of dynamic data to support 
continuous requirements engineering. A case study was 
the second most frequently used evaluation approach in 
which the proposed methods are assessed through in-depth 
investigations of a specific instance in a real-life context. 
Proof of concept was used in a small proportion of the 
selected studies. It is used to demonstrate the feasibility 
of a proposed artifact theoretically to achieve an intended 
task. Although it may be suitable as a preliminary or form-
ative evaluation, it has lower explanatory power compared 
to comparative evaluations (e.g., controlled experiments 
and case studies).

Most studies used standard metrics that are often used 
in the field of information retrieval. Completeness and cor-
rectness were the evaluation concepts that were the most 
frequently used in the studies, while some studies also 
assessed the efficiency of an artifact. Recall and precision 
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were often used as metrics to measure completeness 
and correctness, respectively. Since there is a trade-off 
between precision and recall, many studies additionally 
used F-measure, which is the weighted harmonic mean of 
precision and recall. Most of the studies used F1-measure, 
which assigns equal weights on precision and recall (i.e., 
the harmonic mean of precision and recall). However, 
Guzman et al. [69] recall was assigned more importance 
(i.e., weights) than precision based on the study which 
claims that recall should be favored over precision since 
missing relevant requirements is more detrimental [110]. 
On the other hand, precision is also important when deal-
ing with a dataset that contains large amounts of irrelevant 
information. Future research may explore techniques to 
optimize F-measures, including a weighted maximum like-
lihood solution [111]. Moreover, few studies have com-
pared the effectiveness of automated requirements elicita-
tion with that of traditional requirements elicitation driven 
by stakeholders. This can largely be explained by the fact 
that research on automated requirements elicitation is not 
mature enough since most methods have focused on iden-
tifying and classifying requirements-related information 
rather than eliciting requirements. However, this needs to 
be addressed in future research to demonstrate the value 
of automated requirements elicitation.

RQ3: What Are the Outcomes of Automated 
Requirements Elicitation?

Expression of Requirements Elicitation

In traditional requirements engineering, requirements elici-
tation begins with the identification of relevant requirements 
sources such as stakeholders and domain documents, which 
is followed by two other sub-activities: the elicitation of 
existing requirements from the identified sources and elici-
tation of new and innovative requirements [1].

On the other hand, dynamic data-driven requirements 
elicitation has been done in the form of the following three 
activities: (1) identification and classification of require-
ments-related information, (2) identification of candidate 
features related to requirements, and (3) elicitation of 
requirements. However, those three activities have not nec-
essarily been performed entirely nor sequentially. For exam-
ple, many studies that aim to identify candidate features first 
performed classification, using supervised learning or rule-
based classification, before clustering features, using topic 
modeling or traditional clustering, while the rest of them 
directly identified candidate software features, mainly using 
topic modeling or rule-based classification. One possible 
reason for performing classification before clustering is that 
classification can only classify data into coarse categories, 
which may include the repetitive information and the same 

sentiment, while clustering can further group individual data 
in a meaningful way. Thus, the specific combination of the 
two approaches can facilitate the work of requirements engi-
neers (e.g., requirements reuse).

Most of the proposed methods supported the identifi-
cation and classification of requirements-related informa-
tion or the identification of candidate features. Identifica-
tion and classification of requirements-related information 
help requirements engineers save time for the data analysis 
by filtering out a significant amount of irrelevant data and 
selectively identify a specific type of information which 
they are interested in such as feature request. It also helps to 
allocate the extracted data based on the relevance to stake-
holder groups to support parallel data analysis within the 
same organization. Identification of candidate features helps 
requirements engineers understand user-preferred features 
and select features to be considered in software development 
and evolution. Features, however, are not yet formulated as 
requirements because those features require the engagement 
of requirements engineers to transform into requirements.

On the other hand, only about 20% of the studies auto-
mated the entire requirements elicitation. In most cases, the 
elicited requirements are high-level such as goals, aggre-
gated scenarios, or high-level textual requirements. Those 
high-level requirements, however, do not include details of 
the objects (i.e., features) which are being concerned, nor 
conditions. This highlights the need for developing addi-
tional automated approaches or using traditional elicitation 
techniques with the involvement of human stakeholders to 
complete the requirements elicitation process.

Degree of Intended Automation

A majority of the studies proposed methods that are intended 
to be fully automated after the minimum human interven-
tions at the initial stage of the continuous elicitation process. 
However, most studies do not yet support the entire require-
ments elicitation. Given the high volume and velocity of 
dynamic data, requirements elicitation certainly needs to be 
automated to enhance efficiency and scalability.

However, fully automated methods are not necessarily 
better than semi-automated methods concerning the quality 
of requirements and the ease of implementing into an exist-
ing requirements engineering process as well as the organi-
zational workflow. There is a lack of evidence on what level 
of automation leads to the most effective requirements elici-
tation within an organization. More research, thus, needs to 
be done on whether it is possible and better to automate the 
entire elicitation process, or whether some extent of human-
in-the-loop is necessary.

If a semi-automated approach is considered prefer-
able, another issue that needs to be addressed is where and 



	 SN Computer Science            (2021) 2:16    16   Page 24 of 35

SN Computer Science

when in the elicitation process human should come into 
play to facilitate effective automated requirements elicita-
tion. In addition, the characteristics of dynamic data can 
be changed over time. The proposed automated approach 
should be flexible enough to incorporate and reflect these 
dynamic changes over time.

Additional Requirements Engineering Activity Supported 
Through Automation

Our results show that three-quarters of the selected studies 
exclusively focused on requirements elicitation, while only 
one-quarter supported additional requirements engineer-
ing activities, which were requirements prioritization and 
management of requirements change. Therefore, no studies 
supported the automation of the entire requirements engi-
neering process. A holistic framework, therefore, needs to 
be developed to increase the automation level of dynamic 
data-driven requirements engineering.

Threats to Validity

The results of the review need to be interpreted with caution 
due to the following limitations.

1.	 External validity
	   All the studies included in the review, except one uti-

lizing user feedback in both English and Italian [65], 
focus on eliciting English requirements. Thus, our 
results cannot be generalizable to requirements elicita-
tion in other languages. Further studies are needed to 
assess the applicability of the techniques used for elicit-
ing English requirements to other languages.

2.	 Internal validity
	   Our search query might have missed potentially 

important keywords such as “requirements mining”, 
“feedback”, and “tool”. Not including those keywords 
affects the number of studies included in the analy-
sis. Our search query also failed to capture the work 
following DevOps and human–computer interaction 
approaches, which may have resulted in omitting some 
important work. We did not perform a backward and 
forward reference search for updating the review. The 
absence also may have reduced the number of studies 
included in this review.

	   In addition, a single reviewer performed a large part 
of study selection and data extraction, which may cause 
errors that impact the results. We partially mitigate the 
risk by ensuring high inter-rater reliability tested on 
a small proportion of randomly selected samples and 
discussing with at least one of the other reviewers to 

decide the inclusion of undecided papers, as explained 
in the “Study Selection” section. Ideally, the entire study 
selection and data extraction process should have been 
performed by at least two reviewers.

	   Another limitation is that we defined an analytical 
framework to synthesize retrieved data in advance. How-
ever, the analytical framework was based on the previous 
systematic review of the automated requirements elicita-
tion from domain documents. Moreover, we assessed the 
quality of individual study solely based on the SJR or 
CORE scores. Those scores may not always reflect the 
“true” strength of evidence provided by each study. A 
more detailed and formal quality assessment could have 
added value to the review by increasing the reliability of 
the results.

3.	 Publication bias
	   This review included only published peer-reviewed 

studies and excluded gray literature and commercial 
products, which may fill many of the gaps identified 
in this review. Thus, the frequencies of the techniques 
and concepts do not imply real-life usage frequencies 
or degree of usefulness. Including gray literature and 
commercial products would increase the review’s com-
pleteness and timeliness.

Conclusions and Future Work

We have conducted a systematic literature review concern-
ing requirements elicitation from data generated via digital 
technologies that are unintended with respect to require-
ments. These sources can include data that is highly rel-
evant for new system requirements, which otherwise could 
not be obtained from other sources. The motivation behind 
the proposed approaches lies in the fact that by including 
such requirements, which existing or new software systems 
are not supporting, important improvements concerning 
system functionality and quality can be made, as well as 
ensuring that requirements are up-to-date and enabling 
further automation of a continuous elicitation process.

This literature review provides an overview of the state-
of-the-art with respect to data-driven requirements elicita-
tion from dynamic data sources. This is the first systematic 
review focusing on efforts to automate or support require-
ments elicitation from these types of data sources—often 
referred to as Big Data—that include not only human-
sourced data but also process-mediated and machine-gen-
erated data.

We obtained 1848 relevant studies by searching six 
electronic databases. After two levels of screening, and a 
complementary forward and backward reference search, 
51 papers were selected for data analysis. We further per-
formed additional 2-level screening to update our search, 



SN Computer Science            (2021) 2:16 	 Page 25 of 35     16 

SN Computer Science

which resulted in including 17 more studies. Thus, in total, 
68 studies are included in the final analysis. Those selected 
studies were analyzed to answer the defined research ques-
tions concerning (a) identification of specific data sources 
and data types used for the elicitation, (b) methods and 
techniques used for processing the data, and (c) classifica-
tion of the content of obtained outputs in relation to what 
is expected from the traditional elicitation process.

The results revealed remarkable insights, which, when 
summarized, have shown the current clear dominance of 
the human-sourced data, compared to the process-medi-
ated and machine-generated data sources. As a result of 
that the techniques used for data processing are based on 
natural language processing, while the use of machine 
learning for classification and clustering is prevalent. The 
dominant intention of the proposed methods was to auto-
mate the elicitation process fully, rather than to combine it 
with traditional stakeholder-involved approaches.

Furthermore, the results showed that the majority of the 
studies were considering both functional and non-func-
tional (i.e., quality) requirements. The final results regard-
ing the completeness and the readiness of the elicited data 
for use in system development or evolution are currently 
limited—most of the studies obtain some of the informa-
tion relevant for requirement’s content, some studies target 
the identification of the core functionality or quality in 
terms of features, and only a few of the studies achieve a 
high-level requirement content. Finally, the majority of the 
studies evaluated the results in experimental environments, 
thus indicating rather a low extent of implementation of 
the method in a real-life requirements engineering setting.

The obtained results provide several directions for future 
work. One possible direction concerns the investigation of 
more extensive use and analysis of non-human-sourced data 
types. In addition, automatic data fusion and contextualiza-
tion methods need to be investigated for integrating, process-
ing, and analyzing a large volume of heterogeneous data 
sources to elicit requirements. Semantic technologies can 
be a promising solution to address the variety and volume 
issues of Big Data. Other direction leads to enabling real-
time data processing and analyzing to facilitate continuous 
requirements elicitation from Big Data with high velocity.

Moreover, each proposed solution needs to be evaluated 
against traditional requirements to convince practitioners for 
its implementation in real-life. Further improvements also 
need to be made in the content and quality of the elicited 
data in relation to fully detailed requirements. Finally, a very 
important direction relates to the proposals for enabling con-
text-awareness to capture requirements that changes dynami-
cally over time.
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Table 10   Quality assessment of 
the included studies

No SJR CORE Point

J1 Q3 – 1
J2 Q2 – 1.5
J3 Q3 – 1
J4 Q4 – 1
J5 Q2 – 1.5
J6 Q1 – 2
J7 Q2 – 1.5
J8 Q1 – 1
J9 Q1 – 1
J10 Q1 – 1
J11 Q1 – 1
J12 Q1 – 1
J13 No – 0
J14 Q1 – 2
J15 Q1 – 2
J16 Q1 – 2
C1 – B 1
C2 – Unlisted 0
C3 – Unlisted 0
C4 – A 1.5
C5 – A 1.5
C6 – Unlisted 0
C7 – A 1.5
C8 – A 1.5
C9 – A 1.5
C10 – B 1
C11 – B 1
C12 – Unlisted 0
C13 – A 1.5
C14 – A 1.5
C15 – B 1
C16 – B 1
C17 – A* 1.5
C18 – Unlisted 0
C19 – C 0.5
C20 – A 1.5
C21 – A 1.5
C22 – A 1.5
C23 – B 1
C24 – A 1.5

No SJR CORE Point

C25 – A 1.5
C26 – A 1.5
C27 – Unlisted 0
C28 – A 1.5
C29 – Unlisted 0
C30 – A 1.5
C31 – Unlisted 0
C32 – B 1
C33 – Unlisted 0
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