
Vol.:(0123456789)

SN Computer Science (2021) 2:16
https://doi.org/10.1007/s42979-020-00416-4

SN Computer Science

REVIEW ARTICLE

Data‑Driven Requirements Elicitation: A Systematic Literature Review

Sachiko Lim1 · Aron Henriksson1 · Jelena Zdravkovic1

Received: 25 March 2020 / Accepted: 2 December 2020
© The Author(s) 2020

Abstract
Requirements engineering has traditionally been stakeholder-driven. In addition to domain knowledge, widespread digitaliza-
tion has led to the generation of vast amounts of data (Big Data) from heterogeneous digital sources such as the Internet of
Things (IoT), mobile devices, and social networks. The digital transformation has spawned new opportunities to consider such
data as potentially valuable sources of requirements, although they are not intentionally created for requirements elicitation.
A challenge to data-driven requirements engineering concerns the lack of methods to facilitate seamless and autonomous
requirements elicitation from such dynamic and unintended digital sources. There are numerous challenges in processing
the data effectively to be fully exploited in organizations. This article, thus, reviews the current state-of-the-art approaches
to data-driven requirements elicitation from dynamic data sources and identifies research gaps. We obtained 1848 hits when
searching six electronic databases. Through a two-level screening and a complementary forward and backward reference
search, 68 papers were selected for final analysis. The results reveal that the existing automated requirements elicitation pri-
marily focuses on utilizing human-sourced data, especially online reviews, as requirements sources, and supervised machine
learning for data processing. The outcomes of automated requirements elicitation often result in mere identification and
classification of requirements-related information or identification of features, without eliciting requirements in a ready-to-
use form. This article highlights the need for developing methods to leverage process-mediated and machine-generated data
for requirements elicitation and addressing the issues related to variety, velocity, and volume of Big Data for the efficient
and effective software development and evolution.

Keywords  Requirements engineering · Requirements elicitation · Big Data · Automation

Introduction

Requirements elicitation is one of the most critical activities
in requirements engineering, which, in turn, is a major deter-
minant of successful development of information systems
[1]. In conventional requirements engineering, requirements

are elicited from domain knowledge obtained from stake-
holders, relying primarily on qualitative data collection
methods (e.g., interviews, workshops, and focus group dis-
cussions) [2]. The ongoing digitalization of organizations
and society at large—as seen, for instance, by the prolifera-
tion of e-commerce and the advent of IoT—has led to an
unprecedented and increasing amount of high-velocity and
heterogeneous data, which is often referred to as Big Data
[3].

The digital transformation has spawned new opportunities
to consider this type of dynamic data from digital sources
as potentially valuable sources of requirements, in addition
to domain knowledge. Harnessing both traditional and new
data sources in a complementary fashion may help improve
the quality of existing or facilitate the development of new
software systems. Nevertheless, conventional elicitation
techniques are often time-consuming and not sufficiently
scalable for processing such fast-growing data or capa-
ble of considering stakeholder groups that are becoming

Supplementary Information  The online version contains
supplementary material available at https​://doi.org/10.1007/s4297​
9-020-00416​-4.

 *	 Sachiko Lim
	 sachiko@dsv.su.se

	 Aron Henriksson
	 aronhen@dsv.su.se

	 Jelena Zdravkovic
	 jelenaz@dsv.su.se

1	 Department of Computer and Systems Sciences, Stockholm
University, DSV, PO Box 7003, 164 07 Kista, Stockholm,
Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00416-4&domain=pdf
https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.1007/s42979-020-00416-4

	 SN Computer Science (2021) 2:16 16   Page 2 of 35

SN Computer Science

increasingly large and global. This highlights the need for a
data-driven approach to support continuous and automated
requirements engineering from ever-growing amounts of
data.

There have been numerous efforts to automate require-
ments elicitation from static data, i.e., data that are gener-
ated with a relatively low velocity and rarely updated. These
efforts can be grouped according to the following three aims:
(1) eliciting requirements from static domain knowledge
(e.g., documents written in natural languages [4, 5], ontolo-
gies [6, 7], and various types of models, e.g., business pro-
cess models [8], UML use cases and sequence diagrams [9]),
(2) performing specific requirements engineering activities
based on requirements that have been already elicited (e.g.,
requirements prioritization [10], classification of natural lan-
guage requirements [11], management of requirements trace-
ability [12], requirements validation [13], generation of a
conceptual model from natural language requirements [14]),
or (3) developing tools to enhance stakeholders’ ability to
perform requirements engineering activities based on static
domain knowledge or existing requirements (e.g., tool-sup-
port for collaborative requirements prioritization [15] and
requirements negotiation with rule-based reasoning [16]).

Several systematic reviews have been conducted on auto-
mated requirements elicitation from static domain knowl-
edge. Meth et al. conducted a systematic review on tool
support for automated requirements elicitation from domain
documents written in natural language, where they analyzed
and categorized the identified studies according to an ana-
lytical framework which consists of tool categories, techno-
logical concepts, and evaluation approaches [17]. Nicolás
and Toval conducted a systematic review of the methods and
techniques for transforming domain models (e.g., business
models, UML models, and user interface models), use cases,
scenarios, and user stories into textual requirements [18]. In
both of these reviews, the requirements sources contained
static domain knowledge.

Much less focus has been placed on eliciting requirements
from dynamic data, and data that were not intentionally col-
lected for the purpose of requirements elicitation. There are
four main advantages to focus on dynamic data from such
“unintended” digital sources. First, dynamic data-driven
requirements engineering facilitates secondary use of data,
which eliminates the need for collecting data specifically
for requirements engineering, in turn enhancing scalability.
Second, unintended digital sources can include data relevant
for new system requirements that otherwise would not be
discovered since utilizing such data sources allows for the
collection of data from larger and global stakeholders who
are beyond the reach of an organization relying on traditional
elicitation methods [19]. Including such requirements, which
a current software system is not supporting, can bring busi-
ness values in the form of improved customer satisfaction,

cost and time reduction, and optimized operations [20].
Third, focusing on dynamic data allows for capturing up-
to-date user requirements, which in turn enables timely and
effective operational decision making. Finally, dynamic
data from unintended digital sources are machine-readable,
which facilitates automated and continuous requirements
engineering. A fitting requirements elicitation approach
provides new opportunities and competitive advantages in a
fast-growing market by extracting real-time business insights
and knowledge from a variety of digital sources.

Crowd-based requirements engineering (CrowdRE) is a
good example that has taken advantage of dynamic data from
unintended digital sources. A primary focus of CrowdRE has
been on eliciting requirements from explicit user feedback
from crowd users (e.g., app reviews and data from social
media) by applying various techniques based on machine
learning and natural language processing [21]. Genc-Nayebi
and Abran conducted a systematic review on opinion min-
ing from mobile app store user reviews to identify existing
solutions and challenges for mining app reviews, as well as
to propose future research directions [22]. They focused on
specific data-mining techniques used for review analysis,
domain adaptation methods, evaluation criteria to assess the
usefulness and helpfulness of the reviews, techniques for
filtering out spam reviews, and application features. Mar-
tin et al. [26] surveyed on studies that performed app store
analysis to extract both technical and non-technical attrib-
utes for software engineering. Tavakoli et al. [27] conducted
a systematic review on techniques and tools for extracting
useful software development information through mobile
app review mining. The aforementioned literature reviews
only focus on utilizing app reviews, while leaving out other
types of human-sourced data that are potentially useful as
requirement sources. There is also a growing interest in
embracing contextual and usage data of crowd users (i.e.,
implicit user feedback) for requirements elicitation. This
systematic review, thus, broadens the scope of previous lit-
erature reviews by considering more diverse data sources
than merely app reviews for requirements elicitation.

Another relevant approach to data-driven requirements
engineering is the application of process mining capabilities
for requirements engineering. Process mining is an evidence-
based approach to infer valuable process-related insights pri-
marily from event logs, discovered models, and pre-defined
process models. Process mining can be divided into three
types: process discovery, conformance checking, and pro-
cess enhancement [23]. Ghasemi and Amyot performed a
systematic review on goal-oriented process modeling in
which the selected studies were categorized into three areas:
(1) goal modeling and requirements elicitation, (2) inten-
tion mining (i.e., the discovery of intentional process models
going beyond mere activity process models), and (3) key
performance indicators (i.e., means for monitoring goals)

SN Computer Science (2021) 2:16 	 Page 3 of 35  16

SN Computer Science

[23]. Their findings indicate that the amount of research on
goal-oriented process mining is still limited. In addition to
explicit and implicit user feedback, as well as event logs and
process models, there may be more opportunities to leverage
a broader range of dynamic data sources for requirements
engineering, such as sensor readings.

Zowghi and Coulin [24] performed a comprehensive sur-
vey on techniques, approaches, and tools used for require-
ments elicitation. However, their work exclusively focused
on conventional, stakeholder-driven requirements elicitation
methods. Our study instead investigated the data-driven
requirements elicitation. More recently, Arruda and Mad-
havji [25] systematically reviewed the literature on require-
ments engineering to develop Big Data applications. They
identified the process and type of requirements needed for
developing Big Data applications, identified challenges
associated with requirements engineering in the context of
Big Data applications, discussed the available requirements
engineering solutions for the development of Big Data appli-
cations, and proposed future research directions. This study
is different from their work because we studied methods
to elicit requirements from Big Data rather than eliciting
requirements for Big Data applications.

To our knowledge, no systematic review has been per-
formed with an explicit focus on automated requirements
elicitation for information systems from three types of
dynamic data sources: human-sourced data sources, process-
mediated data sources, and machine-generated data sources.
The aim of this study is, therefore, to perform a compre-
hensive and systematic review of the research literature on
existing state-of-the-art methods for facilitating automatic
requirements elicitation for information systems driven by
dynamic data from unintended digital sources.

This review may help requirements engineers and
researchers understand the existing data-driven requirements
elicitation techniques and gaps need to be addressed to facili-
tate data-driven requirements elicitation. Those insights may
provide a basis for further development of algorithms and
methods to leverage the increasing availability of Big Data
as requirements sources.

Definitions and Scope

In this study, dynamic data are defined as raw data available
in a digital form that changes frequently and have not already
been analyzed or aggregated. Dynamic data certainly include
but are not limited to Big Data, which in itself is challenging
to define [28]. In addition to Big Data, dynamic data also
include data that does not strictly meet the 4 Vs of Big Data
(i.e., Volume, Variety, Veracity, and Velocity) but are still
likely to contain relevant requirements-related information.
Domain knowledge includes, for example, intellectual prop-
erty, business documents, existing system specifications,

goals, standards, conferences, and knowledge from custom-
ers or external providers.

This study excludes static domain knowledge that is less
frequently created or modified and has been the primary
focus of existing automated requirements engineering.
Unintended digital sources are defined as sources of data
generated via digital technologies that are unintended with
respect to requirements elicitation. Thus, dynamic data from
unintended digital sources are the digital data pulled from
data sources that are created/modified frequently without the
intention of eliciting requirements.

Of note is that the two terms “dynamic data” and “unin-
tended digital source” together define the scope of this
systematic review. For example, although domain docu-
ments are often created without the intention of perform-
ing requirements engineering, they are not considered to be
dynamic data and, therefore, outside of the scope of this
study.

Dynamic data from unintended digital sources expand
explicit and implicit user feedback, defined by Morales-
Ramirez et al. [29]. In their study, user feedback is consid-
ered as “a reaction of users, which roots in their perceived
quality of experience”, which indicates the existence of a
specific user is assumed. However, there are many devices
which collect Big Data such as environmental IoT sensors to
measure temperature, humidity, and pollution level, without
interacting users. Since we foresee the possibility of elic-
iting requirements from such data sources, we decided to
use a different term from the term “implicit user feedback”.
To categorize the sources of data, we used human-sourced,
process-mediated, and machine-generated data, following
Firmani et al. [30].

Research Questions

To achieve the aim of the study, we formulated the main
research question as follows: how can requirements elicita-
tion from dynamic data be supported through automation?
The main research question has been further divided into the
following sub-research questions:

•	 RQ1: What types of dynamic data are used for automated
requirements elicitation?
–	 We focus on describing the sources of the data, but

also study whether there have been attempts to inte-
grate multiple types of data sources and whether
domain knowledge has been used in addition to
dynamic data.

•	 RQ2: What types of techniques and technologies are used
for automating requirements elicitation?
–	 We are interested in learning which underlying tech-

niques and technologies are used in the proposed

	 SN Computer Science (2021) 2:16 16   Page 4 of 35

SN Computer Science

methods, as well as how they are put together and
evaluated.

•	 RQ3: What are the outcomes of automated requirements
elicitation?
–	 We assess how far the proposed methods go in auto-

mating requirements elicitation, the form of the out-
puts generated by the data-driven elicitation method,
and what types of requirements are elicited.

This systematic review will advance scientific knowledge
on data-driven requirements engineering for continuous sys-
tem development and evolution by (1) providing a holistic
analysis of the state-of-the-art methods that support auto-
matic requirements elicitation from dynamic data, (2) iden-
tifying associated research gaps, and (3) providing directions
for future research. The paper is structured as follows: the
second section presents the research methods used in our
study; the third section presents an overview of the selected
studies and the results based on our analytical framework;
the fourths section provides a detailed analysis and discus-
sion of each component of the analytical framework; the
fifth section describes potential threats to validity; finally,
the last section concludes the paper and suggests directions
for future work.

Methods

A systematic literature review aims to answer a specific
research question using systematic methods to consolidate
all relevant evidence that meets pre-defined eligibility cri-
teria [3]. It consists of three main phases: planning, con-
ducting, and reporting the review. The main activities of
the planning phase are problem formulation and protocol
development. Before the actual review process started, we
formulated research questions. The study protocol was then
developed, conforming to the guideline of the systematic
literature review proposed by Kitchenham and Charters [31].
The protocol included the following contents: background,
the aim of the study, research questions, selection criteria,
data sources (i.e., electronic databases), search strategy,
data collection, data synthesis, and the timeline of the study.
The protocol was approved by the research group, which
consists of the first author and two research experts: one
expert in requirements engineering and one expert in data
science. The actual review process starts during the con-
ducting phase. The phase includes the following activities:
identifying potentially eligible studies based on title, abstract
and keywords, selecting eligible studies through full-text
screening, extracting and synthesizing data that are relevant
to answer the defined research question(s), performing a
holistic analysis, and interpreting the findings. During the

reporting phase, the synthesized findings are documented
and disseminated to an appropriate channel.

Selection Criteria

Inclusion and exclusion criteria were developed to cap-
ture the most relevant articles for answering our research
questions.

Inclusion Criteria

We included articles that met all the following inclusion
criteria:

•	 Requirements elicitation is supported through automa-
tion.

•	 Requirements are elicited from digital and dynamic
data sources.

•	 Digital and dynamic data sources are created without
intention with respect to requirements engineering.

•	 Changes in requirements should involve the elicitation
of new requirements.

•	 The article has been peer-reviewed.
•	 The full text of the article is written in English.

Exclusion Criteria

We excluded articles that met at least one of the following
exclusion criteria:

•	 Requirements are elicited solely from non-dynamic
data.

•	 The proposed method is performed based on existing
requirements.

•	 Studies that merely presented the proposed artifact
without any or sufficient descriptions of evaluation
methods.

•	 Review papers, keynote talks, or abstracts of confer-
ence proceedings.

Data Sources

We performed a comprehensive search in six electronic
databases (Table 1). In the first iteration, we searched
Scopus, Web of Science, ACM Digital Library, and IEEE
Xplore. Those databases were selected because they
together cover the top ten information systems journals
and conferences [17]. In addition, EBSCOhost and Pro-
Quest, which are two major databases in the field of infor-
mation systems, were searched to maximize the coverage
of relevant publications, in line with a previous systematic

SN Computer Science (2021) 2:16 	 Page 5 of 35  16

SN Computer Science

review in the area [17]. ProQuest and EBSCOhost include
both peer-reviewed and non-peer-reviewed articles. We,
however, considered only peer-reviewed articles to be con-
sistent with our inclusion criteria. The differences in the
search field across databases are due to the different search
functionalities of each electronic database.

Search Strategy

A comprehensive search strategy was developed in consulta-
tion with a librarian and the two co-authors who are experts
in the fields of requirements engineering and data science,
respectively. First, we extracted three key components from
the first research question: requirements elicitation, automa-
tion, and Big Data sources and related analytics (Table 2).
These components formed the basis for creating a logical
search string. Big Data can refer either to data sources or to
analytics/data-driven techniques to process Big Data. The
term is also closely related to data-mining/machine-learn-
ing/data science/artificial intelligence techniques. We thus
included keywords and synonyms that cover both Big Data
sources and related analytics.

To construct a search string, keywords and synonyms
that were grouped in the same component were connected
by OR-operators, while each key component was connected
by AND-operators, which means at least one keyword from
each component must be present. The search string was

adapted using the specific syntax of each database’s search
function. The search string was iteratively tested and refined
to optimize search results through trial search.

Study Selection

The entire search was performed by the first author (SL).
Before starting the review process, we tested a small number
of articles to establish agreement and consistency among
reviewers. We then conducted a pilot study in which three
reviewers independently assessed 50 randomly selected
papers to estimate the sample size that is needed to ensure
a substantial level of agreement (i.e., 0.61–0.80) based on
the Landis and Koch-Kappa’s benchmark scale [32]. Each
paper was screened by assessing its title, abstract, and key-
words against our selection criteria (level 1 screening). Dur-
ing level 1 screening, articles were classified into one of the
three categories: (1) included, (2) excluded, or (3) uncertain.
Studies that fell into category 1 and 3 proceeded to full-
text screening (level 2 screening) since the aim of the level
1 screening was to identify potentially relevant articles or
those that lack sufficient information to be excluded.

After each reviewer had assessed 50 publications, we
computed the Fleiss’s Kappa to calculate the inter-rater
reliability. We, however, did not discuss the results of each
reviewer’s assessment. The Fleiss’s Kappa was used because
there were more than two reviewers. The Fleiss’ Kappa
was computed to be 0.786. Sample size estimation was

Table 1   Data sources Electronic databases Search field Date of search

Scopus Title, abstract, keywords 2018-12-05
Web of Science Topic 2018-12-05
ACM Digital Library Title, author, abstracts, citations, and keywords 2018-12-05
IEEE Xplore Metadata (i.e., abstract, title text, and indexing terms) 2018-12-05
EBSCOhost Subject, keywords, title, abstract 2018-12-21
ProQuest Anywhere except full text 2018-12-21

Table 2   Search terms Key components Keywords and synonyms

Requirements elicitation “Requirements elicitation” OR “requirements analysis”
OR “requirements identification” OR “requirements
discovery” OR “requirements gathering” OR “require-
ments determination” OR “requirements collection”
OR “requirements engineering” OR “system require-
ments”

Automation Automat* OR “computer aided” OR “computer assisted”
Big Data sources and related analytics “Big data” OR sensor* OR “Internet of Things” OR IoT

OR “natural language processing” OR “data mining”
OR “artificial intelligence” OR “data processing” OR
“data science” OR “data analysis” OR “machine learn-
ing” OR “data driven” OR “data oriented” OR “graph
analytics”

	 SN Computer Science (2021) 2:16 16   Page 6 of 35

SN Computer Science

performed, following a confidence interval approach sug-
gested by Rotondi and Donner [33]. Using 0.786 as the point
estimate of Kappa and 0.61 as the expected lower bound, the
required minimum sample size was estimated to be 139. The
value of 0.61 was used as the lower bound of Kappa because
it is the lower limit of “substantial” inter-rater reliability
based on the Landis and Koch-Kappa’s benchmark scale
[32], which is what we had aimed for. Since we achieved
a substantial level of agreement and did not discuss results
not to influence each other’s decisions, each of three review-
ers independently continued to screen the remainder of the
89 randomly chosen publications based on titles, abstracts,
and keywords (level 1 screening). The overall Fleiss’ Kappa
for reviewing 139 articles was 0.850, which indicates an
“almost perfect” agreement, according to the benchmark
scale proposed by Landis and Koch [32]. Since we were able
to achieve a very high inter-rater reliability, the rest of the
level 1 screening was conducted by a single reviewer (SL).
However, all of the three reviewers discussed and reached a
consensus on the articles which SL classified as uncertain or
could not decide on with sufficient confidence.

Before conducting the level 2 screening, we discussed
which information should be extracted from the eligible
articles. Based on the discussion, we developed a prelimi-
nary analytical framework to standardize the information
to be extracted. We tested this on a small number of full-
text papers and refined the data extraction form accordingly.
In the level 2 screening, at least two authors reviewed the
full-text of each paper that has been identified in level 1
screening to assess its eligibility in the final analysis. In
addition to keyword-based search on the databases, we also
performed forward/backward reference searching of all the
included studies. SL extracted data from all the eligible stud-
ies, while each of AH and JZ divided the data extraction task
by half. This was done to ensure that data extracted by SL
could be cross-checked by at least one of the two reviewers
who have richer experiences and knowledge. Any disagree-
ments between the two reviewers were referred to the third
reviewer and resolved by consensus.

To update the search results, an additional search was
performed on July 3, 2020, using the same search query and
introducing the two-level screening process (i.e., keyword-
based search followed by full-text screening). While filtering
can be performed by specifying the publication date and year
in some databases, in other databases, the search can only be
filtered by the publican year. Thus, we manually excluded
the studies that have been published before the date of the
initial search. However, we did not perform a backward and
forward reference search during the updating phase. We then
applied the same selection criteria used for the initial search
to identify the relevant studies.

Analytical Framework and Data Collection

After considering the selected articles, we iteratively devel-
oped and refined an analytical framework, which covers
both design and evaluation perspectives, to answer our
research questions. The framework consists of three com-
ponents: types of dynamic data sources used for automated
requirements elicitation, techniquesand technologies used
for automated requirements elicitation, and the outcomes of
automated requirements elicitation. Table 3 summarizes the
extracted data that are associated with each component of
the analytical framework. Each component of the analytical
framework is described in detail below.

Types of Dynamic Data Sources Used for Automated
Requirements Elicitation

To answer RQ1, we extracted the following information: (1)
types of dynamic data sources, (2) types of dynamic data, (3)
integration of data sources, (4) relation of dynamic data to
a given organization, and (5) additional domain knowledge
that is used to elicit system requirements.

Types of Dynamic Data Sources  Dynamic data sources are
categorized into one or a combination of human-sourced
data sources, process-mediated data sources, and machine-
generated data sources [30]. This provides insights into
which types of data sources have drawn the most or the least
attention as potential requirements sources in the existing
literature. The categorization also helps to analyze whether
there exists any process pattern in the automated require-
ments elicitation within each data source type.

Human-sourced data sources refer to the digitized records
of human experiences. To name a few, examples of human-
sourced data sources include social media, blogs, and con-
tents from mobile phones. Process-mediated data sources are
records of business processes and business events that are
monitored, which includes electronic health records, com-
mercial transactions, banking records, credit card payments.
Machine-generated data sources are the records of fixed and
mobile sensors and machines that are used to measure the
events and situations in the physical world. They include,
for example, readings from environmental and barometric
pressure sensors, outputs of medical devices, satellite image
data, and location data such as RFID chip readings and GPS
outputs.

Types of Dynamic Data  To understand what types of
dynamic data have been used for eliciting system require-
ments in the existing literature, we extracted the specific
types of dynamic data that were used in each of the selected
studies and grouped them into seven categories. Those cate-

SN Computer Science (2021) 2:16 	 Page 7 of 35  16

SN Computer Science

gories are online reviews (e.g., app reviews, expert reviews,
and user reviews), micro-blogs (e.g., Twitter), online dis-
cussions/forums, software repositories (e.g., issue tracking
systems and GitHub), usage data, sensor readings, and mail-
ing lists.

Integration of Data Sources  We explored whether the
study integrates multiple types of dynamic data sources
(i.e., any combination of human-sourced, process-medi-
ated, and machine-generated data sources). We classified
the selected studies into “yes” if the study has used multi-
ple dynamic data sources, otherwise into “no.”

Table 3   Analytical framework

Components Extracted data Definition/description

Overview of the study General characteristics The number that is uniquely associated with the
title, author (s), the name of journal/confer-
ence, and year of publication

Types of dynamic data sources used for auto-
mated requirements elicitation

Types of dynamic data sources • Human-sourced data sources
• Process-mediated data sources
• Machine-generated data sources

Types of specific dynamic data • Online reviews
• Microblogs
• Online discussions/forums
• Software repositories
• Usage data
• Sensor readings
• Mailing lists

Integration of data sources • Yes
• No

Relation of dynamic data to an organization
of interest

• Internal
• External

Additional use of domain knowledge • Yes
• No

Techniques used for requirements elicitation Techniques(s) used for automation • Machine learning
• Rule-based classification
• Model-oriented approach
• Topic modeling
• Traditional clustering

Summarization/aggregation • Yes
• No

Visualization • Yes
• No

Intended degree of automation • Full-automation
• Semi-automation

Evaluation approach • Controlled experiment
• Case study
• Proof of concept
• Other concepts

Evaluation concepts • Completeness
• Correctness
• Efficiency
• Other evaluation concepts

Evaluation metrics Metrics that were used to evaluate a selected
concept(s)

The outcomes of automated requirements
elicitation

Expression of requirements • Identification and classification of require-
ments-related information

• Identification of candidate features related to
requirements

• Elicitation of requirements
Additional requirements engineering activity

supported through automation
• Yes
• No

	 SN Computer Science (2021) 2:16 16   Page 8 of 35

SN Computer Science

Relation of Dynamic Data to a Given Organization  Under-
standing whether requirements are elicited from external or
internal data sources in relation to a given organization is
important for requirements engineers to identify potential
sources that can bring innovations into the requirements
engineering process and facilitate software evolution and
development of new promising software systems. We thus
classified the selected studies into “yes” if the platform is
owned by the organization and “no” if it is owned by a third
party.

Additional Domain Knowledge that was Used to Elicit Sys‑
tem Requirements  We assessed whether the study uses any
domain knowledge in combination with dynamic data to
explore the possible ways of integrating both dynamic data
and domain knowledge. The selected studies were classified
into “yes,” if the study uses any domain knowledge in addi-
tion to dynamic data, otherwise classified into “no.”

Techniques Used for Automated Requirements Elicitation

To answer RQ2, the following four types of information
were extracted: (1) technique(s) used for automated require-
ments elicitation, including process pattern of automating
requirements elicitation, (2) use of aggregation/summariza-
tion, (3) use of visualization, and (4) evaluation methods.

Technique(s) Used for Automation  Implementing promising
algorithms is a prerequisite for effective and efficient auto-
mation of the requirements elicitation process. To identify
the state-of-the-art algorithms, specific methods that were
used for automating requirements elicitation were extracted
and categorized into machine learning, rule-based classifi-
cation, model-oriented approach, topic modeling, and tradi-
tional clustering.

Aggregation/Summarization  Summarization helps navi-
gate requirements engineers to pinpoint the relevant infor-
mation efficiently out of the ever-growing amount of data.
We thus assessed whether the study summarizes/aggre-
gates requirements-related information to obtain high-level
requirements. If summarization/aggregation is performed,
we also extracted specific techniques used for summariza-
tion/aggregation.

Visualization  Visualization facilitates requirements engi-
neers to interpret the results of data analysis efficiently
and effectively as well as to gain (new) insights in data.
We assessed whether the study visualizes the output of
the study to enhance their interpretability. If visualization
is provided, the specific method used for visualization was
also extracted.

Evaluation Methods  To understand how rigorously the
performance of the proposed artifact was evaluated, we
extracted methods that were used to assess the artifact. Eval-
uation methods were further divided into two dimensions:
evaluation approach and evaluation concepts and metrics
[17]. The evaluation concept of each selected study was cat-
egorized into one of the following groups: controlled exper-
iment, case study, proof of concept, and other concepts. In a
controlled experiment, the proposed artifact is evaluated in
a controlled environment [34]. A case study aims to assess
the artifact in-depth in a real-world context [34]. A proof
of concept is defined as a demonstration of the proposed
artifact to verify its feasibility for a real-world application.
Other concepts refer to studies using other approaches to
evaluate their artifact that does not fall into any category of
the aforementioned evaluation approach. We also extracted
evaluation concepts and metrics used for the artifact evalu-
ation. Evaluation concepts were classified into one or more
of the following categories: completeness, correctness, effi-
ciency, and other evaluation concepts.

The Outcomes of Automated Requirements Elicitation

To answer RQ3, we assessed the outcomes of automated
requirements elicitation by extracting the following informa-
tion: (1) types of requirements, (2) expression of the elicited
requirements (i.e., in what form outputs that were generated
by automated requirements elicitation were expressed), and
(3) additional requirements engineering activity supported
through automation.

Expression of the Elicited Requirements  To understand how
the obtained requirements are expressed and how far the
elicitation activity reached, outputs of automated require-
ments elicitation were extracted, which were grouped into
the following categories: identification and classification
of requirements-related information, identification of can-
didate features related to requirements, and elicitation of
requirements.

Intended Degree of Automation  Based on the degree of
the proposed automated method, the selected studies were
classified into either full automation or semi-automation.
We classified the study as full automation if the study ful-
filled either of the following conditions: (1) the proposed
artifact automated the entire requirements elicitation pro-
cess without human interaction, or (2) the proposed artifact
only supports the partial process of requirements elicita-
tion; however, the part it addressed was fully automated.
Semi-automation refers to having a human-in-the-loop for
automating requirements elicitation, thus requirements
are directed by human interactions.

SN Computer Science (2021) 2:16 	 Page 9 of 35  16

SN Computer Science

Additional Requirements Engineering Activity Supported
Through Automation  Understanding to what extent the
entire requirements engineering process has already been
automated is essential to clarify the direction of future
research that aims at increasing the level of automation in
performing the requirements engineering process. We thus
extracted the requirements engineering activity that was
supported through automation other than requirements elic-
itation, if any.

Quality Assessment

We simply assessed the quality of the selected studies based
on CORE Conference Rankings for conferences, workshops,
and symposia, and SCImago Journal Rank (SJR) indicators
for journal papers. We assumed that a study with a higher
score of CORE or SJR has higher quality than one with a
lower score. The papers that have been ranked A*, A, B,

or C for the CORE index get the point of 1.5, 1.5, 1, and
0.5, respectively. If a paper is ranked Q1 or Q2 for the SJR
indicator, the paper receives 2 and 1.5, respectively, while a
paper that is ranked Q3 or Q4 gets 1. If a conference/journal
paper is not included in the CORE/SJR ranking, the paper
scores 0 points.

Data Synthesis

We narratively synthesized the findings of this systematic
review, which includes basic descriptive statistics and quali-
tative analyses of (semi-)automated elicitation methods that
are sub-grouped by dynamic data source as well as identified
research gap(s), and implications and recommendations for
future research.

Fig. 1   Flow diagram of article
selection

Table 4   The results of study identification for each electronic database

Results Database Duplicates identi-
fied (via Zotero)

Sub-total

Scopus Web of science IEEE Xplore ACM digital
library

EBSCOhost Proquest

Initial search 686 508 347 94 201 12 458 1390
Additional search 236 112 101 12 10 2 473 401

	 SN Computer Science (2021) 2:16 16   Page 10 of 35

SN Computer Science

Results

Figure 1 shows a flow diagram of the article selection. We
obtained 1,848 hits when searching the 6 electronic databases.
We removed 458 duplicates, leaving 1,390 articles for level 1
screening (Table 4). After level 1 screening, we identified 40
articles to proceed to level 2 screening. The level 2 screen-
ing resulted in the inclusion of 29 articles for data extraction.
We excluded the remaining eleven papers due to: the study
not using dynamic data for requirements elicitation; the study
being based on existing requirements that had already been
elicited; the study not automating requirements elicitation to
any degree; and the study proposing a method for automated
requirements elicitation without sufficient evaluation.

In addition, a forward and backward reference search identi-
fied 1017 additional articles. Out of these, 22 articles met our
inclusion criteria. Thus, a total of 51 papers were considered
in the final analysis. Reasons for similar numbers of articles
being identified in the query-based search and the backward/
forward search include: the studies using terms such as “elicit
requirements”, “requirements”, “requirements evolution”
instead of “requirements elicitation”; using keywords which
cover only one or two of the three keyword blocks despite
being relevant; using only the name of a specific analytics
technique (e.g., Long Short-term Memory) and not more gen-
eral terms included in the identified keywords, e.g., machine
learning.

To update the search results, we performed additional
search and two-level screening, using the same search query
process. The updated search identified 401 after removing
duplicates (Table 4). Two-level screening resulted in includ-
ing 17 additional studies. However, we did not perform a
backward and forward reference search during this phase.
We also included one study that was not captured by the
search query but was recommended by an expert due to its
relevance to our research question. We, therefore, selected a
total 68 studies to be included in this review.

General Characteristics of the Selected Studies

Of the 68 selected articles, conference proceedings are the
most frequent publication type (n = 41), followed by journal
articles (n = 16), workshop papers (n = 7), and symposium
papers (n = 4). All selected studies except one (2009) were
published between 2012 and 2020. Figure 2 depicts the
total number of the included papers per publication year.
Although the number of publications dropped in 2018, in
general, there is an increasing trend of publications between
2012 and 2019. For the year 2020, the result is shown as of
July 3. A further observation is thus needed to confirm the
increasing trend at the end of the year. The median score

for study quality was 1 with the interquartile range of 0–1.5
(Appendix 2).

Types of Dynamic Data Sources Used
for Requirements Elicitation

Dynamic Data Sources Used for Automated Requirements
Elicitation

Among dynamic data sources, human-sourced data sources
have been primarily used as requirements sources. Among
the three types of dynamic data sources, the vast major-
ity (93%, n = 63) of the studies used human-sourced data
sources for eliciting requirements. Only four studies (6%)
explored using either machine-generated (n = 2) or process-
mediated (n = 2) data sources. Almost all the studies focused
on a single type of dynamic data source. We identified only
one study attempting to integrate multiple types of dynamic
data sources (1%).

The Specific Types of Dynamic Data Used for Automated
Requirements Elicitation

The following seven data sources have been used for auto-
mated requirements elicitation: online reviews, micro-blogs,
online discussions/forums, software repositories, software/
app production descriptions, sensor readings, usage data
from system–user interactions, and mailing lists (Table 5).
Online reviews are reviews of a product or service that
is posted and shown publicly online by people who have
purchased a given service or product. Microblogs, which
are typically published on social media sites, are a type of
blog in which users can post a message in a form of differ-
ent content formats such as short texts, audio, video, and
images. They are designed for quick conversational inter-
actions among users. Online discussions/forums are online
discussion sites where people can post messages to exchange
knowledge. Software repositories are platforms for sharing
software packages or source codes, which primarily contain
three elements: a trunk, branches, and tags. This study also

Fig. 2   Publication trend

SN Computer Science (2021) 2:16 	 Page 11 of 35  16

SN Computer Science

considered issue-tracking systems as software repositories,
which are detailed reports of bugs or complaints written in
the form of free texts. Sensor readings are electrical outputs
of devices that detect and respond to inputs from a physical
phenomenon, which results in a large amount of streaming
data. Usage data are run-time data collected when users are
interacting with a given system. Mailing lists are a type of

electronic discussion forums. E-mail messages sent by spe-
cific subscribers are shared by everyone on a mailing list.

Figure 3 depicts the types of dynamic data that have been
used for automated requirements elicitation. Online reviews
are the most frequently used type of dynamic data for elic-
iting requirements (53%), followed by micro-blogs (18%)
and online discussions/forums (12%), software repositories

Table 5   Dynamic data used for automated requirements elicitation

Dynamic data Data descriptions

Online reviews • Online reviews included app reviews, reviews compiled by experts, and online user reviews. Among the
studies which used online reviews, a majority of the studies used app reviews as the sources of potential
requirements (75%) [35–54]. Of them, 14 used app reviews from multiple distribution platforms such as
Apple AppStore and Google Play to increase the level of generalizability, while eleven used those from a
single distribution platform, and one did not specify the number of app distribution platforms

• Of the studies which used online reviews, 17% (n = 6) extracted user reviews of software and video games
[55], IoT products [56], compact cameras [57], internet security [58], Jira and Trello [59], and Jingdong.
com [60]. Expert reviews were used in the 8% (n = 3), of which two were from multiple platforms [61, 62],
and one was from a single platform [63]

Microblogs • Microblog data from twitter, Facebook, and Weibo were used for automated requirements elicitation. Of
total eleven studies that used twitter, four studies extracted only texts [64–67], while the rest extracted
additional metadata [68–74]. The metadata include the number of retweets, likes, lexically similar tweets
(i.e., duplicates), twitter followers and friends (i.e., social rank), replies to tweets, as well as hashtags, han-
dles (i.e., indicated by an @ appended with a username), and demographic data of the person who tweeted.

• Ali et al. [66] and Han et al. [75] used user comments on Facebook and Weibo, respectively. Seven out of
11 studies that used microdata performed sentiment analysis of tweets [64–66, 68, 69, 72, 73]

Online discussion/forum Eight studies (12%) elicited requirements from different online discussion forums: online forum posts from
the feature tracker of the Password Safe project on SourceForge [76], questions and answers on Stack
Overflow [77], and feature requests from open-source forums of SugarCRM, SecondLife, and an Amazon-
like portal specifically developed for students [78], OpenOffice online discussion forum [79], the Reddit
forum [80–82], and the VLC media player and Firefox web browser forums [83]

Software repositories Seven studies (10%) leveraged data from software repositories: the Apache OpenOffice issue tracking system
[84], issues mined from the Android OS issue tracker [23], the natural language and features from the issue
tracking system metadata of the four open-source projects [85], and GitHub [86], GitHub and JIRA issue
tracker [87], and a data sink tank containing data from multiple software repositories (e.g., GitHub, JIRA,
Jenkins, and SonarQube) [88, 89]

Software/app product descriptions Five studies (7%) used software product descriptions on Softpedia [90, 91], app change logs [92, 93], or app
description page [94]

Sensor readings • Voet et al. [95] analyzed usage elements, which are the individual activities or parameters that are captured
via a handheld grinder, equipped with sensors, for user-centered and data-driven product improvement.
Features were extracted and selected from the usage elements and stored in the form of an array of the
features per time window (i.e., the coefficients of an autoregressive model of order two). Those selected
features were fed into a machine-learning algorithm to predict usage element states.

• Liang et al. collected [96] user context data (i.e., time, the location and motion state of the crowd mobile
users) and the currently running apps (i.e., mobile applications running at a given time point) via the
sensors of the smartphones and used to mine context-aware user requirements. User context data are struc-
tured as a 3-tuple, while the currently running apps are represented as the name of the apps. Context-aware
user requirements take the form of user behavior patterns, which are represented as frequent item sets of
user behavior (i.e., 4-tuples sets of user context and the name of the current running app(s)).

Usage data • Xie et al. [97] and Yang et al. [98] identified emerging or new user intentions based on users’ run-time
behavioral patterns and the corresponding environmental context values, when using the Cooperative
Research Environment (CoRE) system, an online library system that is modified based on an open-source
web application called MyReview. Usage data were structured as a set of feature functions that are defined
to reflect the relations between time-series user behavior (i.e., user actions) and the corresponding contex-
tual values and goals

• Wüest et al. [99] monitored the system usage to detect requirements violation and observed a sequence of
feature usage to better understand user requirements

Mailing lists Two studies used mailing lists as requirements sources: Apache Common User List [100] and open-source
software mailing lists [79]

	 SN Computer Science (2021) 2:16 16   Page 12 of 35

SN Computer Science

(10%), and software/app product descriptions (7%). Other
types of dynamic data include sensor readings (3%), usage
data from system–user interactions (4%), and mailing lists
(3%).

Several studies used multiple types of human-sourced
data to gain complementary information and improve the
quality of the analysis. Wang et al. [92] assessed whether the
use of app changelogs improves the accuracy of identifying
and classifying functional and non-functional requirements
from app reviews, compared to the results obtained from the
mere use of app reviews. Although there were no additional
positive effects of app changelogs on improving the accuracy
of automatic requirements classification, their subsequent
study [93] shows that the accuracy of classifying require-
ments in app reviews by augmenting the reviews with the
text feature words extracted from app changelogs.

Takahashi et al. in [100] used Apache Commons User
List and App Store reviews. However, those two types of
datasets were used independently without being integrated to
evaluate their proposed elicitation process. Moreover, Stanik
et al. [65] used three datasets: app reviews, tweets written
in English, and tweets written in Italian. On the other hand,
Johann et al. [94] integrated both app reviews and descrip-
tions to provide information on which app features are or are
not actually reviewed. In addition, Ali et al. [66] combined
tweets for a smartwatch and Facebook comments of wear-
able and smartwatch.

Some studies used multiple types of software reposito-
ries. Morales-Ramirez et al. [84] used two types of data-
sets obtained from the issue tracking system of the Apache
OpenOffice community and the feedback gathering system
of SEnerCON, which is an industrial project in the home
energy management domain. In their different study [79],
open-source software mailing lists, and OpenOffice online
discussions were used to identify relevant requirements
information. Nyamawe et al. [87] used commits from
GitHub repository and feature requests from JIRA issue

tracker, while Oriol et al. [89] and Franch et al. [88] consid-
ered heterogenous software repositories.

Only one study used multiple types of data sources (e.g.,
human-sourced data and machine-generated data). Wüest
et al. in [99] used both app user feedback (i.e., human-
sourced data) and app usage data (i.e., process-mediated
data).

Relation of Dynamic Data to an Organization of Interest

The majority of the studies used dynamic data that was
external to the organization of interest. Of the 68 studies
included in the analysis, 57 studies (85%) used dynamic data
which was externally related to a given organization (i.e.,
data were collected outside of an organization’s platforms)
[36–77, 80–82, 86–94, 96, 101]. Nine studies (13%) used
dynamic data that were collected from platforms belonging
to the organization: issue tracking systems [84, 85, 102];
user feedback from the online discussion and open-source
software mailing lists [79]; sensors equipped with an intel-
ligent product which is also known as a product embedded
information devices (PEID) [95]; software production forum
[103]; user feedback tool [99]. On the other hand, only two
studies (3%) used both internal and external dynamic data
[78, 100].

Additional Use of Domain Knowledge Used
for Requirements Elicitation

Only one study considered additional inclusion of domain
knowledge in eliciting requirements. Yang et al. [44] com-
bined the app review analysis and the Wizard-of-Oz tech-
nique for the requirements elicitation process. The results
indicate that integrating the two sources can complement
each other to elicit more comprehensive requirements that
cannot be obtained from either one of the sources.

Approaches for Automated Requirements Elicitation

Approaches Used for Human‑Sourced Data

Since human-sourced data are typically expressed in natu-
ral language, natural language processing (NLP) is com-
monly used for analyzing this type of data. All of the 63
studies which used human-sourced information started the
requirements elicitation process by preprocessing the raw
data using NLP techniques. Data preprocessing typically
involves removing noise (e.g., HTML tags) to retain only
text data. Another critical data preparation activity is tokeni-
zation, which means splitting the text into sentences and
tokens (words, punctuation marks, and digits), respectively.

Further analysis of the text using NLP typically involves
syntactic analysis, such as part-of-speech tagging. Two

Fig. 3   Types of dynamic data used for automated requirements elici-
tation

SN Computer Science (2021) 2:16 	 Page 13 of 35  16

SN Computer Science

studies have used speech-acts, which are acts performed
by a speaker when making an utterance, as parameters to
train supervised learning algorithms [79, 84]. For eliciting
requirements, nouns, verbs, and adjectives are often identi-
fied since they are more likely used for describing require-
ments-related information than other parts of speech, includ-
ing adverbs, numbers, and quantifiers [40].

A common preprocessing activity is stopword filtering,
which involves removing tokens that are common but carry
little meaning, including function words (e.g., “the”, “and”,
and “this”), punctuations (e.g., “.”, “?”, and “!”), and special
characters (e.g., “#” and “@”), and numbers. Normalization
is moreover often carried out by lowercasing (i.e., convert all
text data to lowercase), stemming (i.e., reduce inflectional
word forms to their root form such as reducing “play”, “play-
ing” and “played” to their common root form of “play”) and
lemmatization (i.e., grouping the different inflected forms
of words which are syntactically different but semantically
equal to be analyzed as a base form, called lemma, such as
grouping “sees” and “saw” into a single base form of “see”).

Once the text data have been preprocessed, features are
typically extracted for the subsequent modeling phase. Fea-
ture extraction can be done using a bag of words (i.e., sim-
ply count occurrences of tokens without considering word
order nor normalizing counters), n-grams (i.e., extract the
contiguous sequence of n tokens such as bi-gram which
indicates the extraction of token pairs), and collocations
(i.e., extract a sequence of words that co-occur more often
than by chance, for example, “strong tea”). To evaluate how
important a word is for a given document, a bag of words
are often weighted, using a weighting scheme such as term
frequency-inverse document frequency (tf-idf), which gives
high weights to words that have a high frequency in a par-
ticular document, while having a low frequency in an entire
set of documents. Other common features are based on syn-
tactic or semantic analysis of the text (e.g., part-of-speech
tags). Sentiment analysis, which is the automated process of
identifying and quantifying the opinion or emotional tone of
a piece of text through NLP, was used in 18 studies (38%),
either to feed into algorithms as features to increase the
accuracy of the algorithms or to understand user satisfaction.

After preprocessing the human-sourced data and extract-
ing features for data modeling, the next step of requirements
elicitation was to perform either classification or cluster-
ing. Classification refers to classifying (text) data into pre-
defined categories related to requirements, for example, clas-
sifying app reviews into bug reports, feature requests, user
experiences, and text ratings [38]. Classification has been
performed using three approaches: machine learning (ML),
rule-based classification, or model-oriented approaches. In
the ML approach, classification is performed by a model
built by a learning algorithm based on pre-labeled data.

In the ML approach, various learning algorithms auto-
matically learn statistical patterns within a set of training
data, such that a predictive model is able to predict a class
for unseen data. In most studies, ML relied on supervised
ML. In supervised ML, a predictive model is built based on
instances that were pre-assigned with known class labels
(i.e., training set). The model is then used to predict a label
associated with unseen instances (i.e., test set). A down-
side with supervised ML is that it typically requires a large
amount of labeled data (i.e., ground-truth set) to learn accu-
rate predictive models.

To reduce the cost of labeling a large amount of data,
a few studies used the active learning paradigm and semi-
supervised machine learning for classification. Active learn-
ing enables machines to wisely select unlabeled data points
to be labeled next in a way that optimizes a decision bound-
ary created by a given learning algorithm and interactively
queries the user to label the selected data points to improve
classification accuracy. Semi-supervised learning is an inter-
mediate technique between supervised and unsupervised
ML, which utilizes both labeled and unlabeled data in the
training process.

Rule-based classification is a classification scheme that
uses certain rules, such as language patterns. Rule-based
classification excels in performing simpler tasks where
domain experts can define rules, while classification using
ML works well for the tasks which are easily performed
by humans but where (classification) rules are hard to for-
mulate. However, listing all the rules can be tedious and
needs to be hand-crafted by skilled experts with abundant
domain knowledge. Moreover, rules might need to be refined
as new datasets become available, which requires additional
resources and limits scalability [77]. A model-oriented
approach, which includes utilizing conceptual or meta-
models, are applied to define and relate the mined terms
and drive classification.

On the other hand, clustering has been performed using
either topic modeling or more traditional clustering tech-
niques. Topic modeling is an unsupervised (i.e., learn from
unlabeled instances) dimension reduction and clustering
technique, which aims to discover hidden semantic patterns
in the collection of a document. Topic modeling is used to
represent an extensive collection of documents as abstract
topics consisting of a set of keywords. In automated require-
ments elicitation, topic modeling is mainly used for either
discovering system features or grouping similar fine-grained
features that are extracted using different approaches into
high-level features. Traditional clustering is an unsupervised
ML technique that aims to discover the intrinsic structure of
the data by partitioning a set of data into groups based on
their similarity and dissimilarity. Among the selected stud-
ies, traditional clustering has been mainly used to discover

	 SN Computer Science (2021) 2:16 16   Page 14 of 35

SN Computer Science

inherent groupings of features in requirements-related
information.

Some studies have performed clustering after classifi-
cation. Classification was first performed to identify and
classify requirements-related information, using machine
learning or rule-based classification. Clustering is then
applied to the identified requirements-related information
(e.g., improvement requests), while ignoring data irrelevant

to requirements, to discover inherent groupings of features,
using topic modeling or traditional clustering. Table 6
provides a more detailed description of the automated
approaches proposed in each study.

Figure 4 depicts the descriptive statistics of the
approaches for automated requirements elicitation used in
the selected studies. For classification, the most commonly
used approach was based on the ML approach (60%),

Table 6   Summary of the automated requirements elicitation approaches for human-sourced data that is grouped by classification approach and
clustering approach

Classification approach How

Machine learning • Classification with supervised learning has been performed in numerous studies [36, 38, 39, 42, 45, 47, 48, 50, 51,
53, 55, 56, 58–60, 64–71, 77, 79–82, 84, 85, 87, 91–93, 103, 104] to classify textual data into pre-defined labels that
are relevant for performing requirements elicitation, including identification of relevant requirements sources and
stakeholders as well as extraction of candidate features.

• Frequently used learning algorithms were Naïve Bayes, multinomial Naïve Bayes, Support Vector Machine, and
logistic regression. Decision tree and random forest were also used in some studies [45, 69, 85]. Several different
algorithms are often applied in the same study to compare the performance of classification.

• Active learning based on uncertain sampling, which selects data points which a model is most uncertain about for
manual labeling, was applied to classify app reviews into a feature request, bug report, rating, and user experience
[35].

• A semi-supervised learning technique was used to classify app reviews into either functional or non-functional
requirements [43].

Rule-based classification • Rule-based classification has been applied to identify and classify relevant requirements information, to identify
software features [40, 41, 46, 61, 62], and to elicit requirements [94].

• Rule-based classification has been performed: using collocation finding algorithms [40, 46]; grammar-based and
delimiter-based strategies [76]; phrase search [86]; conducting language pattern matching which results are post-
processed with Part-of-Speech tagging [57]; n-gram analysis [102].

It has also been performed based on language patterns [37, 61], or linguistic tags [62], propagation rules based on
syntactic relations [41], or the SAFE patterns which consist of Part-of-Speech patterns and sentence patterns [94].

Model-oriented • A user-oriented conceptual modeling approach was used for conceptualizing potential requirements in the form of
consumer preferences and classifying and ranking the preferences to identify software features [73]. Highly-ranked
consumer preferences in the conceptual model were further transformed into a i* goal model to explicate early/high-
level system requirements [72].

• Q-rapids, which is a quality-aware agile software development framework, was used to perform data-driven elicita-
tion of quality requirements [88, 89]. The data collected from heterogeneous software repositories are fed into a
quality model to compute the quality of the software. If the quality level violates the user-defined threshold, quality
alert is automatically created. When the alert is raised, candidate quality requirements (QRs) are identified, using the
QR pattern catalog. The catalog consists of a set of QR patterns, which are bound to the quality model for matching
the appropriate candidate QR patterns with the raised quality alert. The candidate QR patterns are then presented to
stakeholders to elicit QRs.

Clustering approach How
Topic modeling • Within requirements engineering, different topic modeling algorithms have been used, depending on the length of

the data. Latent Dirichlet Allocation (LDA), which is a common topic modeling algorithm, has been applied to app
reviews in the studies [40, 44, 46, 100]. Higashi et al. [54] improve LDA by keyword expansion. Zhao and Zhao
[47] used hierarchical LDA to extract software features. However, LDA is not suitable for analyzing shorter texts
such as tweets due to the sparsity of word co-occurrence patterns in the individual document

• To overcome the problem, the Biterm Topic Model (BTM) has been developed for short texts [105]. In one study
[68], BTM was applied to tweets to discover topics that are related to users’ experiences.

Traditional clustering • K-means clustering has been used to extract software features from online reviews [41, 58, 63, 75, 78, 90], and to
cluster informative app reviews [53]

Jiang et al. [41] used S-GN to cluster online reviews, while Cleland-Huang et al. in [78] used the modified Spherical
K-Means to extract and cluster feature requests from threads in open discussion forums.

• Kang et al. [91] used the bagging clustering algorithm, which combines the EM, K-means, and MTree clustering
algorithms for grouping similar data to select transfer instances. The transfer instances are further utilized to build
classifier models.

Rule-based clustering One study [74] proposed an unsupervised clustering algorithm, which extracts basic context items from user feedback
(e.g., the affected platform, device, app- and system version), using pre-defined keyword lists, word vector represen-
tations, and text patterns.

SN Computer Science (2021) 2:16 	 Page 15 of 35  16

SN Computer Science

followed by rule-based classification (17%) and model-
oriented approach (6%). For clustering, topic modeling
(16%) was the most commonly used approach, followed
by more traditional clustering techniques (13%) and unsu-
pervised rule-based clustering (2%).

In nine studies, two different approaches have been com-
bined. Two studies performed classification with supervised
ML for filtering and subsequently conducted clustering
with topic modeling [47, 68]. Guzman et al. [68] first ran
Multinomial Naïve Bayes and Random Forest, which are
both supervised learning algorithms, to extract tweets that
request software improvement. Biterm Topic Model, which
is a topic modeling used for short texts, was then used to
group semantically similar tweets for software evolution.
Zhao and Zhao [47] ran a supervised deep-learning neural
network was first used to extract software features, and their
corresponding sentiments and hierarchical LDA was subse-
quently to extract hierarchical software features with positive
and negative sentiments.

Two studies performed classification using ML, which
was followed by unsupervised clustering analysis [53, 58].
Jiang et al. [58] used Support Vector Machine, or a super-
vised machine-learning algorithm, for pruning incorrect
software features that were extracted from online reviews.
K-means clustering, an unsupervised clustering analysis,
was then performed to categorize the extracted features
into semantically similar system aspects. Sun and Peng
[53] first used Naïve Bayes, a supervised machine-learning
algorithm, for filtering informative comments, which were
subsequently clustered using K-means, an unsupervised
clustering analysis.

Jiang et al. [41] first performed rule-based classification
based on syntactic parsing and sentiment analysis to extract
opinions about software features and their correspond-
ing sentiment words. Subsequently, S-GN, whose base

algorithms are a type of K-means clustering, was performed
to cluster similar opinion expressions about software fea-
tures into a category which represents an overall, functional,
or quality requirements. On the other hand, Bakar et al. [63]
combined unsupervised clustering analysis and topic mod-
eling in which K-means was first run to identify the similar
documents. They then performed latent semantic analysis,
which is a type of topic modeling, to group similar software
features within the documents.

Guzman and Maalej [40] and Dalpiaz and Parente [46]
first extracted software features based on rule-based clas-
sification, which uses collocation finding algorithm and the
LDA was subsequently applied to group similar software
features. Zhang et al. [60] first used linear regressions based
on supervised ML to select helpful online reviews. Then
conjoint analysis (i.e., a statistical technique used in mar-
ket research to assess and quantify the consumers’ values
on product features or service) was performed to assess the
impact of the features from helpful online reviews on the
consumers’ overall rating.

In several studies, visualization has been provided to help
requirements engineers efficiently sift through and effec-
tively interpret the most important requirements-related
information. Bakiu and Guzman [55] first performed the
aggregation of features. The results were then visualized
at two levels of granularity (i.e., high-level and detailed).
Sun and Peng [53] first extracted scenario information of
similar user comments and then aggregated and visual-
ized as aggregated scenario models. Software features [52]
and technically informative information from the potential
requirements sources [64, 86] were summarized, ranked,
and visualized using word clouds. Luiz et al. [49] sum-
marized overall user evaluation of the mobile applications,
their features, and the corresponding user sentiment polarity
and scores in a single graphical interface. Oriol et al. [89]
implemented a quality-aware strategic dashboard, which has
various functionalities (e.g., quality assessment, forecasting
techniques, and what-if analysis) and allows for maintaining
traceability of quality requirements generation and docu-
mentation process. Wüest et al. [99] fused user feedback and
correlated GPS data and visualize the fused data on a map,
equipping the parking app with context-awareness.

Techniques Used for Process‑Mediated Data

The two studies that used process-mediated data focused on
eliciting emerging requirements through observations and
analysis of time-series user behavior (i.e., run-time obser-
vation of system–user interactions) and the correspond-
ing environmental context values [97, 98]. In both studies,
Conditional Random Fields (CRF), which is a statistical
modeling method, was used to infer goals (i.e., high-level
requirements).

Fig. 4   Techniques used for requirements elicitation from human-
sourced data that are grouped according to classification (i.e.,
machine learning (ML), rule-based classification, and model-oriented
approach) and clustering (i.e., topic modeling, traditional clustering,
and rule-based unsupervised NLP)

	 SN Computer Science (2021) 2:16 16   Page 16 of 35

SN Computer Science

Xie et al. [97] proposed a method to elicit requirements
consisting of the three steps. First, a computational model
is trained and built based on pre-defined user’s goals in the
domain knowledge, using supervised CRF to infer user’s
implicit goals (i.e., outputs) from the observation and anal-
ysis of run-time user behavior and the corresponding envi-
ronmental values (i.e., inputs). After the goal inference,
the user’s intention (i.e., the execution path) for achieving
a given goal is obtained by connecting the situation (i.e.,
a time-stamped sequence of user behavior that is labeled
with a goal and environmental context values) labeled with
the same goal into a sequence. Finally, an emerging inten-
tion, which is a new sequence pattern of user behavior
that has not been pre-defined or captured in the domain
knowledge base, is detected.

An emerging intention can occur in three cases; when
a user has a new goal; when a user has a new strategy
for achieving an existing goal; when a user cannot per-
form operations in an intended way due to system flaws.
Requirements, thus, can be elicited by validating emerging
intentions by domain experts based on the analyses of goal
transition, divergent behaviors from the optimal usage, and
erroneous behavior.

In the analysis of goal transition, domain experts look
at two goals that frequently appear consecutively based on
the results of goal inference with a high confidence level
assigned by the CRF and elicit requirements that make the
goal transition smoother.

In the analysis of divergent behavior, domain experts
focus on user behaviors that deviate from an expected way
to operate the system because the user’s irregular behavior
may indicate user’s misunderstanding of required opera-
tional procedures, dissatisfaction with the system, and
emerging desires. Those divergent behaviors are given a
low confidence level by the CRF model.

In the analysis of erroneous behavior, requirements
can be elicited by investigating the error reports with
high occurrences that may reflect users’ emerging desires
that are not supported by the current system. In addition,
requirements can be elicited from user behaviors, which
are actually normal behavior but are mistakenly consid-
ered as erroneous due to the system flaws. The proposed
method is assumed to be used in a sensor-laden computer
application domain. Thus, it may also be applicable to
machine-generated data. The main challenge, however, is
to increase the level of automation for analyzing potential
emerging intentions and users’ emerging requirements.

Yang et al. in [98] used CRF to infer goals based on a
time-stamped sequence of user behavior that is labeled
with a goal and environmental context values, which is
called a situation. Based on the results of goal inference,
intention inference was performed by relating a sequence
of situations that are labeled as the same goal. When an

intention has not been pre-defined in the domain knowl-
edge base, the intention is detected as an emerging inten-
tion and exported as possible new requirements for future
system development or evolution.

However, the method proposed in both studies still
requires a substantial degree of human oracles, which
needs to be reduced in future research to increase the scal-
ability and promote the implementation of their approach
in real-life settings. In addition, the proposed method
does not yet support diverse requirements. The method
proposed by Xie et al. [97], capture only emerging func-
tional but not non-functional requirements. The approach
proposed in [98] can only support the identification of the
low-level design alternatives (i.e., new ways of fulfilling
a given intention).

Notably, Wüest et al. in [99] proposed to use both human-
sourced and process-generated data. Their approach is based
on the control loop for self-adaptive systems for collecting
and analyzing user feedback (i.e., human source data) as
well as system usage and the location data (i.e., GPS data).
The analysis is driven by rules or models of expected system
usage. The system decides how to interpret the results of the
analysis and modify its behavior at run-time, which allows
for understanding changing user requirements for software
evolution.

Techniques Used for Machine‑Generated Data

Voet et al. [95] first extracted goal-relevant usage elements
as features, from the data recorded via a handheld grinder,
a type of product embedded information devices (PEID)
equipped with sensors and onboard capabilities. Feature
selection was then performed to reduce system workload
and improve the prediction accuracy of the machine-learning
algorithm, compared to using raw sensor data. Specifically,
the support vector machine classifier, which is a supervised
machine-learning algorithm, was used to build and train the
model to predict the four different usage element states. The
model was then tested on the sensor data from the two dif-
ferent usage scenarios that have not been used for training.
The collection of the predicted usage element states, or user
profiles, can be analyzed manually or by clustering to iden-
tify the deviation from the intended optimal usage profile.
Requirements can be inferred by analyzing users’ deviant
behaviors.

Liang et al. [96] mined user behavior patterns from
instances of user behavior, which consist of user context
(i.e., time, the location and the motion state of the crowd
mobile users) and the currently running apps, using Apri-
ori-M algorithm, which is an efficient algorithm based on
Apriori algorithm that is used for frequent item set mining.
User behavior patterns, which infer emergent requirements
or requirements changes, are ranked and used for service

SN Computer Science (2021) 2:16 	 Page 17 of 35  16

SN Computer Science

recommendation. Service recommendation is performed
periodically, using the service recommendation algorithm.
The algorithm takes mined user behavior as inputs and out-
puts the apps to remind the user. In service recommenda-
tion, matching is performed between the current user con-
text and the context of user behavior patterns mined from
mobile crowd users, according to the ranking order. If the
two matches, the mobile app(s) in the user behavior patterns
are automatically recommended to the user as solutions to
meet the requirements inferred from user behavior patterns.

In summary, most of the existing solutions support the
elicitation of requirements from a single data source, pri-
marily from human source data. There is a lack of methods
to support requirements elicitation from heterogeneous data
sources. In addition, only a few studies have supported con-
text-awareness and real-time data processing and analysis.
Those features are crucial to enable continuous and dynamic
elicitation of requirements, which are especially important
for context-aware applications and time-critical systems such
as health systems. Moreover, many studies lack the argu-
ment on how each proposed solution help processing a large
volume of data.

Evaluation Methods

Evaluation methods include three components: evaluation
approach, concept, and metrics. Of the 68 selected studies,
controlled experiments were the most frequently applied
approach for evaluating the proposed artifact (75%), fol-
lowed by a case study (19%) and a proof of concept (6%)
(Fig. 5a).

Among the 51 studies that used controlled experiments,
46 studies compared the results produced by the proposed
artifacts against a manually annotated ground-truth set. For
example, Bakiu and Guzman [55] compared the perfor-
mance of multi-label classification against a manually cre-
ated golden standard in classifying features extracted from
unseen user reviews into different dimensions of usability
and user experience.

Only three studies compared the performance of the pro-
posed artifact with the results of manual analysis without the
aid of automation [57, 62, 78]. For example, Bakar et al. [62]
compared the software features that were extracted using
their proposed semi-automated method with those that were
obtained manually.

Two studies conducted an experiment in different ways.
Liang et al. [96] used a longitudinal approach for conduct-
ing an experiment. They compared obtained user behavior
patterns with those that were collected after some time inter-
val to confirm the correctness of the Apriori-M algorithm.
Abad et al. [44] compared Wizard-of-Oz (WOz) and user
review analysis qualitatively. In a few studies [46, 88, 90],
the proposed techniques have been evaluated with intended
users. The rest of the studies used a case study or a proof of
concept as an evaluation approach.

Most frequently used evaluation concept was correctness
(78%), followed by completeness (74%), no/other metrics
(13%), and efficiency (10%) (Fig. 5b). Other metrics, for
example, include usability, creativity, the intended user’s
perceived usefulness, and satisfaction. Most of the studies
combined several evaluation concepts. Three different com-
binations of the concepts were identified: (1) completeness
and correctness (n = 42), (2) completeness and correctness
and efficiency (n = 7), and (3) correctness and efficiency

Fig. 5   a Evaluation approach, b
Evaluation concepts

Fig. 6   Final outcomes of automated requirements elicitation

	 SN Computer Science (2021) 2:16 16   Page 18 of 35

SN Computer Science

(n = 2). In most cases, the correctness and completeness
were assessed using precision (i.e., the fraction of correctly
predicted instances among the total predicted instances)
and recall (i.e., the fraction of correctly predicted positive
instances among all the instances in actual class), respec-
tively. In addition, F-measure was also used to address a
trade-off between precision and recall.

Efficiency has been assessed in terms of the size of train-
ing data [38, 39], the time to recognize and classify software
features [76], the time required to identify relevant require-
ments information for both manual and automated analysis
[57], the time taken to complete the extraction of software
features [63], the time and space needed to build the clas-
sification model [48, 50, 51], and the total execution time of
the machine-learning algorithm [78]. The user’s perceived
efficiency was measured using a 5-point Likert scale [89].
(Fig. 6)

The Outcomes of the Automated Requirements
Elicitation

Expression of Final Outcomes Produced by the Automated
Part of Requirements Elicitation

Outcomes of the automated requirements elicitation have
been classified into the following three categories: (1) iden-
tification and classification of requirements-related infor-
mation, (2) identification of candidate features related to
requirements, and (3) elicitation of requirements (Table 7).
Only 21% of the studies have enabled the automated elicita-
tion of requirements. A majority of the studies have resulted
in automated identification and classification of require-
ments-related information (51%), or identification of candi-
date features related to requirements (28%) (Fig. 5).

Identification and classification of requirements-related
information have been made by classifying dynamic data
into different classes of issues based on; relevance to differ-
ent stakeholders for identifying responsibilities, the technical
relevance for filtering only relevant data (e.g., classifying
into either feature request or other), and types of technical
issues to be inspected (e.g., classifying into feature requests,

Table 7   Expression of final outcomes

Final outcomes Description of the final outcomes

Identification and classifi-
cation of requirements-
related information

• Although Portugal et al. [86] identified only the sources of requirements-related information, many studies further
classify requirements-related information based on stakeholders, technical relevance, and types of requirements
issues to be inspected such as feature requests and bug reports.

• A multi-label classification technique has been used in the studies [69, 70] to classify tweets into three high-level
stakeholder groups (i.e., technical, non-technical, and general public) based on the relevance to each stakeholder
group.

• In the studies [59, 71, 76, 77, 84], classification has been used to filter only system relevant data, which contrib-
utes to the significant reduction of data to go through. Filtering has been done, using supervised machine-learning
algorithms [59, 71, 77, 84] and rule-based classification [76].

• More detailed classification than filtering has been performed in the studies [35, 37–39, 42, 43, 45, 50, 51,
54–57, 64–66, 79–82, 87, 92, 93, 102–104, 106], for example, by classifying app reviews into bug reports, feature
requests, user experiences, or text ratings [38], by classifying user reviews into specific dimensions of usability
and user experiences [55], and by classifying app reviews into functional and non-functional requirements [43].

• Classification of requirements-related information has been done using machine-learning approach [35, 38, 39,
42, 43, 45, 50, 51, 55, 56, 64, 79, 92], rule-based classification [37, 57, 102], and topic modeling [54]

Identification of candi-
date features related to
requirements

• Identification of candidate features has been done, using rule-based classification [40, 46, 61, 62, 100], topic
modeling [49, 52], traditional clustering (i.e., K-means [75] and the BIRCH algorithm [90]), a conceptual model
[72, 73], and rule-based clustering [74].

• In the several studies, classification was first performed, using supervised machine learning [47, 48, 58, 60, 68]
or ruled-based classification [41, 46] before identifying candidate software features using topic modeling [46, 47,
68], traditional clustering [41, 58], word clouds [48], or conjoint analysis [60].

• In contrary, Kang et al. [91] used instance-transfer learning method. The method first performed the bagging clus-
tering algorithm to select instances, whose results are used for building a RNN model to predict missing features.

Elicitation of requirements • Requirements have been elicited at an abstract level in the form of textual descriptions [36, 44, 78, 94], goal mod-
els [72], and aggregated scenarios [53].

• In a few studies, requirements have been elicited at a lower level than the above studies. Liang et al. [96] inferred
emerging requirements and requirements changes from mined user behavior patterns of crowd mobile users

• Xie et al. [97] and Yang et al. [98] elicited requirements in the form of emerging from users’ run-time behavioral
patterns, while Voet et al. identified potential design changes from the usage profile that is mined from sensor data
[95]

SN Computer Science (2021) 2:16 	 Page 19 of 35  16

SN Computer Science

bug reports, user experiences, and user ratings, and classify-
ing into functional or non-functional requirements). Some
studies performed classification at a deeper level (e.g., clas-
sifying into four types of non-functional requirements (i.e.,
usability, reliability portability, or performance, or func-
tional requirements).

Identification of candidate features related to require-
ments refers to discovering functional components of a
system. Features, however, typically have less granularity
than requirements and do not tell what behavior, conditions,
and details would be needed to obtain the full functional-
ity. They, thus, need to be further processed to become full
requirements.

Elicitation of requirements has been done mostly at high
level. Most of them elicited requirements at high level in
the form of goals, aggregated scenarios, or high-level tex-
tual requirements. Franch et al. [88] and Oriol et al. [89]
semi-automated the elicitation of complete requirements in
the form of user stories and requirements specified in semi-
formal language.

Degree of Intended Automation

A proposed artifact was classified into the two levels of the
intended automation: intended full automation or semi-auto-
mation. Of note is that we consider artifacts that support the
automation of requirements elicitation either entirely or par-
tially. Artifacts are classified into intended full automation
in the following two circumstances: (1) when the proposed
part is automated without human intervention for comple-
tion or (2) when only minimum interactions are needed
for completion. Minimum human interaction is defined as
human oracles being in the loop once at the initial stage of
the elicitation process, which includes the creation of the
ground-truth set and conceptual models as well as the speci-
fication of a set of keywords and language patterns. Based
on the definitions, the majority of the proposed methods
(84%) were intended to be fully automated, while the rest
are semi-automated methods that require human oracles to
be in the loop for each iteration of the process.

Additional Requirements Engineering Activity Supported
Through Automation

The majority of the selected studies exclusively focused on
enabling requirements elicitation from dynamic data, with-
out considering other requirements engineering activities.
Of the 68 studies included in the analysis, 50 studies (74%)
exclusively proposed methods to enable automated require-
ments elicitation, while 18 studies (26%) supported other
requirements engineering activities in addition to require-
ments elicitation. Prioritization was the most frequently sup-
ported additional requirements engineering activity (n = 11),

followed by elicitation for change management (n = 7), and
documentation (n = 2). More detailed information is pro-
vided in Table 8.

Discussion

We conducted a systematic literature review on the existing
data-driven methods for automated requirements elicitation.
The main motivations for this review were two-fold: (1)
using dynamic data has the potential to enrich stakeholder-
driven requirements elicitation by eliciting new requirements
which cannot be obtained from other sources, and (2) no
systematic review has been conducted on the state-of-the-
art methods to elicit requirements from dynamic data from
unintended digital sources. Of 1848 records retrieved from
6 electronic database search and 1017 articles identified
through backward and forward reference search, we selected
51 studies that met our inclusion criteria and included in
the final analysis to answer the following three research
questions. RQ1: What types of dynamic data are used for
automated requirements elicitation? RQ2: What types of
techniques and technologies are used for automating require-
ments elicitation? RQ3: What are the outcomes of auto-
mated requirements elicitation? In the following sections,
we provide a discussion of the main findings, the identified
research gaps, and issues to be addressed in future research.

Table 8   Additional requirements engineering activity supported
through automation

Requirements
engineering
activity

Description of activity supported through automation

Elicitation The majority of the studies have exclusively focused
on requirements elicitation [35–40, 42–47, 50,
51, 53–57, 59, 61–67, 69–71, 74–80, 82, 84, 86,
90–96, 100, 103, 104].

Elicita-
tion plus
additional
activities

• Prioritization of the elicited requirements refers to
ranking the elicited requirements according to a
certain criterion to promote effective resource allo-
cation. Prioritization was supported in the studies
[41, 48, 49, 52, 58, 60, 68, 72, 73, 81, 87–89].

• Elicitation for change management is to elicit
emerging requirements for software evolution,
which has been supported in the studies [52, 85,
87, 97–99, 102].

• Documentation of quality requirements has been
enabled by two studies [88, 89], by automatically
specifying user stories or semi-formally written
requirements in a product backlog, respectively.

	 SN Computer Science (2021) 2:16 16   Page 20 of 35

SN Computer Science

RQ1: What Types of Dynamic Data Are Used
for Automated Requirements Elicitation?

Existing research on data-driven requirements elicitation
from dynamic data sources has primarily focused on uti-
lizing human-sourced data in the form of online reviews,
micro-blogs, online discussions/forums, software reposi-
tories, and mailing lists. The use of online reviews was
substantially more prevalent, compared to other types of
human-sourced data. The result indicates the current data-
driven requirements elicitation is largely crowd-based. On
the contrary, process-mediated and machine-generated
data sources have only, in some instances, been explored
as potential sources of requirements. The predominance of
human-sourced information is rather expected and can be
explained by the following two reasons: (1) users’ prefer-
ences and needs regarding system are typically explicitly
expressed in natural language, from which it is—relatively
speaking—straightforward to obtain requirements compared
to process-mediated and machine-generated data, and (2)
there are abundant sources of human-sourced data that are
publicly available and readily accessible.

Much more research is, thus, needed to develop methods
capable of eliciting requirements from process-mediated
and machine-generated data that are not expressed in natural
language and from which requirements need to be inferred.
There is still a lack of methods to infer requirements as well
as evidence regarding the applicability of the proposed
approach to more diverse types of process-mediated and
machine-generated data. Process-mediated and machine-
generated data enable run-time requirements elicitation
[19]. They also help system developers to understand usage
data and the corresponding context, which allows elicita-
tion of performance-related as well as context-dependent
requirements [19]. In addition, almost all of the studies have
focused on using only a single type of dynamic data and
typically also a single data source.

A few studies have utilized multiple human-sourced data
sources; however, there has been only one attempt to com-
bine different types of dynamic data sources. As such, there
is currently insufficient evidence that using multiple types of
data leads to more effective requirements elicitation, but it
remains an open issue that merits investigation. We believe
that research in this direction would be highly interesting
in an attempt to improve data-driven requirements elicita-
tion, both in terms of the coverage and quality of the elicited
requirements. Utilizing semantic technologies can be useful
for enabling the integration of heterogeneous data sources
[107].

In addition, only one study integrated dynamic data and
domain knowledge to elicit requirements [44]. The results
from that study indicate the potential benefits of using
dynamic data together with domain knowledge to elicit

requirements that cannot be captured using either one of
the data sources. It is likely that domain knowledge, which
is typically relatively static but of high quality, can help
to enrich data-driven requirements elicitation efforts from
dynamic data sources. A larger number of studies are needed
to confirm the impacts of integrating domain knowledge
with dynamic data on the quality and diversity of outcomes
obtained from the automated requirements process.

RQ2: What Types of Techniques and Technologies
Are Used for Automating Requirements Elicitation?

Techniques Used for the Automated Requirement
Elicitation

Human-sourced data are typically expressed in natural
language, which is inherently difficult to analyze compu-
tationally due to its ambiguous nature and lack of rigid
structure. In all the selected studies, human-sourced data
have been (pre-)processed using natural language process-
ing techniques to facilitate subsequent analysis. Although
the techniques used for preprocessing varies across studies,
data cleaning, text normalization, and feature extraction for
data modeling are frequently performed preprocessing steps
in automated requirements engineering. Commonly used
features include surface-level tokens, words, and phrases,
but also syntactic (e.g., part of speech tags) and semantic
features (e.g., the positive/negative/neutral sentiment of a
sentence). After data preparation and feature extraction, data
modeling or analysis for the purpose of requirements elicita-
tion is typically performed using classification or clustering,
or classification followed by clustering.

Classification in the context of automated requirements
elicitation involves either of the following three tasks: (1) fil-
tering out data irrelevant to requirements, (2) classifying text
based on the relevance to different stakeholder groups, or (3)
classifying text into different categories of technical issues,
such as bug reports and feature requests. The classification
tasks have been tackled using either rule-based approaches
or machine learning, which is mostly done within the super-
vised learning paradigm. Although supervised machine
learning can achieve high predictive performance in a well-
defined classification task, it requires access to a sufficient
amount of human-annotated data. As a result, many studies
involved human to annotate data into pre-defined classes.
The labeling task, however, is labor-intensive, time-consum-
ing, and error-prone due to a considerable amount of noise
and the ambiguous nature inherent in natural language [35].

Two solutions have been proposed to reduce the cost of
labeling a large amount of data: active learning [35] and
semi-supervised machine learning [43]. Dhinakaran et al.
in [35] showed that classifiers trained with active learn-
ing strategies outperformed in classifying app reviews into

SN Computer Science (2021) 2:16 	 Page 21 of 35  16

SN Computer Science

feature requests, bug reports, user rating, or user experi-
ence than the baseline classifies that were passively trained
on the randomly selected dataset. Deocadez et al. in [43]
demonstrated that three semi-supervised algorithms (i.e.,
Self-training, RASCO, and Rel-RASCO) with four base
classifiers achieved comparable predictive performance as
that of classical supervised machine learning in classifying
app reviews into functional or non-functional requirements.
Although there is not a sufficient number of studies to draw
a generalizable conclusion, classification using active learn-
ing and semi-supervised machine-learning strategies may
have similar potential as conventional supervised machine
learning in identifying and classifying requirements-related
information, but requires a much smaller amount of labeled
data compared to conventional supervised machine learning.

Another issue that needs to be addressed when using
supervised learning is that human-sourced data sources
include a significant proportion of non-informative and
irrelevant data. Eliciting requirements from this source
is thus often compared to “looking for a needle in a hay-
stack” [70]. This leads to a highly unbalanced class dis-
tribution in terms of the non-informative and irrelevant
data compared to the informative and relevant classes.
The underlying class distribution largely affects the per-
formances of machine learning-based classifiers [42, 71].
In one study [42], the precision, recall, and F1 measures
for the under-represented classes were worse than those
for the better-represented classes. Given that the classes
relevant to requirements are not represented equally in
most real-life occasions, the issue needs to be addressed
in future research. One possible solution to resolve this
issue may be applying different sampling techniques such
as Synthetic Minority Oversampling Technique (SMOTE)
to the training set to increase the number of instances in
the class with fewer observations [71, 84].

Contextualization may be another possible solution,
which is done by filtering out non-informative and irrelevant
data. Several studies [47, 53, 58, 68] have used supervised
classification before performing finer-grained classification
or clustering. Filtering out noisy data can improve the clas-
sification or clustering accuracy. It also helps requirements
engineers pinpoint the data relevant to requirements by auto-
matically discarding non-informative data for requirements
elicitation [69] as well as supports efficiently distributing
data to the appropriate stakeholders within an organization
[69]. Since contextualization can reduce the volume of data
to be processed further, it mitigates the volume issue of Big
Data.

Various supervised learning algorithms have been used
to automate the requirements elicitation process. However,
there is no “one-size-fits-all” algorithm that performs best
for every single case, which is often referred to as the “No
free lunch” theorem [108]. Experimenting and comparing

many different algorithms for a specific problem demands
time and domain knowledge related to machine learning
from requirements engineers in addition to routine work.
It would thus be helpful for them if the support tool were
to accommodate functions that automatically identify and
recommend the best algorithm among possible options.

Moreover, it would be even more valuable if the tool sup-
ports automatic optimization of the parameter configuration,
which includes preprocessing, selection of machine-learning
features, hyper-parameter settings, and evaluation metrics.
Supervised machine learning has mainly been used for
identifying and classifying data into pre-defined categories
related to requirements. This is because supervised machine
learning works well for tasks for which classification rules
are difficult to formulate. Nevertheless, it requires a suffi-
cient amount of human-annotated data to build a reliable
predictive model, which is a time-consuming and error-
prone task. On the other hand, rule-based classification,
which was the second most frequently used classification
approach, excels in performing simpler tasks for which rules
can be formulated. In the literature, rule-based classifica-
tion has been used for identifying candidate features more
frequently than identifying and classifying requirements-
related information. For rule-based classification to func-
tion well, however, sound domain knowledge is required to
appropriately define rules that drive the classification pro-
cess and determine the effectiveness of the classification.

Clustering has been used primarily for identifying can-
didate features or grouping semantically similar features. In
the selected studies, clustering has been performed, using
topic modeling or traditional clustering, which can be valu-
able alternatives to supervised learning in the absence of
labeled historical data. More than half the studies that used
clustering first classified data into pre-assigned categories
relevant to requirements, which was primarily done using
supervised machine learning or rule-based classification.
Clustering is subsequently performed on the requirements-
related information identified by classification, using topic
modeling or traditional clustering. Those unsupervised
machine-learning techniques, however, often lead to less
accurate results than supervised leaning since there is no
knowledge about output data.

The effectiveness of clustering can be affected by many
factors (e.g., the number of clusters and selection of initial
seeds), and evaluating unsupervised learning is problematic
due to a lack of well-defined metrics. This may be a reason
that classification is performed before clustering. Neverthe-
less, there are some efforts to ensure high quality of cluster-
ing. Cleland-Huang et al. [78] proposed the automated forum
management (AFM) system that employs Stable Spherical
K-Means (SPK) to mine feature requests from discussion
threads in open source forums. In their study, Normalized
Mutual Information (NMI) was computed to evaluate and

	 SN Computer Science (2021) 2:16 16   Page 22 of 35

SN Computer Science

ensure the quality of the cluster. In addition, since the selec-
tion of initial seeds highly influence on clustering results,
the problem is mitigated by applying consensus clustering
for the initial clustering. On the other hand, Sun and Peng
[53] used the recommended cluster number (RCN) to deter-
mine the optimal number of clusters. There are also other
metrics available to evaluate the quality of clustering, such
as the Silhouette index. However, the consensus has not been
reached regarding which measure to use for the evaluation
because it depends on the nature of data and the desired
clustering task.

Moreover, only a small proportion of the studies sup-
ported the visualization of the obtained results. Data visu-
alization increases the interpretability of the results by lever-
aging visual capacity, which helps identify new and hidden
patterns, outliers, and trends [16]. It also facilitates com-
munication among different stakeholders within an organiza-
tion. Providing visualizations, thus, is recommended to help
requirements engineers understand the results and make a
subsequent decision more efficiently and effectively.

Process‑Mediated and Machine‑Generated Data Sources

As described in the previous section (i.e., “RQ1: What types
of dynamic data are used for automated requirements elici-
tation?”), our results indicate that there is a huge research
gap in eliciting requirements from process-mediated and
machine-generated data. Much more research should focus
on exploring the methods to elicit requirements from data
that are not written in natural language. Only two studies
leveraged process-mediated data, both utilizing CRF, to infer
goalswhich are high-level requirements. More research is
need to develop methods and algorithms to elicit require-
ments from various types of process-mediated data.

Likewise, machine-generated data were used as require-
ments sources in two studies. Liang et al. [96] proposed to
use the Apriori-M algorithm to infer context-aware require-
ments from behavior patterns that are mined from the run-
time behavior of the mobile user. The results of the analysis
lead to provide the user solutions that satisfy the inferred
requirements. On the other hand, Voet et al. [95] proposed a
method to classify goal-relevant usage element states using
supervised machine learning and infer requirements based
on the deviation from the optimal usage profile, which can
be detected by manual analysis or unsupervised clustering.

Given that IoT data are one of the main driving forces
of Big Data generation, there is a pressing need to develop
a framework to elicit requirements from IoT data. Apply-
ing semantic technologies may be a promising solution to
help machines interpret the meaning of data by semantically
representing raw data in a human/machine interpretable
form [107], which can facilitate the automatic requirements
elicitation from large volumes of heterogeneous IoT data.

Evaluation Methods

Rigorous evaluation is essential for ensuring that a proposed
artifact meets its intended objectives, justifying its effective-
ness and/or efficiency, and identifying its weaknesses, which
need to be rectified in future work. The artifacts proposed
in most of the identified studies were primarily evaluated
through controlled experiments. Controlled experiments
eliminate the influence of extraneous and unwanted variables
that could account for a change of the dependent variable(s)
other than the independent variable(s) of interest. Thus,
their two main advantages are: (1) they are the most power-
ful method for inferring causal relationships between vari-
ables, and (2) they can achieve high internal validity [109].
Nevertheless, their main disadvantage is that since they are
typically conducted in an artificial environment, conclusions
may not be valid in real-life settings, which threatens the
external validity [109].

Most studies that used controlled experiments as an
evaluation approach evaluated results derived from a pro-
posed artifact against a manually created ground-truth set.
The quality of the ground-truth set, however, determines
the performance of machine-learning algorithms. The
majority of the studies, thus, recruited multiple annotators
for the labeling task to obtain a “reliable” ground-truth
set, which only contains peer-agreed labels. Some stud-
ies used an annotation guideline, performed a pilot run of
classification tasks with small samples to avoid subjective
assessment, reduce disagreements, and increase the quality
of manual labeling [38, 39, 68].

Besides, a few studies compared the performance of
automated analysis with a proposed artifact with the per-
formance achieved by solely relying on manual analysis
without the aid of the proposed artifact. Groen et al. [57]
justified the efficiency and scalability of automated user
review analysis and emphasized the need of automation
for analyzing a large volume of dynamic data to support
continuous requirements engineering. A case study was
the second most frequently used evaluation approach in
which the proposed methods are assessed through in-depth
investigations of a specific instance in a real-life context.
Proof of concept was used in a small proportion of the
selected studies. It is used to demonstrate the feasibility
of a proposed artifact theoretically to achieve an intended
task. Although it may be suitable as a preliminary or form-
ative evaluation, it has lower explanatory power compared
to comparative evaluations (e.g., controlled experiments
and case studies).

Most studies used standard metrics that are often used
in the field of information retrieval. Completeness and cor-
rectness were the evaluation concepts that were the most
frequently used in the studies, while some studies also
assessed the efficiency of an artifact. Recall and precision

SN Computer Science (2021) 2:16 	 Page 23 of 35  16

SN Computer Science

were often used as metrics to measure completeness
and correctness, respectively. Since there is a trade-off
between precision and recall, many studies additionally
used F-measure, which is the weighted harmonic mean of
precision and recall. Most of the studies used F1-measure,
which assigns equal weights on precision and recall (i.e.,
the harmonic mean of precision and recall). However,
Guzman et al. [69] recall was assigned more importance
(i.e., weights) than precision based on the study which
claims that recall should be favored over precision since
missing relevant requirements is more detrimental [110].
On the other hand, precision is also important when deal-
ing with a dataset that contains large amounts of irrelevant
information. Future research may explore techniques to
optimize F-measures, including a weighted maximum like-
lihood solution [111]. Moreover, few studies have com-
pared the effectiveness of automated requirements elicita-
tion with that of traditional requirements elicitation driven
by stakeholders. This can largely be explained by the fact
that research on automated requirements elicitation is not
mature enough since most methods have focused on iden-
tifying and classifying requirements-related information
rather than eliciting requirements. However, this needs to
be addressed in future research to demonstrate the value
of automated requirements elicitation.

RQ3: What Are the Outcomes of Automated
Requirements Elicitation?

Expression of Requirements Elicitation

In traditional requirements engineering, requirements elici-
tation begins with the identification of relevant requirements
sources such as stakeholders and domain documents, which
is followed by two other sub-activities: the elicitation of
existing requirements from the identified sources and elici-
tation of new and innovative requirements [1].

On the other hand, dynamic data-driven requirements
elicitation has been done in the form of the following three
activities: (1) identification and classification of require-
ments-related information, (2) identification of candidate
features related to requirements, and (3) elicitation of
requirements. However, those three activities have not nec-
essarily been performed entirely nor sequentially. For exam-
ple, many studies that aim to identify candidate features first
performed classification, using supervised learning or rule-
based classification, before clustering features, using topic
modeling or traditional clustering, while the rest of them
directly identified candidate software features, mainly using
topic modeling or rule-based classification. One possible
reason for performing classification before clustering is that
classification can only classify data into coarse categories,
which may include the repetitive information and the same

sentiment, while clustering can further group individual data
in a meaningful way. Thus, the specific combination of the
two approaches can facilitate the work of requirements engi-
neers (e.g., requirements reuse).

Most of the proposed methods supported the identifi-
cation and classification of requirements-related informa-
tion or the identification of candidate features. Identifica-
tion and classification of requirements-related information
help requirements engineers save time for the data analysis
by filtering out a significant amount of irrelevant data and
selectively identify a specific type of information which
they are interested in such as feature request. It also helps to
allocate the extracted data based on the relevance to stake-
holder groups to support parallel data analysis within the
same organization. Identification of candidate features helps
requirements engineers understand user-preferred features
and select features to be considered in software development
and evolution. Features, however, are not yet formulated as
requirements because those features require the engagement
of requirements engineers to transform into requirements.

On the other hand, only about 20% of the studies auto-
mated the entire requirements elicitation. In most cases, the
elicited requirements are high-level such as goals, aggre-
gated scenarios, or high-level textual requirements. Those
high-level requirements, however, do not include details of
the objects (i.e., features) which are being concerned, nor
conditions. This highlights the need for developing addi-
tional automated approaches or using traditional elicitation
techniques with the involvement of human stakeholders to
complete the requirements elicitation process.

Degree of Intended Automation

A majority of the studies proposed methods that are intended
to be fully automated after the minimum human interven-
tions at the initial stage of the continuous elicitation process.
However, most studies do not yet support the entire require-
ments elicitation. Given the high volume and velocity of
dynamic data, requirements elicitation certainly needs to be
automated to enhance efficiency and scalability.

However, fully automated methods are not necessarily
better than semi-automated methods concerning the quality
of requirements and the ease of implementing into an exist-
ing requirements engineering process as well as the organi-
zational workflow. There is a lack of evidence on what level
of automation leads to the most effective requirements elici-
tation within an organization. More research, thus, needs to
be done on whether it is possible and better to automate the
entire elicitation process, or whether some extent of human-
in-the-loop is necessary.

If a semi-automated approach is considered prefer-
able, another issue that needs to be addressed is where and

	 SN Computer Science (2021) 2:16 16   Page 24 of 35

SN Computer Science

when in the elicitation process human should come into
play to facilitate effective automated requirements elicita-
tion. In addition, the characteristics of dynamic data can
be changed over time. The proposed automated approach
should be flexible enough to incorporate and reflect these
dynamic changes over time.

Additional Requirements Engineering Activity Supported
Through Automation

Our results show that three-quarters of the selected studies
exclusively focused on requirements elicitation, while only
one-quarter supported additional requirements engineer-
ing activities, which were requirements prioritization and
management of requirements change. Therefore, no studies
supported the automation of the entire requirements engi-
neering process. A holistic framework, therefore, needs to
be developed to increase the automation level of dynamic
data-driven requirements engineering.

Threats to Validity

The results of the review need to be interpreted with caution
due to the following limitations.

1.	 External validity
	  All the studies included in the review, except one uti-

lizing user feedback in both English and Italian [65],
focus on eliciting English requirements. Thus, our
results cannot be generalizable to requirements elicita-
tion in other languages. Further studies are needed to
assess the applicability of the techniques used for elicit-
ing English requirements to other languages.

2.	 Internal validity
	  Our search query might have missed potentially

important keywords such as “requirements mining”,
“feedback”, and “tool”. Not including those keywords
affects the number of studies included in the analy-
sis. Our search query also failed to capture the work
following DevOps and human–computer interaction
approaches, which may have resulted in omitting some
important work. We did not perform a backward and
forward reference search for updating the review. The
absence also may have reduced the number of studies
included in this review.

	  In addition, a single reviewer performed a large part
of study selection and data extraction, which may cause
errors that impact the results. We partially mitigate the
risk by ensuring high inter-rater reliability tested on
a small proportion of randomly selected samples and
discussing with at least one of the other reviewers to

decide the inclusion of undecided papers, as explained
in the “Study Selection” section. Ideally, the entire study
selection and data extraction process should have been
performed by at least two reviewers.

	  Another limitation is that we defined an analytical
framework to synthesize retrieved data in advance. How-
ever, the analytical framework was based on the previous
systematic review of the automated requirements elicita-
tion from domain documents. Moreover, we assessed the
quality of individual study solely based on the SJR or
CORE scores. Those scores may not always reflect the
“true” strength of evidence provided by each study. A
more detailed and formal quality assessment could have
added value to the review by increasing the reliability of
the results.

3.	 Publication bias
	  This review included only published peer-reviewed

studies and excluded gray literature and commercial
products, which may fill many of the gaps identified
in this review. Thus, the frequencies of the techniques
and concepts do not imply real-life usage frequencies
or degree of usefulness. Including gray literature and
commercial products would increase the review’s com-
pleteness and timeliness.

Conclusions and Future Work

We have conducted a systematic literature review concern-
ing requirements elicitation from data generated via digital
technologies that are unintended with respect to require-
ments. These sources can include data that is highly rel-
evant for new system requirements, which otherwise could
not be obtained from other sources. The motivation behind
the proposed approaches lies in the fact that by including
such requirements, which existing or new software systems
are not supporting, important improvements concerning
system functionality and quality can be made, as well as
ensuring that requirements are up-to-date and enabling
further automation of a continuous elicitation process.

This literature review provides an overview of the state-
of-the-art with respect to data-driven requirements elicita-
tion from dynamic data sources. This is the first systematic
review focusing on efforts to automate or support require-
ments elicitation from these types of data sources—often
referred to as Big Data—that include not only human-
sourced data but also process-mediated and machine-gen-
erated data.

We obtained 1848 relevant studies by searching six
electronic databases. After two levels of screening, and a
complementary forward and backward reference search,
51 papers were selected for data analysis. We further per-
formed additional 2-level screening to update our search,

SN Computer Science (2021) 2:16 	 Page 25 of 35  16

SN Computer Science

which resulted in including 17 more studies. Thus, in total,
68 studies are included in the final analysis. Those selected
studies were analyzed to answer the defined research ques-
tions concerning (a) identification of specific data sources
and data types used for the elicitation, (b) methods and
techniques used for processing the data, and (c) classifica-
tion of the content of obtained outputs in relation to what
is expected from the traditional elicitation process.

The results revealed remarkable insights, which, when
summarized, have shown the current clear dominance of
the human-sourced data, compared to the process-medi-
ated and machine-generated data sources. As a result of
that the techniques used for data processing are based on
natural language processing, while the use of machine
learning for classification and clustering is prevalent. The
dominant intention of the proposed methods was to auto-
mate the elicitation process fully, rather than to combine it
with traditional stakeholder-involved approaches.

Furthermore, the results showed that the majority of the
studies were considering both functional and non-func-
tional (i.e., quality) requirements. The final results regard-
ing the completeness and the readiness of the elicited data
for use in system development or evolution are currently
limited—most of the studies obtain some of the informa-
tion relevant for requirement’s content, some studies target
the identification of the core functionality or quality in
terms of features, and only a few of the studies achieve a
high-level requirement content. Finally, the majority of the
studies evaluated the results in experimental environments,
thus indicating rather a low extent of implementation of
the method in a real-life requirements engineering setting.

The obtained results provide several directions for future
work. One possible direction concerns the investigation of
more extensive use and analysis of non-human-sourced data
types. In addition, automatic data fusion and contextualiza-
tion methods need to be investigated for integrating, process-
ing, and analyzing a large volume of heterogeneous data
sources to elicit requirements. Semantic technologies can
be a promising solution to address the variety and volume
issues of Big Data. Other direction leads to enabling real-
time data processing and analyzing to facilitate continuous
requirements elicitation from Big Data with high velocity.

Moreover, each proposed solution needs to be evaluated
against traditional requirements to convince practitioners for
its implementation in real-life. Further improvements also
need to be made in the content and quality of the elicited
data in relation to fully detailed requirements. Finally, a very
important direction relates to the proposals for enabling con-
text-awareness to capture requirements that changes dynami-
cally over time.

Funding  Open Access funding provided by Stockholm University. This
study was funded by the Department of Computer and System Sci-
ences, Stockholm University.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

Appendix 1

See Table 9
J1: J. A. Khan, L. Liu, and L. Wen. “Requirements

knowledge acquisition from online user forums.” IET Soft-
ware, vol. 14, no. 3, pp. 242–253, https​://doi.org/10.1049/
iet-sen.2019.0262.

J2: M. Oriol et al., “Data-driven and tool-supported elici-
tation of quality requirements in agile companies,” Software
Quality Journal, pp. 1–33, 2020, https​://doi.org/10.1007/
s1121​9-020-09509​-y.

J3: N. Ali, S. Hwang, and J.-E. Hong. “Your opinions
let us know: Mining social network sites to evolve software
product lines.” KSII Transactions on Internet and Informa-
tion Systems, vol. 13, no. 8, pp. 4191–4211, 2019, https​://
doi.org/10.3837/tiis.2019.08.021.

J4: A. Alwadain and M. Alshargi. “Crowd-generated data
mining for continuous requirements elicitation.” Interna-
tional Journal of Advanced Computer Science and Appli-
cations, vol. 10, no. 9, pp. 45–50, 2019.

J5: Y. Kang, H. Li, C. Lu, and B. Pu. “A transfer learn-
ing algorithm for automatic requirement model generation.”
Journal of Intelligent and Fuzzy Systems, vol. 36, no. 2, pp.
1183–1191, 2019, https​://doi.org/10.3233/JIFS-16989​2.

J6: H. Voet, M. Altenhof, M. Ellerich, R. H. Schmitt,
and B. Linke. “A Framework for the capture and analysis
of product usage data for continuous product improve-
ment.” Journal of Manufacturing Science and Engineer-
ing, vol.141, no. 2, 2019.

J7: L. Zhao and A. Zhao. “Sentiment analysis based
requirement evolution prediction.” Future Internet, vol. 11,
no. 2, p. 52, 2019.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/iet-sen.2019.0262
https://doi.org/10.1049/iet-sen.2019.0262
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.3233/JIFS-169892

	 SN Computer Science (2021) 2:16 16   Page 26 of 35

SN Computer Science

Table 9   General characteristics of the selected studies

No. Authors Year Publication sources

J1 Khan et al. [80] 2020 IET Software
J2 Oriol et al. [89] 2020 Software Quality Journal
J3 Ali et al. [66] 2019 KSII Transactions on Internet and Information Systems
J4 Alwadain and Alshargi [67] 2019 International Journal of Advanced Computer Science and Applications (IJACSA)
J5 Kang et al. [91] 2019 Journal of Intelligent & Fuzzy Systems
J6 Voet et al. [95] 2019 Journal of Manufacturing Science and Engineering
J7 Zhao and Zhao [47] 2019 Future Internet
J8 Jha and Mahmoud [48] 2018 Empirical Software Engineering
J9 Morales-Ramirez et al. [84] 2018 Information Systems
J10 Guzman et al. [69] 2017 Requirements Engineering
J11 Xie et al. [97] 2017 Journal of Systems and Software
J12 Bakar et al. [61] 2016 Applied Soft Computing
J13 Licorish [102] 2016 Journal of Software
J14 Maalej et al. [38] 2016 Requirements Engineering
J15 Vlas and Robinson [76] 2012 Journal of Management Information Systems
J16 Cleland-Huang et al. [78] 2009 Communications of the ACM
C1 Dalpiaz and Parente [46] 2019 International Working Conference on Requirements Engineering: Foundation for Software Quality

(REFSQ)
C2 Do et al. [90] 2019 International Conference on Software and Systems Reuse (ICSR)
C3 Han et al. [75] 2019 IEEE International Conference on Automation and Computing (ICAC)
C4 Khan [82] 2019 International Requirements Engineering Conference (RE)
C5 Khan et al. [81] 2019 International Requirements Engineering Conference (RE)
C6 Kilani et al. [104] 2019 International Conference on Social Networks Analysis, Management and Security (SNAMS)
C7 Martens and Maalej [74] 2019 International Requirements Engineering Conference (RE)
C8 Nyamawe et al. [87] 2019 International Requirements Engineering Conference (RE)
C9 Tizard et al. [83] 2019 International Requirements Engineering Conference (RE)
C10 Wang et al. [93] 2019 International Conference on Software Engineering and Knowledge Engineering (SEKE)
C11 Wüest et al. [99] 2019 International Working Conference on Requirements Engineering (REFSQ)
C12 Buchan et al. [59] 2018 Australasian Software Engineering Conference (ASWEC)
C13 Dhinakaran et al. [35] 2018 IEEE International Requirements Engineering Conference (RE)
C14 Franch et al. [88] 2018 International Conference on Advanced Information Systems Engineering (CAiSE)
C15 Groen et al. [57] 2018 International Working Conference on Requirements Engineering: Foundation for Software Quality

(REFSQ)
C16 Higashi et al. [54] 2018 International Conference on Software Engineering & Knowledge Engineering (SEKE)
C17 Luiz et al. [49] 2018 International World Wide Web Conference (WWW)
C18 Srisopha et al. [56] 2018 CIbSE XXI Ibero-American Conference on Software Engineering (CIbSE)
C19 Bakar et al. [63] 2017 International Conference on Computing and Informatics (ICOCI)
C20 Lu and Liang [42] 2017 International Conference on Evaluation and Assessment in Software Engineering (EASE)
C21 Groen et al. [37] 2017 IEEE International Requirements Engineering Conference (RE)
C22 Guzman et al. [68] 2017 IEEE International Requirements Engineering Conference (RE)
C23 Jha and Mahmoud [51] 2017 International Working Conference on Requirements Engineering: Foundation for Software Quality

(REFSQ)
C24 Morales-Ramirez et al. [79] 2017 International Conference on Advanced Information Systems Engineering (CAiSE)
C25 Williams and Mahmoud [64] 2017 IEEE International Requirements Engineering Conference (RE)
C26 Johann et al. [94] 2017 IEEE International Requirements Engineering Conference (RE)
C27 Yang et al. [98] 2017 Annual Computer Software and Applications Conference (COMPSAC)
C28 Guzman et al. [70] 2016 IEEE International Requirements Engineering Conference (RE)
C29 Kuehl [71] 2016 International Conference on Exploring Services Science (IESS)
C30 Merten et al. [85] 2016 IEEE International Requirements Engineering Conference (RE)
C31 Nguyen et al. [72] 2016 IFIP Working Conference on The Practice of Enterprise Modeling (PoEM)

SN Computer Science (2021) 2:16 	 Page 27 of 35  16

SN Computer Science

J8: N. Jha and A. Mahmoud. "Using frame seman-
tics for classifying and summarizing application store
reviews." Empirical Software Engineering 23, no. 6 (2018):
3734–3767.

J9: I. Morales-Ramirez, F. M. Kifetew, and A. Perini,
“Speech-acts based analysis for requirements discovery
from online discussions,” Information Systems, vol. 86,
pp.94–112, 2018, https​://doi.org/10.1016/j.is.2018.08.003.

J10: E. Guzman, R. Alkadhi, and N. Seyff. “An explora-
tory study of Twitter messages about software applications.”
Requirements Engineering, vol. 22, no. 3, pp. 387–412,
2017.

J11: H. Xie, J. Yang, C. K. Chang, and L. Liu. “A statis-
tical analysis approach to predict user’s changing require-
ments for software service evolution.” Journal of Systems
and Software, vol. 132, pp. 147–164, 2017, https​://doi.
org/10.1016/j.jss.2017.06.071.

J12: N. H. Bakar, Z. M. Kasirun, N. Salleh, and H. A.
Jalab. “Extracting features from online software reviews to
aid requirements reuse.” Applied Soft Computing Journal,
vol. 49, pp. 1297–1315, 2016, https​://doi.org/10.1016/j.
asoc.2016.07.048.

J13: S. A. Licorish. “Exploring the prevalence and evolu-
tion of Android concerns: A community viewpoint.” JSW,
vol. 11, no. 9, pp. 848–869, 2016.

J14: W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik.
“On the automatic classification of app reviews.” Require-
ments Engineering, vol. 21, no. 3, pp. 311–331, 2016, https​
://doi.org/10.1007/s0076​6-016-0251-9.

J15: R. E. Vlas and W. N. Robinson. “Two rule-based nat-
ural language strategies for requirements discovery and clas-
sification in open source software Development Projects.”
Journal of Management Information Systems, vol. 28, no. 4,
pp. 11–38,, https​://doi.org/10.2753/MIS07​42-12222​80402​.

J16: J. Cleland-Huang, H. Dumitru, C. Duan, and C.
Castro-Herrera. “Automated support for managing feature
requests in open forums.” Communications of the ACM, vol.
52, no. 10, pp. 68–74, 2009, https​://doi.org/10.1145/15627​
64.15627​84.

C1: F. Dalpiaz and M. Parente. “RE-SWOT: From user
feedback to requirements via competitor analysis.” In Inter-
national Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, pp. 55–70. Springer,
Cham, 2019.

C2: Q. A. Do, S. R. Chekuri, and T. Bhowmik. “Auto-
mated support to capture creative requirements via require-
ments reuse.” In International Conference on Software and
Systems Reuse, pp. 47–63. Springer, Cham, 2019, https​://doi.
org/10.1007/978-3-030-22888​-0_4.

C3: X. Han, R. Li, W. Li, G. Ding, and S. Qin. “User
requirements dynamic elicitation of complex products from

Table 9   (continued)

No. Authors Year Publication sources

C32 Svee and Zdravkovic [73] 2016 International Conference on Research Challenges in Information Science (RCIS)
C33 Bakar et al. [62] 2015 International Conference on Information Science and Security (ICISS)
C34 Maalej and Nabil [39] 2015 IEEE International Requirements Engineering Conference (RE)
C35 Panichella et al. [45] 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME)
C36 Takahashi et al. [100] 2015 International Conference on Software Engineering & Knowledge Engineering (SEKE)
C37 Sun and Peng [53] 2015 Asia Pacific Requirements Engineering Symposium (APRES)
C38 Guzman and Maalej [40] 2014 IEEE International Requirements Engineering Conference (RE)
C39 Jiang et al. [41] 2014 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
C40 Zhang et al. [60] 2014 International Conference on Enterprise Systems (ES)
C41 Carreño and Winbladh [52] 2013 International Conference on Software Engineering (ICSE)
W1 Stanik et al. [65] 2019 International Requirements Engineering Conference Workshops (REW)
W2 Do and Bhowmik [36] 2018 ACM SIGSOFT International Workshop on Automated Specification Inference
W3 Abad et al. [44] 2017 International Requirements Engineering Conference Workshops (REW)
W4 Bakiu and Guzman [55] 2017 International Requirements Engineering Conference Workshops (REW)
W5 Deocadez et al. [43] 2017 International Requirements Engineering Conference Workshops (REW)
W6 Jha and Mahmoud [50] 2017 REFSQ Workshops
W7 Portugal et al. [86] 2015 IEEE Workshop on Just-In-Time Requirements Engineering (JITRE)
S1 Wang et al. [92] 2018 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM)
S2 Liang et al. [96] 2015 Asia–Pacific Symposium on Internetware
S3 Xiao et al. [77] 2015 Communications in Computer and Information Science (CCIS)
S4 Jiang et al. [58] 2014 Communications in Computer and Information Science (CCIS)

https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1016/j.jss.2017.06.071
https://doi.org/10.1016/j.jss.2017.06.071
https://doi.org/10.1016/j.asoc.2016.07.048
https://doi.org/10.1016/j.asoc.2016.07.048
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.2753/MIS0742-1222280402
https://doi.org/10.1145/1562764.1562784
https://doi.org/10.1145/1562764.1562784
https://doi.org/10.1007/978-3-030-22888-0_4
https://doi.org/10.1007/978-3-030-22888-0_4

	 SN Computer Science (2021) 2:16 16   Page 28 of 35

SN Computer Science

social network service.” In 2019 25th International Confer-
ence on Automation and Computing (ICAC), pp. 1–6. IEEE,
2019. https​://doi.org/10.23919​/IConA​C.2019.88951​40.

C4: J. A. Khan. “Mining requirements arguments from
user forums.” In 2019 IEEE 27th International Requirements
Engineering Conference (RE), pp. 440–445. IEEE, 2019.

C5: J. A. Khan, Y. Xie, L. Liu, and L. Wen. “Analysis
of requirements-related arguments in user forums.” In 2019
IEEE 27th International Requirements Engineering Confer-
ence (RE), pp. 63–74. IEEE, 2019.

C6: N. Al Kilani, R. Tailakh, and A. Hanani. “Automatic
classification of apps reviews for requirement engineering:
exploring the customers need from healthcare applications.”
In 2019 Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS), pp. 541–548.
IEEE, 2019, https​://doi.org/10.1109/SNAMS​.2019.89318​20.

C7: D. Martens and W. Maalej. “Extracting and analyzing
context information in user-support conversations on twit-
ter,” In 2019 IEEE 27th International Requirements Engi-
neering Conference (RE), pp. 131–141. IEEE, 2019.

C8: A. S. Nyamawe, H. Liu, N. Niu, Q. Umer, and Z.
Niu. “Automated recommendation of software refactorings
based on feature requests.” In 2019 IEEE 27th International
Requirements Engineering Conference (RE), pp. 187–198.
IEEE, 2019.

C9: J. Tizard, H. Wang, L. Yohannes, and K. Blincoe.
“Can a conversation paint a picture? Mining requirements in
software forums.” In 2019 IEEE 27th International Require-
ments Engineering Conference (RE), pp. 17–27. IEEE, 2019.

C10: C. Wang, T. Wang, P. Liang, M. Daneva, and M. Van
Sinderen. "Augmenting app review with app changelogs: An
approach for app review classification." In Proceedings of
the International Conference on Software Engineering and
Knowledge Engineering (SEKE), pp. 398–512. 2019, https​
://doi.org/10.18293​/SEKE2​019-176.

C11: D. Wüest, F. Fotrousi, and S. Fricker. “Combin-
ing monitoring and autonomous feedback requests to elicit
actionable knowledge of system use.” In International Work-
ing Conference on Requirements Engineering: Foundation
for Software Quality, pp. 209–225. Springer, Cham, 2019.

C12: J. Buchan, M. Bano, D. Zowghi, and P. Volabouth.
“Semi-automated extraction of new requirements from
online reviews for software product evolution.” In 2018
25th Australasian Software Engineering Conference
(ASWEC), pp. 31–40. IEEE, 2018.

C13: V. T. Dhinakaran, R. Pulle, N. Ajmeri, and P. K.
Murukannaiah. "App review analysis via active learning:
reducing supervision effort without compromising clas-
sification accuracy." In 2018 IEEE 26th International
Requirements Engineering Conference (RE), pp. 170–181.
IEEE, 2018, https​://doi.org/10.1109/RE.2018.00026​.

C14: X. Franch et al.. “Data-driven elicitation, assess-
ment and documentation of quality requirements in agile

software development.” In International Conference on
Advanced Information Systems Engineering, pp. 587–602.
Springer, Cham, 2018.

C15: E. C. Groen, F. Iese, J. Schowalter, and S. Kop-
czynska. “Is there really a need for using NLP to elicit
requirements? A benchmarking study to assess scalability
of manual Analysis.” In REFSQ Workshops. 2018.

C16: K. Higashi, H. Nakagawa, and T. Tsuchiya.
“Improvement of user review classification using keyword
expansion.” In Proceedings of the International Confer-
ence on Software Engineering and Knowledge Engineer-
ing (SEKE), pp. 125–124. 2018.

C17: W. Luiz et al.. "A feature-oriented sentiment rat-
ing for mobile app reviews." In Proceedings of the 2018
World Wide Web Conference, pp. 1909–1918. 2018.

C18: K. Srisopha, P. Behnamghader, and B. Boehm.
“Do users talk about the software in my product? Analyz-
ing user reviews on IoT products.” In the Proceedings of
CIbSE XXI Ibero-American Conference on Software Engi-
neering (CIbSE), pp.551–564, 2018

C19: N. H. Bakar, Z. M. Kasirun, N. Salleh, and A.
Halim. “Extracting software features from online reviews
to demonstrate requirements reuse in software engineer-
ing.” In Proceedings of the International Conference on
Computing & Informatics, pp. 184–190. 2017.

C20: M. Lu and P. Liang. “Automatic classification of
non-functional requirements from augmented app user
reviews.” In Proceedings of the 21st International Confer-
ence on Evaluation and Assessment in Software Engineer-
ing, 2017, pp. 344–353.

C21: E. C. Groen, S. Kopczynska, M. P. Hauer, T. D.
Krafft, and J. Doerr. "Users—the hidden software product
quality experts?: A study on how app users report quality
aspects in online reviews." In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference (RE), pp.
80–89. IEEE, 2017, https​://doi.org/10.1109/RE.2017.73.

C22: E. Guzman, M. Ibrahim, and M. Glinz. “A little
bird told me: Mining tweets for requirements and software
evolution.” In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pp. 11–20. IEEE, 2017,
https​://doi.org/10.1109/RE.2017.88.

C23: N. Jha and A. Mahmoud. "Mining user require-
ments from application store reviews using frame seman-
tics." In International working conference on requirements
engineering: Foundation for software quality, pp. 273–287.
Springer, Cham, 2017.

C24: I. Morales-Ramirez, F. M. Kifetew, and A. Per-
ini. “Analysis of online discussions in support of require-
ments discovery.” In International Conference on Advanced
Information Systems Engineering (CAiSE), pp. 159–174.
Springer, Cham, 2017, https​://doi.org/10.1007/978-3-319-
59536​-8_11.

https://doi.org/10.23919/IConAC.2019.8895140
https://doi.org/10.1109/SNAMS.2019.8931820
https://doi.org/10.18293/SEKE2019-176
https://doi.org/10.18293/SEKE2019-176
https://doi.org/10.1109/RE.2018.00026
https://doi.org/10.1109/RE.2017.73
https://doi.org/10.1109/RE.2017.88
https://doi.org/10.1007/978-3-319-59536-8_11
https://doi.org/10.1007/978-3-319-59536-8_11

SN Computer Science (2021) 2:16 	 Page 29 of 35  16

SN Computer Science

C25: G. Williams and A. Mahmoud. “Mining twitter
feeds for software user requirements.” In 2017 IEEE 25th
International Requirements Engineering Conference (RE),
pp. 1–10. IEEE, 2017, https​://doi.org/10.1109/RE.2017.14.

C26: T. Johann, C. Stanik, A. M. A. B, and W. Maalej.
“SAFE: A simple approach for feature extraction from app
descriptions and app reviews.” In 2017 IEEE 25th Inter-
national Requirements Engineering Conference (RE), pp.
21–30. IEEE, 2017, https​://doi.org/10.1109/RE.2017.71.

C27: J. Yang, C. K. Chang, and H. Ming. “A situation-
centric approach to identifying new user intentions using
the mtl method.” In 2017 IEEE 41st Annual Computer Soft-
ware and Applications Conference (COMPSAC), vol. 1, pp.
347–356. IEEE, 2017.

C28: E. Guzman, R. Alkadhi, and N. Seyff. “A needle
in a haystack: What do twitter users say about software?,”
In 2016 IEEE 24th International Requirements Engineer-
ing Conference (RE), pp. 96–105. IEEE, 2016, https​://doi.
org/10.1109/RE.2016.67.

C29: N. Kuehl. "Needmining: Towards analytical support
for service design." In International Conference on Explor-
ing Services Science, pp. 187–200. Springer, Cham, 2016.

C30: T. Merten, M. Falis, P. Hübner, T. Quirchmayr, S.
Bürsner, and B. Paech. “Software feature request detection
in issue tracking systems.” In 2016 IEEE 24th International
Requirements Engineering Conference (RE), pp. 166–175.
IEEE, 2016,, https​://doi.org/10.1109/RE.2016.8.

C31: V. Nguyen, E. Svee, and J. Zdravkovic. "A semi-
automated method for capturing consumer preferences for
system requirements." In IFIP Working Conference on The
Practice of Enterprise Modeling, pp. 117–132. Springer,
Cham, 2016.

C32: E. Svee and J. Zdravkovic. "A model-based
approach for capturing consumer preferences from crowd-
sources: the case of Twitter." In 2016 IEEE Tenth Inter-
national Conference on Research Challenges in Informa-
tion Science (RCIS), pp. 1–12. IEEE, 2016, https​://doi.
org/10.1109/RCIS.2016.75493​23.

C33: N. H. Bakar, Z. M. Kasirun, and N. Salleh. “Terms
extractions: An approach for requirements reuse.” In 2015
2nd International Conference on Information Science and
Security (ICISS), pp. 1–4. IEEE, 2015.–254. IEEE, 2015,
https​://doi.org/10.1109/ICISS​EC.2015.73710​34.

C34: W. Maalej and H. Nabil. "Bug report, feature
request, or simply praise? on automatically classifying app
reviews." In 2015 IEEE 23rd international requirements
engineering conference (RE), pp. 116–125. IEEE, 2015,
https​://doi.org/10.1109/RE.2015.73204​14.

C35: S. Panichella, A. Di Sorbo, E. Guzman, C. A. Vis-
aggio, G. Canfora, and H. C. Gall. "How can I improve my
app? Classifying user reviews for software maintenance
and evolution." In 2015 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pp. 281–290.
IEEE, 2015, https​://doi.org/10.1109/ICSM.2015.73324​74.

C36: H. Takahashi, H. Nakagawa, and T. Tsuchiya,
“Towards automatic requirements elicitation from feedback
comments: Extracting requirements topics using LDA,”
In Proceedings of the International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE), pp.
489–494. 2015, https​://doi.org/10.18293​/SEKE2​015-103.

C37: D. Sun and R. Peng. “A scenario model aggregation
approach for mobile app requirements evolution based on
user comments.” In Requirements Engineering in the Big
Data Era, pp. 75–91. Springer, Berlin, Heidelberg, 2015.

C38: E. Guzman and W. Maalej. “How do users like this
feature? A fine grained sentiment analysis of app reviews.”
In 2014 IEEE 22nd international requirements engineer-
ing conference (RE), pp. 153–162. IEEE, 2014, https​://doi.
org/10.1109/RE.2014.69122​57.

C39: W. Jiang, H. Ruan, L. Zhang, P. Lew, and J. Jiang.
“For user-driven software evolution: requirements elicita-
tion derived from mining online reviews.” In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp.
584–595. Springer, Cham, 2014.

C40: Z. Zhang, J. Qi, and G. Zhu. “Mining customer
requirement from helpful online reviews,” In 2014 Enter-
prise Systems Conference, pp. 249–254. IEEE, 2014, https​
://doi.org/10.1109/ES.2014.38.

C41: L. V. G. Carreno and K. Winbladh. “Analysis of
user comments: An approach for software requirements evo-
lution” In 2013 35th international conference on software
engineering (ICSE), pp. 582–591. IEEE, 2013, https​://doi.
org/10.1109/ICSE.2013.66066​04.

W1: C. Stanik, M. Haering, and W. Maalej. “Classifying
multilingual user feedback using traditional machine learn-
ing and deep learning.” In 2019 IEEE 27th International
Requirements Engineering Conference Workshops (REW),
pp. 220–226. IEEE, 2019.

W2: Q. A. Do and T. Bhowmik. "Automated generation
of creative software requirements: a data-driven approach."
In Proceedings of the 1st ACM SIGSOFT International
Workshop on Automated Specification Inference, pp. 9–12.
2018, https​://doi.org/10.1145/32781​77.32781​80.

W3: Z. S. H. Abad, S. D. V. Sims, A. Cheema, M. B.
Nasir, and P. Harisinghani. “Learn more, pay less! Lessons
learned from applying the wizard-of-oz technique for explor-
ing mobile app requirements.” In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference Workshops
(REW), Sep. 2017, pp. 132–138, https​://doi.org/10.1109/
REW.2017.71.

W4: E. Bakiu and E. Guzman. “Which feature is unusa-
ble? Detecting usability and user experience issues from user
reviews.” In 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW), pp. 182–187.
IEEE, 2017, https​://doi.org/10.1109/REW.2017.76.

https://doi.org/10.1109/RE.2017.14
https://doi.org/10.1109/RE.2017.71
https://doi.org/10.1109/RE.2016.67
https://doi.org/10.1109/RE.2016.67
https://doi.org/10.1109/RE.2016.8
https://doi.org/10.1109/RCIS.2016.7549323
https://doi.org/10.1109/RCIS.2016.7549323
https://doi.org/10.1109/ICISSEC.2015.7371034
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.18293/SEKE2015-103
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1109/ES.2014.38
https://doi.org/10.1109/ES.2014.38
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1145/3278177.3278180
https://doi.org/10.1109/REW.2017.71
https://doi.org/10.1109/REW.2017.71
https://doi.org/10.1109/REW.2017.76

	 SN Computer Science (2021) 2:16 16   Page 30 of 35

SN Computer Science

Table 10   Quality assessment of
the included studies

No SJR CORE Point

J1 Q3 – 1
J2 Q2 – 1.5
J3 Q3 – 1
J4 Q4 – 1
J5 Q2 – 1.5
J6 Q1 – 2
J7 Q2 – 1.5
J8 Q1 – 1
J9 Q1 – 1
J10 Q1 – 1
J11 Q1 – 1
J12 Q1 – 1
J13 No – 0
J14 Q1 – 2
J15 Q1 – 2
J16 Q1 – 2
C1 – B 1
C2 – Unlisted 0
C3 – Unlisted 0
C4 – A 1.5
C5 – A 1.5
C6 – Unlisted 0
C7 – A 1.5
C8 – A 1.5
C9 – A 1.5
C10 – B 1
C11 – B 1
C12 – Unlisted 0
C13 – A 1.5
C14 – A 1.5
C15 – B 1
C16 – B 1
C17 – A* 1.5
C18 – Unlisted 0
C19 – C 0.5
C20 – A 1.5
C21 – A 1.5
C22 – A 1.5
C23 – B 1
C24 – A 1.5

No SJR CORE Point

C25 – A 1.5
C26 – A 1.5
C27 – Unlisted 0
C28 – A 1.5
C29 – Unlisted 0
C30 – A 1.5
C31 – Unlisted 0
C32 – B 1
C33 – Unlisted 0

SN Computer Science (2021) 2:16 	 Page 31 of 35  16

SN Computer Science

W5: R. Deocadez, R. Harrison, and D. Rodriguez. “Auto-
matically classifying requirements from app stores: A pre-
liminary study.” In 2017 IEEE 25th International Require-
ments Engineering Conference Workshops (REW), Sep.
2017, pp. 367–371, https​://doi.org/10.1109/REW.2017.58.

W6: N. Jha and A. Mahmoud. “MARC: A mobile appli-
cation review classifier.” In REFSQ Workshops. 2017.

W7: R. L. Q. Portugal, J. C. S. Do Prado Leite, and E.
Almentero. “Time-constrained requirements elicitation:
Reusing GitHub content.” In 2015 IEEE Workshop on Just-
In-Time Requirements Engineering (JITRE), pp. 5–8. IEEE,
2015, https​://doi.org/10.1109/JITRE​.2015.73301​71.

S1: C. Wang, F. Zhang, P. Liang, M. Daneva, and M. van
Sinderen. “Can app changelogs improve requirements clas-
sification from app reviews?: An exploratory study.” In Pro-
ceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp. 1–4.
2018, https​://doi.org/10.1145/32392​35.32674​28.

S2: W. Liang, W. Qian, Y. Wu, X. Peng, and W. Zhao.
“Mining context-aware user requirements from crowd con-
tributed mobile data.” In Proceedings of the 7th Asia–Pacific
Symposium on Internetware, pp. 132–140. 2015, https​://doi.
org/10.1145/28759​13.28759​33.

S3: M. Xiao, G. Yin, T. Wang, C. Yang, and M. Chen.
“Requirement acquisition from social Q&A sites.” In Liu L.,
Aoyama M. (eds) Requirements Engineering in the Big Data

Era. Communications in Computer and Information Science,
vol 558. Springer, Berlin, Heidelberg, 2015.

S4: W. Jiang, H. Ruan, and L. Zhang. “Analysis of eco-
nomic impact of online reviews: An approach for market-
driven requirements evolution.” In Zowghi D., Jin Z. (eds)
Requirements Engineering. Communications in Com-
puter and Information Science, vol. 432, pp. 45–59, 2014,
Springer, Berlin, Heidelberg, https​://doi.org/10.1007/978-
3-662-43610​-3_4.

Appendix 2

See Table 10

References

	 1.	 Pohl K. Requirements engineering: fundamentals, principles, and
techniques. Heidelberg: Springer; 2010.

	 2.	 Pacheco C, García I, Reyes M. Requirements elicitation tech-
niques: a systematic literature review based on the maturity
of the techniques. IET Softw. 2018;12(4):365–78. https​://doi.
org/10.1049/iet-sen.2017.0144.

	 3.	 Chen H, Chiang RHL, Storey VC. Business intelligence
and analytics: from big data to big impact. MIS Quart.
2012;36(4):1165–88.

Table 10   (continued) No SJR CORE Point

C34 – A 1.5
C35 – A 1.5
C36 – B 1
C37 – Unlisted 0
C38 – A 1.5
C39 – A 1.5
C40 – Unlisted 0
C41 – A* 1.5
W1 – Unlisted 0
W2 – Unlisted 0
W3 – Unlisted 0
W4 – Unlisted 0
W5 – Unlisted 0
W6 – Unlisted 0
W7 – Unlisted 0
S1 – A 1.5
S2 – Unlisted 0
S3 – Unlisted 0
S4 – Unlisted 0
Median 1
Q3 1.5
Q1 0

https://doi.org/10.1109/REW.2017.58
https://doi.org/10.1109/JITRE.2015.7330171
https://doi.org/10.1145/3239235.3267428
https://doi.org/10.1145/2875913.2875933
https://doi.org/10.1145/2875913.2875933
https://doi.org/10.1007/978-3-662-43610-3_4
https://doi.org/10.1007/978-3-662-43610-3_4
https://doi.org/10.1049/iet-sen.2017.0144
https://doi.org/10.1049/iet-sen.2017.0144

	 SN Computer Science (2021) 2:16 16   Page 32 of 35

SN Computer Science

	 4.	 Manrique-Losada B, Zapata-Jaramillo CM, Burgos DA. Re-
expressing business processes information from corporate docu-
ments into controlled language. In: International Conference on
Applications of Natural Language Processing to Information
Systems. Cham: Springer, 2016, pp. 376–383.

	 5.	 Hauksdóttir D, Ritsing B, Andersen JC, Mortensen NH. Estab-
lishing reusable requirements derived from laws and regulations
for medical device development. In 2016 IEEE 24th Interna-
tional Requirements Engineering Conference Workshops (REW),
2016, pp. 220–228, https​://doi.org/10.1109/REW.2016.045.

	 6.	 Kaiya H, Saeki M. Using domain ontology as domain knowl-
edge for requirements elicitation. In 14th IEEE International
Requirements Engineering Conference (RE’06), pp. 189–198.
IEEE, 2006, pp. 186–195, https​://doi.org/10.1109/RE.2006.72.

	 7.	 Zong-yong L, Zhi-xue W, Ying-ying Y, Yue W, Ying L. Towards
a multiple ontology framework for requirements elicitation and
reuse. In 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), vol. 1, pp. 189–195.
IEEE, 2007, https​://doi.org/10.1109/COMPS​AC.2007.216.

	 8.	 Nogueira FA, De Oliveira HC. Application of heuristics in busi-
ness process models to support software requirements specifica-
tion. ICEIS. 2017;2:40–51.

	 9.	 Bendjenna H, Zarour NE, Charrel P. MAMIE: A methodology
to elicit requirements in inter-company co-operative information
systems. In 2008 International Conference on Computational
Intelligence for Modelling Control & Automation, 2008, pp.
290–295, https​://doi.org/10.1109/CIMCA​.2008.101.

	 10.	 Shao F, Peng R, Lai H, Wang B. DRank: a semi-automated
requirements prioritization method based on preferences and
dependencies. J Syst Softw. 2017;126:141–56. https​://doi.
org/10.1016/j.jss.2016.09.043.

	 11.	 Abad ZSH, Karras O, Ghazi P, Glinz M, Ruhe G, Schneider
K. “What works better? A study of classifying requirements. In
2017 IEEE 25th International Requirements Engineering Con-
ference (RE), pp. 496–501. IEEE, 2017, https​://doi.org/10.1109/
RE.2017.36.

	 12.	 Hayes JH, Antoniol G, Adams B, Guehénéuc YG. Inherent char-
acteristics of traceability artifacts: Less is more. In: 2015 IEEE
23rd International Requirements Engineering Conference (RE),
pp. 196–201. IEEE, 2015.

	 13.	 Kamalrudin M, Hosking J, Grundy J. MaramaAIC: tool sup-
port for consistency management and validation of requirements.
Automat Softw Eng. 2017;24(1):1–45. https​://doi.org/10.1007/
s1051​5-016-0192-z.

	 14.	 Ahmed MA, Butt WH, Ahsan I, Anwar MW, Latif M, Azam F.
A novel natural language processing (NLP) approach to auto-
matically generate conceptual class model from initial software
requirements. In International Conference on Information Sci-
ence and Applications, pp. 476–484. Springer, Singapore, 2017.

	 15.	 Kifetew F, Munante D, Perini A, Susi A, Siena A, Busetta P.
DMGame: A gamified collaborative requirements prioritisation
tool. In: 2017 IEEE 25th International Requirements Engineer-
ing Conference (RE), 2017, pp. 468–469, https​://doi.org/10.1109/
RE.2017.46.

	 16.	 Ahmad S, Jalil IEA, Ahmad SSS. An enhancement of software
requirements negotiation with rule-based reasoning: a con-
ceptual model. J Telecommun Electron Comput Eng (JTEC).
2016;8(10):193–8.

	 17.	 Meth H, Brhel M, Maedche A. The state of the art in automated
requirements elicitation. Inf Softw Technol. 2013;55(10):1695–
709. https​://doi.org/10.1016/j.infso​f.2013.03.008.

	 18.	 Nicolás J, Toval A. On the generation of requirements specifica-
tions from software engineering models: a systematic literature
review. Inf Softw Technol. 2009;51(9):1291–307. https​://doi.
org/10.1016/j.infso​f.2009.04.001.

	 19.	 Groen EC, et al. The crowd in requirements engineering: the
landscape and challenges. IEEE Softw. 2017;34(2):44–52. https​
://doi.org/10.1109/MS.2017.33.

	 20.	 Ferguson M. Big data-why transaction data is mission critical to
success. Intelligence Business Strategies Limited. https​://publi​
c.dhe.ibm.com/commo​n/ssi/ecm/im/en/iml14​442us​en/IML14​
442US​EN.PDF, 2014.

	 21.	 Maalej W, Nayebi M, Johann T, Ruhe G. Toward data-driven
requirements engineering. IEEE Softw. 2016;33(1):48–54. https​
://doi.org/10.1109/MS.2015.153.

	 22.	 Genc-Nayebi N, Abran A. A systematic literature review: opinion
mining studies from mobile app store user reviews. J Syst Softw.
2017;125:207–19. https​://doi.org/10.1016/j.jss.2016.11.027.

	 23.	 Ghasemi M, Amyot D. From event logs to goals: a systematic
literature review of goal-oriented process mining. Requir Eng.
2019;25(1):67–93. https​://doi.org/10.1007/s0076​6-018-00308​-3.

	 24.	 Zowghi D, Coulin C. Requirements elicitation: A survey of
technique, approaches and tools. In: Engineering and managing
software requirements. Berlin: Springer; 2005. p. 19–46.

	 25.	 Arruda D, Madhavji NH. State of requirements engineering
research in the context of Big Data applications. In International
Working Conference on Requirements Engineering: Foundation
for Software Quality. Cham: Springer, 2018, pp. 307–323.

	 26.	 Martin W, Sarro F, Jia Y, Zhang Y, Harman M. A survey of
app store analysis for software engineering. IEEE Trans
Software Eng. 2017;43(9):817–47. https​://doi.org/10.1109/
TSE.2016.26306​89.

	 27.	 Tavakoli M, Zhao L, Heydari A, Nenadić G. Extracting use-
ful software development information from mobile application
reviews: a survey of intelligent mining techniques and tools. Exp
Syst Appl. 2018;113:186–99.

	 28.	 De Mauro A, Greco M, Grimaldi M. What is big data? A con-
sensual definition and a review of key research topics. In: AIP
conference proceedings, vol. 1644, no. 1, pp. 97–104. American
Institute of Physics, 2015, https​://doi.org/10.1063/1.49078​23.

	 29.	 Morales-Ramirez I, Perini A, Guizzardi RSS. An ontology
of online user feedback in software engineering. Appl Ontol.
2015;10(3–4):297–330. https​://doi.org/10.3233/AO-15015​0.

	 30.	 Firmani D, Mecella M, Scannapieco M, Batini C. On the mean-
ingfulness of ‘big data quality’ (invited paper). Data Sci Eng.
2016;1(1):6–20. https​://doi.org/10.1007/s4101​9-015-0004-7.

	 31.	 Kitchenham B, Charters S. Guidelines for performing systematic
literature reviews in software engineering. 2007.

	 32.	 Landis JR, Koch GG. The measurement of observer agreement
for categorical data. Biometrics. 1977;33(1):159–74. https​://doi.
org/10.2307/25293​10.

	 33.	 Rotondi MA, Donner A. A confidence interval approach to sam-
ple size estimation for interobserver agreement studies with mul-
tiple raters and outcomes. J Clin Epidemiol. 2012;65(7):778–84.
https​://doi.org/10.1016/j.jclin​epi.2011.10.019.

	 34.	 Hevner AR, March ST, Park J, Ram S. Design science in infor-
mation systems research. MIS Quart. 2004;28(1):75–105. https​
://doi.org/10.2307/25148​625.

	 35.	 Dhinakaran VT, Pulle R, Ajmeri N, Murukannaiah PK. App
review analysis via active learning: Reducing supervision
effort without compromising classification accuracy. In 2018
IEEE 26th International Requirements Engineering Confer-
ence (RE), pp. 170–181. IEEE, 2018, https​://doi.org/10.1109/
RE.2018.00026​.

	 36.	 Do QA, Bhowmik T. Automated generation of creative software
requirements: a data-driven approach. In Proceedings of the 1st
ACM SIGSOFT International Workshop on Automated Specifi-
cation Inference, pp. 9–12. 2018, https​://doi.org/10.1145/32781​
77.32781​80.

	 37.	 Groen EC, Kopczynska S, Hauer MP, Krafft TD, Doerr J. Users-
the hidden software product quality experts?: A study on how

https://doi.org/10.1109/REW.2016.045
https://doi.org/10.1109/RE.2006.72
https://doi.org/10.1109/COMPSAC.2007.216
https://doi.org/10.1109/CIMCA.2008.101
https://doi.org/10.1016/j.jss.2016.09.043
https://doi.org/10.1016/j.jss.2016.09.043
https://doi.org/10.1109/RE.2017.36
https://doi.org/10.1109/RE.2017.36
https://doi.org/10.1007/s10515-016-0192-z
https://doi.org/10.1007/s10515-016-0192-z
https://doi.org/10.1109/RE.2017.46
https://doi.org/10.1109/RE.2017.46
https://doi.org/10.1016/j.infsof.2013.03.008
https://doi.org/10.1016/j.infsof.2009.04.001
https://doi.org/10.1016/j.infsof.2009.04.001
https://doi.org/10.1109/MS.2017.33
https://doi.org/10.1109/MS.2017.33
https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14442usen/IML14442USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14442usen/IML14442USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14442usen/IML14442USEN.PDF
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.1016/j.jss.2016.11.027
https://doi.org/10.1007/s00766-018-00308-3
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1063/1.4907823
https://doi.org/10.3233/AO-150150
https://doi.org/10.1007/s41019-015-0004-7
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1016/j.jclinepi.2011.10.019
https://doi.org/10.2307/25148625
https://doi.org/10.2307/25148625
https://doi.org/10.1109/RE.2018.00026
https://doi.org/10.1109/RE.2018.00026
https://doi.org/10.1145/3278177.3278180
https://doi.org/10.1145/3278177.3278180

SN Computer Science (2021) 2:16 	 Page 33 of 35  16

SN Computer Science

app users report quality aspects in online reviews. In 2017 IEEE
25th International Requirements Engineering Conference (RE),
pp. 80–89. IEEE, 2017, https​://doi.org/10.1109/RE.2017.73.

	 38.	 Maalej W, Kurtanović Z, Nabil H, Stanik C. On the automatic
classification of app reviews. Requir Eng. 2016;21(3):311–31.
https​://doi.org/10.1007/s0076​6-016-0251-9.

	 39.	 Maalej W, Nabil H. Bug report, feature request, or simply praise?
On automatically classifying app reviews. In 2015 IEEE 23rd
international requirements engineering conference (RE), pp.
116–125. IEEE, 2015, https​://doi.org/10.1109/RE.2015.73204​
14.

	 40.	 Guzman E, Maalej W. How do users like this feature? A fine
grained sentiment analysis of app reviews. In 2014 IEEE 22nd
international requirements engineering conference (RE), pp.
153–162. IEEE, 2014, https​://doi.org/10.1109/RE.2014.69122​
57.

	 41.	 Jiang W, Ruan H, Zhang L, Lew P, Jiang J. For user-driven soft-
ware evolution: Requirements elicitation derived from mining
online reviews. In Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pp. 584–595. Springer, Cham, 2014.

	 42.	 Lu M, Liang P. Automatic classification of non-functional
requirements from augmented app user reviews. In Proceedings
of the 21st International Conference on Evaluation and Assess-
ment in Software Engineering, 2017, pp. 344–353.

	 43.	 Deocadez R, Harrison R, Rodriguez D. Automatically classifying
requirements from app stores: A preliminary study. In 2017 IEEE
25th International Requirements Engineering Conference Work-
shops (REW), Sep. 2017, pp. 367–371, https​://doi.org/10.1109/
REW.2017.58.

	 44.	 Abad ZSH, Sims SDV, Cheema A, Nasir MB, Harisinghani P.
Learn more, pay less! Lessons learned from applying the wiz-
ard-of-oz technique for exploring mobile app requirements. In
2017 IEEE 25th International Requirements Engineering Con-
ference Workshops (REW), Sep. 2017, pp. 132–138, https​://doi.
org/10.1109/REW.2017.71.

	 45.	 Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G,
Gall HC. How can I improve my app? Classifying user reviews
for software maintenance and evolution. In 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution
(ICSME), pp. 281–290. IEEE, 2015, https​://doi.org/10.1109/
ICSM.2015.73324​74.

	 46.	 Dalpiaz F, Parente M. RE-SWOT: From user feedback to require-
ments via competitor analysis. In International Working Con-
ference on Requirements Engineering: Foundation for Software
Quality, pp. 55–70. Springer, Cham, 2019.

	 47.	 Zhao L, Zhao A. Sentiment analysis based requirement evolution
prediction. Fut Internet. 2019;11(2):52.

	 48.	 Jha N, Mahmoud A. Using frame semantics for classifying
and summarizing application store reviews. Empir Softw Eng.
2018;23(6):3734–67.

	 49.	 Luiz W, et al. A feature-oriented sentiment rating for mobile
app reviews. In Proceedings of the 2018 World Wide Web Con-
ference, pp. 1909–1918. 2018.

	 50.	 Jha N, Mahmoud A. MARC: a mobile application review clas-
sifier. In REFSQ Workshops. 2017.

	 51.	 Jha N, Mahmoud A. Mining user requirements from application
store reviews using frame semantics. In International work-
ing conference on requirements engineering: Foundation for
software quality, pp. 273–287. Springer, Cham, 2017.

	 52.	 Carreno LVG, Winbladh K. Analysis of user comments:
an approach for software requirements evolution. In 2013
35th international conference on software engineering
(ICSE), pp. 582–591. IEEE, 2013, https​://doi.org/10.1109/
ICSE.2013.66066​04.

	 53.	 Sun D, Peng R. A scenario model aggregation approach for
mobile app requirements evolution based on user comments.

In: Requirements engineering in the big data era. Berlin:
Springer; 2015. p. 75–91.

	 54.	 Higashi K, Nakagawa H, Tsuchiya T. Improvement of user
review classification using keyword expansion. In: Proceedings
of the International Conference on Software Engineering and
Knowledge Engineering (SEKE), pp. 125–124. 2018.

	 55.	 Bakiu E, Guzman E. Which feature is unusable? Detecting
usability and user experience issues from user reviews. In 2017
IEEE 25th International Requirements Engineering Confer-
ence Workshops (REW), pp. 182–187. IEEE, 2017, https​://doi.
org/10.1109/REW.2017.76.

	 56.	 Srisopha K, Behnamghader P, Boehm B. Do users talk about
the software in my product? Analyzing user reviews on IoT
products. In the Proceedings of CIbSE XXI Ibero-American
Conference on Software Engineering (CIbSE), pp. 551–564,
2018.

	 57.	 Groen EC, Iese F, Schowalter J, Kopczynska S. Is there really
a need for using NLP to elicit requirements? A benchmarking
study to assess scalability of manual analysis. In REFSQ Work-
shops. 2018.

	 58.	 Jiang W, Ruan H, Zhang L. Analysis of economic impact of
online reviews: an approach for market-driven requirements evo-
lution. In: Zowghi D, Jin Z, editors. Requirements engineering
communications in computer and information science, vol. 432.
Berlin: Springer; 2014. p. 45–59. https​://doi.org/10.1007/978-3-
662-43610​-3_4.

	 59.	 Buchan J, Bano M, Zowghi D, Volabouth P. Semi-automated
extraction of new requirements from online reviews for software
product evolution. In 2018 25th Australasian Software Engineer-
ing Conference (ASWEC), pp. 31–40. IEEE, 2018.

	 60.	 Zhang Z, Qi J, Zhu G. Mining customer requirement from help-
ful online reviews. 2014 Enterprise Systems Conference, pp.
249–254. IEEE, 2014, https​://doi.org/10.1109/ES.2014.38.

	 61.	 Bakar NH, Kasirun ZM, Salleh N, Jalab HA. Extracting features
from online software reviews to aid requirements reuse. Appl
Soft Comput J. 2016;49:1297–315. https​://doi.org/10.1016/j.
asoc.2016.07.048.

	 62.	 Bakar NH, Kasirun ZM, Salleh N. Terms extractions: an
approach for requirements reuse. In 2015 2nd International Con-
ference on Information Science and Security (ICISS), pp. 1–4.
IEEE, 2015.–254. IEEE, 2015, https​://doi.org/10.1109/ICISS​
EC.2015.73710​34.

	 63.	 Bakar NH, Kasirun ZM, Salleh N, Halim A. Extracting software
features from online reviews to demonstrate requirements reuse
in software engineering. In Proceedings of the International
Conference on Computing & Informatics, pp. 184–190. 2017.

	 64.	 Williams G, Mahmoud A. Mining twitter feeds for software user
requirements. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pp. 1–10. IEEE, 2017, https​://
doi.org/10.1109/RE.2017.14.

	 65.	 Stanik C, Haering M, Maalej W. Classifying multilingual user
feedback using traditional machine learning and deep learning. In
2019 IEEE 27th International Requirements Engineering Confer-
ence Workshops (REW), pp. 220–226. IEEE, 2019.

	 66.	 Ali N, Hwang S, Hong J-E. Your opinions let us know: mining
social network sites to evolve software product lines. KSII Trans
Internet Inf Syst. 2019;13(8):4191–211. https​://doi.org/10.3837/
tiis.2019.08.021.

	 67.	 Alwadain A, Alshargi M. Crowd-generated data mining for con-
tinuous requirements elicitation. Int J Adv Comput Sci Appl.
2019;10(9):45–50.

	 68.	 Guzman E, Ibrahim M, Glinz M. A little bird told me: Mining
tweets for requirements and software evolution. In 2017 IEEE
25th International Requirements Engineering Conference (RE),
pp. 11–20. IEEE, 2017, https​://doi.org/10.1109/RE.2017.88.

https://doi.org/10.1109/RE.2017.73
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1109/RE.2014.6912257
https://doi.org/10.1109/REW.2017.58
https://doi.org/10.1109/REW.2017.58
https://doi.org/10.1109/REW.2017.71
https://doi.org/10.1109/REW.2017.71
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1109/ICSE.2013.6606604
https://doi.org/10.1109/REW.2017.76
https://doi.org/10.1109/REW.2017.76
https://doi.org/10.1007/978-3-662-43610-3_4
https://doi.org/10.1007/978-3-662-43610-3_4
https://doi.org/10.1109/ES.2014.38
https://doi.org/10.1016/j.asoc.2016.07.048
https://doi.org/10.1016/j.asoc.2016.07.048
https://doi.org/10.1109/ICISSEC.2015.7371034
https://doi.org/10.1109/ICISSEC.2015.7371034
https://doi.org/10.1109/RE.2017.14
https://doi.org/10.1109/RE.2017.14
https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.1109/RE.2017.88

	 SN Computer Science (2021) 2:16 16   Page 34 of 35

SN Computer Science

	 69.	 Guzman E, Alkadhi R, Seyff N. An exploratory study of
twitter messages about software applications. Requir Eng.
2017;22(3):387–412.

	 70.	 Guzman E, Alkadhi R, Seyff N. A needle in a haystack: What
do twitter users say about software? In 2016 IEEE 24th Interna-
tional Requirements Engineering Conference (RE), pp. 96–105.
IEEE, 2016, https​://doi.org/10.1109/RE.2016.67.

	 71.	 Kuehl N. Needmining: towards analytical support for service
design. In International Conference on Exploring Services Sci-
ence, pp. 187–200. Springer, Cham, 2016.

	 72.	 Nguyen V, Svee EO, Zdravkovic J. A semi-automated method for
capturing consumer preferences for system requirements. In IFIP
Working Conference on The Practice of Enterprise Modeling, pp.
117–132. Springer, Cham, 2016.

	 73.	 Svee EO, Zdravkovic J. A model-based approach for capturing
consumer preferences from crowdsources: the case of twitter. In
2016 IEEE Tenth International Conference on Research Chal-
lenges in Information Science (RCIS), pp. 1–12. IEEE, 2016,
https​://doi.org/10.1109/RCIS.2016.75493​23.

	 74.	 Martens D, Maalej W. Extracting and analyzing context informa-
tion in user-support conversations on twitter. In 2019 IEEE 27th
International Requirements Engineering Conference (RE), pp.
131–141. IEEE, 2019.

	 75.	 Han X, Li R, Li W, Ding G, Qin S. User requirements dynamic
elicitation of complex products from social network service. In
2019 25th International Conference on Automation and Comput-
ing (ICAC), pp. 1–6. IEEE, 2019. https​://doi.org/10.23919​/IConA​
C.2019.88951​40.

	 76.	 Vlas RE, Robinson WN. Two rule-based natural language strate-
gies for requirements discovery and classification in open source
software development projects. J Manag Inf Syst. 2012;28(4):11–
38. https​://doi.org/10.2753/MIS07​42-12222​80402​.

	 77.	 Xiao M, Yin G, Wang T, Yang C, Chen M. Requirement acqui-
sition from social Q&A sites. In: Liu L, Aoyama M, editors.
Requirements engineering in the big data era Communications
in Computer and Information Science, vol. 558. Berlin: Springer;
2015.

	 78.	 Cleland-Huang J, Dumitru H, Duan C, Castro-Herrera C.
Automated support for managing feature requests in open
forums. Commun ACM. 2009;52(10):68–74. https​://doi.
org/10.1145/15627​64.15627​84.

	 79.	 Morales-Ramirez I, Kifetew FM, Perini A. Analysis of online
discussions in support of requirements discovery. In Interna-
tional Conference on Advanced Information Systems Engineer-
ing (CAiSE), pp. 159–174. Springer, Cham, 2017, https​://doi.
org/10.1007/978-3-319-59536​-8_11.

	 80.	 Khan JA, Liu L, Wen L. Requirements knowledge acquisition
from online user forums. IET Softw. 2020;14(3):242–53. https​
://doi.org/10.1049/iet-sen.2019.0262.

	 81.	 Khan JA, Xie Y, Liu L, Wen L. Analysis of requirements-related
arguments in user forums. In 2019 IEEE 27th International
Requirements Engineering Conference (RE), pp. 63–74. IEEE,
2019.

	 82.	 Khan JA. Mining requirements arguments from user forums. In
2019 IEEE 27th International Requirements Engineering Confer-
ence (RE), pp. 440–445. IEEE, 2019.

	 83.	 Tizard J, Wang H, Yohannes L, Blincoe K. Can a conversation
paint a picture? Mining Requirements in software forums. In
2019 IEEE 27th International Requirements Engineering Confer-
ence (RE), pp. 17–27. IEEE, 2019.

	 84.	 Morales-Ramirez I, Kifetew FM, Perini A. Speech-acts based
analysis for requirements discovery from online discussions. Inf
Syst. 2018;86:94–112. https​://doi.org/10.1016/j.is.2018.08.003.

	 85.	 Merten T, Falis M, Hübner P, Quirchmayr T, Bürsner S, Paech
B. Software feature request detection in issue tracking systems.
In 2016 IEEE 24th International Requirements Engineering

Conference (RE), pp. 166–175. IEEE, 2016, https​://doi.
org/10.1109/RE.2016.8.

	 86.	 Portugal RLQ, Do Prado Leite JCS, Almentero E. Time-con-
strained requirements elicitation: Reusing GitHub content. In
2015 IEEE Workshop on Just-In-Time Requirements Engineer-
ing (JITRE), pp. 5–8. IEEE, 2015, https​://doi.org/10.1109/JITRE​
.2015.73301​71.

	 87.	 Nyamawe AS, Liu H, Niu N, Umer Q, Niu Z. Automated recom-
mendation of software refactorings based on feature requests. In
2019 IEEE 27th International Requirements Engineering Confer-
ence (RE), pp. 187–198. IEEE, 2019.

	 88.	 Franch X, et al. Data-driven elicitation, assessment and docu-
mentation of quality requirements in agile software development.
In International Conference on Advanced Information Systems
Engineering, pp. 587–602. Springer, Cham, 2018.

	 89.	 Oriol M, et al. Data-driven and tool-supported elicitation of qual-
ity requirements in agile companies. Softw Qual J. 2020. https​://
doi.org/10.1007/s1121​9-020-09509​-y.

	 90.	 Do QA, Chekuri SR, Bhowmik T. Automated support to capture
creative requirements via requirements reuse. In International
Conference on Software and Systems Reuse, pp. 47–63. Springer,
Cham, 2019, https​://doi.org/10.1007/978-3-030-22888​-0_4.

	 91.	 Kang Y, Li H, Lu C, Pu B. A transfer learning algorithm for
automatic requirement model generation. J Intell Fuzzy Syst.
2019;36(2):1183–91. https​://doi.org/10.3233/JIFS-16989​2.

	 92.	 Wang C, Zhang F, Liang P, Daneva M, van Sinderen M. Can
app changelogs improve requirements classification from app
reviews?: An exploratory study. In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 1–4. 2018, https​://doi.
org/10.1145/32392​35.32674​28.

	 93.	 Wang C, Wang T, Liang P, Daneva M, Van Sinderen M. Aug-
menting app reviews with app changelogs: An approach for app
reviews classification. In Proceedings of the International Con-
ference on Software Engineering and Knowledge Engineering
(SEKE), pp. 398–512. 2019, https​://doi.org/10.18293​/SEKE2​
019-176.

	 94.	 Johann T, Stanik C, Maalej W. SAFE: A simple approach for
feature extraction from app descriptions and app reviews. In
2017 IEEE 25th International Requirements Engineering Con-
ference (RE), pp. 21–30. IEEE, 2017, https​://doi.org/10.1109/
RE.2017.71.

	 95.	 Voet H, Altenhof M, Ellerich M, Schmitt RH, Linke B. A
framework for the capture and analysis of product usage
data for continuous product improvement. J Manuf Sci Eng.
2019;141(2):021010.

	 96.	 Liang W, Qian W, Wu Y, Peng X, Zhao W. Mining context-aware
user requirements from crowd contributed mobile data. In Pro-
ceedings of the 7th Asia-Pacific Symposium on Internetware, pp.
132–140. 2015, https​://doi.org/10.1145/28759​13.28759​33.

	 97.	 Xie H, Yang J, Chang CK, Liu L. A statistical analysis approach
to predict user’s changing requirements for software service evo-
lution. J Syst Softw. 2017;132:147–64. https​://doi.org/10.1016/j.
jss.2017.06.071.

	 98.	 Yang J, Chang CK, Ming H. A situation-centric approach to iden-
tifying new user intentions using the mtl method. In 2017 IEEE
41st Annual Computer Software and Applications Conference
(COMPSAC), vol. 1, pp. 347–356. IEEE, 2017.

	 99.	 Wüest D, Fotrousi F, Fricker S. Combining monitoring and
autonomous feedback requests to elicit actionable knowledge of
system use. In International Working Conference on Require-
ments Engineering: Foundation for Software Quality, pp. 209–
225. Springer, Cham, 2019.

	100.	 Takahashi H, Nakagawa H, Tsuchiya T. Towards automatic
requirements elicitation from feedback comments: Extract-
ing requirements topics using LDA. In Proceedings of the

https://doi.org/10.1109/RE.2016.67
https://doi.org/10.1109/RCIS.2016.7549323
https://doi.org/10.23919/IConAC.2019.8895140
https://doi.org/10.23919/IConAC.2019.8895140
https://doi.org/10.2753/MIS0742-1222280402
https://doi.org/10.1145/1562764.1562784
https://doi.org/10.1145/1562764.1562784
https://doi.org/10.1007/978-3-319-59536-8_11
https://doi.org/10.1007/978-3-319-59536-8_11
https://doi.org/10.1049/iet-sen.2019.0262
https://doi.org/10.1049/iet-sen.2019.0262
https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1109/RE.2016.8
https://doi.org/10.1109/RE.2016.8
https://doi.org/10.1109/JITRE.2015.7330171
https://doi.org/10.1109/JITRE.2015.7330171
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.1007/s11219-020-09509-y
https://doi.org/10.1007/978-3-030-22888-0_4
https://doi.org/10.3233/JIFS-169892
https://doi.org/10.1145/3239235.3267428
https://doi.org/10.1145/3239235.3267428
https://doi.org/10.18293/SEKE2019-176
https://doi.org/10.18293/SEKE2019-176
https://doi.org/10.1109/RE.2017.71
https://doi.org/10.1109/RE.2017.71
https://doi.org/10.1145/2875913.2875933
https://doi.org/10.1016/j.jss.2017.06.071
https://doi.org/10.1016/j.jss.2017.06.071

SN Computer Science (2021) 2:16 	 Page 35 of 35  16

SN Computer Science

International Conference on Software Engineering and Knowl-
edge Engineering (SEKE), pp. 489–494. 2015, https​://doi.
org/10.18293​/SEKE2​015-103.

	101.	 Dhinakaran VT, Pulle R, Ajmeri N, Murukannaiah PK. App
review analysis via active learning. In 2018 IEEE 26th Interna-
tional Requirements Engineering Conference (RE), pp. 170–181.
IEEE, 2018.

	102.	 Licorish SA. Exploring the prevalence and evolution of android
concerns: a community viewpoint. JSW. 2016;11(9):848–69.

	103.	 Tizard J, Wang H, Yohannes L, Blincoe K. Can a conversation
paint a picture? Mining requirements in software forums. In
2019 IEEE 27th International Requirements Engineering Con-
ference (RE), pp. 17–27. IEEE, 2019, https​://doi.org/10.1109/
RE.2019.00014​.

	104.	 Al Kilani N, Tailakh R, Hanani A. Automatic classification of
apps reviews for requirement engineering: Exploring the custom-
ers need from healthcare applications. In 2019 6th International
Conference on Social Networks Analysis, Management and Secu-
rity (SNAMS), pp. 541–548. IEEE, 2019, https​://doi.org/10.1109/
SNAMS​.2019.89318​20.

	105.	 Yan X, Guo J, Lan Y, Cheng X. A biterm topic model for short
texts. In Proceedings of the 22nd international conference on
World Wide Web, pp. 1445–1456. 2013.

	106.	 Merten T, Falis M, Hübner P, Quirchmayr T, Bürsner S, Paech B.
Software feature request detection in issue tracking systems. In

2016 IEEE 24th International Requirements Engineering Confer-
ence (RE), pp. 166–175. IEEE, 2016.

	107.	 Barnaghi P, Wang W, Henson C, Taylor K. Semantics for the
internet of things: early progress and back to the future. Int J
Semant Web Inf Syst (IJSWIS). 2012;8(1):1–21. https​://doi.
org/10.4018/jswis​.20120​10101​.

	108.	 Wolpert DH. The lack of a priori distinctions between learn-
ing algorithms. Neural Comput. 1996;8(7):1341–90. https​://doi.
org/10.1162/neco.1996.8.7.1341.

	109.	 Johannesson P, Perjons E. An introduction to design science.
Berlin: Springer; 2014.

	110.	 Berry DM. Evaluation of tools for hairy requirements engineer-
ing and software engineering tasks. In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference Workshops (REW),
pp. 284–291. IEEE, 2017.

	111.	 Dimitroff G, Georgiev G, Toloşi L, Popov B. Efficient F measure
maximization via weighted maximum likelihood. Mach Learn.
2015;98(3):435–54. https​://doi.org/10.1007/s1099​4-014-5439-y.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.18293/SEKE2015-103
https://doi.org/10.18293/SEKE2015-103
https://doi.org/10.1109/RE.2019.00014
https://doi.org/10.1109/RE.2019.00014
https://doi.org/10.1109/SNAMS.2019.8931820
https://doi.org/10.1109/SNAMS.2019.8931820
https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1007/s10994-014-5439-y

	Data-Driven Requirements Elicitation: A Systematic Literature Review
	Abstract
	Introduction
	Definitions and Scope
	Research Questions

	Methods
	Selection Criteria
	Inclusion Criteria
	Exclusion Criteria

	Data Sources
	Search Strategy
	Study Selection
	Analytical Framework and Data Collection
	Types of Dynamic Data Sources Used for Automated Requirements Elicitation
	Types of Dynamic Data Sources
	Types of Dynamic Data
	Integration of Data Sources
	Relation of Dynamic Data to a Given Organization
	Additional Domain Knowledge that was Used to Elicit System Requirements

	Techniques Used for Automated Requirements Elicitation
	Technique(s) Used for Automation
	AggregationSummarization
	Visualization
	Evaluation Methods

	The Outcomes of Automated Requirements Elicitation
	Expression of the Elicited Requirements
	Intended Degree of Automation
	Additional Requirements Engineering Activity Supported Through Automation

	Quality Assessment
	Data Synthesis

	Results
	General Characteristics of the Selected Studies
	Types of Dynamic Data Sources Used for Requirements Elicitation
	Dynamic Data Sources Used for Automated Requirements Elicitation
	The Specific Types of Dynamic Data Used for Automated Requirements Elicitation
	Relation of Dynamic Data to an Organization of Interest
	Additional Use of Domain Knowledge Used for Requirements Elicitation

	Approaches for Automated Requirements Elicitation
	Approaches Used for Human-Sourced Data
	Techniques Used for Process-Mediated Data
	Techniques Used for Machine-Generated Data
	Evaluation Methods

	The Outcomes of the Automated Requirements Elicitation
	Expression of Final Outcomes Produced by the Automated Part of Requirements Elicitation
	Degree of Intended Automation
	Additional Requirements Engineering Activity Supported Through Automation

	Discussion
	RQ1: What Types of Dynamic Data Are Used for Automated Requirements Elicitation?
	RQ2: What Types of Techniques and Technologies Are Used for Automating Requirements Elicitation?
	Techniques Used for the Automated Requirement Elicitation
	Process-Mediated and Machine-Generated Data Sources
	Evaluation Methods

	RQ3: What Are the Outcomes of Automated Requirements Elicitation?
	Expression of Requirements Elicitation
	Degree of Intended Automation
	Additional Requirements Engineering Activity Supported Through Automation

	Threats to Validity
	Conclusions and Future Work
	References

