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Abstract
Solid-state NMR has become an essential tool for structural characterisation of materials, in particular systems with poor 
crystallinity and structural disorder. In recent years, a surge of interest has been observed for the study of paramagnetic 
systems, in which the interaction between nuclei and unpaired electrons allows to probe the electronic structure and 
properties of materials more directly. However, simultaneously this interaction leads to very broad resonances, which 
are difficult to acquire and interpret. While significant advancements in both NMR instrumentation and methodology 
have paved the way for the study of spin I=1/2 nuclei in these systems, still many issues remain to be resolved for 
routine investigation of quadrupolar nuclei I>1/2. In this Thesis we focus on improving both the excitation of the broad 
resonances and the resolution in the spectra of spin I=1 nuclei. The latter problem is addressed by developing methods 
for separation of the shift and the quadrupolar interactions. We introduce two new methods under static conditions, which 
have the advantage over previous experiments of both suppressing spectral artefacts and exhibiting a broader excitation 
bandwidth. Furthermore, we demonstrate for the first time an approach for separation of the anisotropic parts of the 
shift and quadrupolar interaction under magic-angle spinning. Secondly, to achieve broadband excitation we develop 
a new theoretical formalism for phase-modulated pulse sequences in rotating solids, which are applicable to nuclear 
spins with anisotropic interactions substantially larger than the spinning frequency, under conditions where the radio-
frequency amplitude is smaller than or comparable to the spinning frequency. We apply the framework to the excitation of
double-quantum spectra of 14N and design new pulse schemes with γ-encoded properties. Finally, we employ some of the 
new sequences together with density functional theory calculations to resolve the electronic structure of barium titanium 
oxhydride.
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1
Introduction

At the heart of modern science lies our ability to obtain atomic and molecular level insights
on almost any system. Detailed information on such a small scale has allowed the improve-
ment of functional materials, [1; 2] discovery of new phenomena in physics, [3; 4] furthered
our understanding of living organisms [5; 6] and facilitated novel drug development [7–9].
Frequently, the knowledge of the structure at an atomic level proves to be the key ingredient
for these advancements.

Diffraction methods, such as X-ray crystallography, remain the principal tools for struc-
tural characterization of crystalline materials. However, conventional diffraction techniques
fail when materials lack long-range order. In contrast, solid-state nuclear magnetic resonance
(NMR) is well equipped to study crystalline and noncrystalline materials (e.g., polymers, [10]
protein fibrils, [11; 12] glasses [13; 14]), as well as surface structures, [15; 16] defects and
local distortions [17] in solids. Due to the versatility of NMR and the wide range of inter-
actions available it is unsurprising that NMR offers to examine materials even beyond the
structure and local geometry. The foremost example would be the study of paramagnetic
systems, which has seen considerable interest in recent years as a result of advancements in
NMR methodology and quantum chemical calculations. [18]

The advantage (and disadvantage) of paramagnetic systems manifests from the hyperfine
interaction between the nuclear spin and the unpaired electrons. The interaction can give
crucial insights on the bonding geometry, delocalization/polarization of the spin density, ion
dynamics and particle shape. [19–22] Therefore, solid-state NMR is becoming an attractive
method to investigate exotic electronic states, such as, polarons and topological insulators.
[23; 24] However, the observed resonances in paramagnetic systems are severely broadened
due to the large paramagnetic shift anisotropies and bulk magnetic susceptibility (BMS) ef-
fects, which impede the acquisition and interpretation of the data. In addition, the excited
coherence lifetimes are reduced by the paramagnetic relaxation enhancement, hence low-
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CHAPTER 1. INTRODUCTION

ering the experimental sensitivity. For spin I = 1/2 nuclei most of these issues have been
solved. For instance, fast magic-angle spinning (MAS) in combination with low recycle de-
lays provides considerable improvement in both resolution and sensitivity. [25] Frequency
stepping and the development of new broadband excitation schemes have allowed acquisi-
tion of the broad spectra. [26–28] However, for quadrupolar nuclei, i.e. nuclei with spin
I > 1/2, the presence of the quadrupolar interaction provides an additional broadening of
the resonance. The convolution of the two interactions make the analysis of both the hyper-
fine and the quadrupolar interaction extremely difficult. Furthermore, most of the broadband
schemes applicable for spin I = 1/2 nuclei fail for quadrupolar nuclei under MAS due to the
complicated time-dependency of the spin dynamics.

In the present work, we address some these issues for spin I = 1 nuclei. We begin by ex-
amining how the NMR spectra could be deconvolved by employing methods for separation of
the shift and the quadrupolar interactions. First, we explore NMR methods that can achieve
this result under static conditions and devise two new pulse sequences. Secondly, we investi-
gate similar sequences under MAS and demonstrate the separation of the anisotropic parts of
the two interactions in spinning solids. Afterwards, we focus on the excitation of very large
anisotropic interactions under MAS and provide a new theoretical formalism for developing
such pulse schemes. We apply the new theoretical approach to study the double-quantum
excitation of spin I = 1 nuclei. Finally, we showcase the potential of a few of the sequences
by resolving the electronic structure of an important mixed electron-ion conductor.

The Thesis is structured as follows: in Chapter 2 we overview the basic quantum mechan-
ics concepts necessary to describe solid-state NMR experiments considered in this work. In
addition, we revise the principles of density functional theory (DFT) calculations, which can
aid in the interpretation of NMR data. In Chapter 3, which is based on Paper I, we dis-
cuss NMR methods for separation of the shift and quadrupolar interactions in static solids.
In Chapter 4 we summarise the results of Paper II, in which an experiment for separation
of the shift and quadrupolar interactions under MAS is proposed. In Chapter 5 we explore
low-power excitation of large anisotropic interactions under MAS as presented in Paper III.
Chapter 6 forms the basis of Paper IV, where we combine NMR and DFT to demonstrate how
we can solve problems in materials science by employing the new solid-state NMR methods.
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2
Introduction to nuclear magnetic

resonance

2.1 Origin of nuclear magnetism
In classical electromagnetism the energy E arising from the interaction between a magnetic
moment µµµ and a magnetic field B is given by the scalar product:

E =−µµµ ·B. (2.1)

In quantum mechanics this energy is expressed by the eigenvalues of the corresponding
Hamiltonian Ĥ, which is shown below:

Ĥ =−µ̂̂µ̂µ ·B, (2.2)

where µ̂̂µ̂µ is the magnetic moment operator. Atomic nuclei possess an intrinsic property called
spin, I. If the nuclear spin is non-zero I ̸= 0, the nucleus exhibits a magnetic dipole moment.
The operator that measures the nuclear magnetic moment is described by:

µ̂̂µ̂µ I = γI Î, (2.3)

where Î is the nuclear spin angular moment operator. γI is the gyromagnetic ratio of the spe-
cific nucleus. The gyromagnetic ratio can take both positive and negative values depending
on the nuclear configuration of protons and neutrons. We note that the operator is defined
in terms of “frequency” units. We will adopt this notation for Hamiltonians and propagators
throughout the Thesis and Papers I-III to facilitate theoretical description of spin dynamics.

3



CHAPTER 2. INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE

Typically in nuclear magnetic resonance (NMR) spectrometers a homogeneous magnetic
field is applied along a single direction, which by convention is denoted as the z axis in the
laboratory frame. The interaction of the nuclear magnetic moment with an external magnetic
field B0 gives the nuclear Zeeman interaction Hamiltonian ĤIZ:

ĤIZ =−γIB0 Îz = ω0 Îz, (2.4)

where Îa is the operator representing the component of the spin along axis a. ω0 =−γIB0 is
the Larmor frequency. Hence nuclei with positive gyromagnetic ratios, such as 1H and 13C
give negative Larmor frequencies, whereas nuclei with negative gyromagnetic ratios (15N)
have a positive Larmor frequency. The nuclear spin angular momentum as any quantity in
quantum mechanics, takes only discrete values. A nucleus of spin quantum number I has
2I +1 states labelled as |I,MI⟩, where MI is the magnetic quantum number taking values of
−I to +I in integer steps. The definition of the states can be written more compactly as |MI⟩,
which are eigenfunctions of Îz with eigenvalues MI , and will be used throughout the Thesis
as well as in Papers I-III. Thus, these states are also eigenstates of the Zeeman Hamiltonian
with energy E(MI):

ĤIZ|I,MI⟩= E(MI)|I,MI⟩= MIω0|I,MI⟩ (2.5)

However, in the absence of an magnetic field the states are 2I +1-fold degenerate. In NMR
we measure the frequency associated with nuclear spin transitions so in order to lift the de-
generacy we apply an external magnetic field. From Eq.2.5 we see that the energy between
two adjacent energy levels is related to the Larmor frequency ω0.

2.2 Basic theory of nuclear magnetic resonance

2.2.1 The density operator

Conventional NMR experiments are performed on a large number of interacting spins. How-
ever, the description is simplified by approximating the system as a collection of Nens inde-
pendent, identical smaller spin systems called an ensemble. A state k of the ensemble can be
expressed as a linear combination of eigenfunctions of the Zeeman Hamiltonian |r⟩ as:

|ψk⟩=
N

∑
r=1

ck
r |r⟩, (2.6)

where ck
r are normalized coefficients (∑r |ck

r |2 = 1) giving the amplitude for a contribution
from |r⟩ to the spin system |ψk⟩. In principle, to compute a macroscopic quantity, such as
the nuclear magnetization, it is possible to evaluate the expectation value of each member of
the ensemble and sum the results. However, this process proves to be tedious due to the large
number of components of the ensemble. An alternative approach is to employ the density
operator ρ̂ , which describes the quantum state of the entire ensemble and is given by:

ρ̂ = |ψk⟩⟨ψk|. (2.7)
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The overbar denotes an average over the entire ensemble. Using the density operator approach
the macroscopic observable quantity (Q̂macro) of operator Q̂ is expressed as:

Qmacro = NensTr(ρ̂Q̂), (2.8)

where Tr(Â) denotes the trace of an operator Â, i.e. the sum of the diagonal elements. So we
can write the average contribution of each ensemble member to the macroscopic value as:

⟨Q⟩= Tr(ρ̂Q̂). (2.9)

In NMR the relevant macroscopic quantity is the magnetization, however it proves to be
convenient to use the spin angular momentum as the microscopic quantity, which requires
additional constants of proportionality in Eq.2.9.

The response of the spin system to any pulse sequence can be described using the density
operator formalism. To follow the evolution of the spin system we need to know the starting
condition of the system and a law predicting the evolution. Usually at the beginning of the
sequence the density operator ρ̂0 is at thermal equilibrium. In the presence of a strong mag-
netic field in the high-temperature limit ( ℏγIB0

kBT ≪ 1) the equilibrium density operator can be
derived from the Boltzmann distribution [29]:

ρ̂0 =
Ê +βℏγIB0 Îz

2I +1
, (2.10)

where β is related to the Boltzmann constant kB and temperature as β = 1/kBT . ℏ is the
reduced Plancks constant. The first term Ê is the identity operator, which commutes with
all other spin operators and does not produce any observable signal, hence is ignored. In the
present discussion we are not interested in the absolute size of the signal, and so the prefactor
βℏγIB0
2I+1 of the second term is omitted to facilitate the analysis of the pulse sequences, hence

the equilibrium density operator is ρ̂0 = Îz.

2.2.2 Basis operators

As discussed earlier the nuclear spin wavefunction of a single spin I can be expressed as a
linear combination of 2I + 1 basis functions. It is convenient to choose the basis functions
as the eigenfunctions of the Zeeman Hamiltonian |I,MI⟩. Furthermore, we can facilitate the
description of the spin dynamics by expressing the density operator as a superposition of
(2I +1)2 basis operators {B̂i}, which are chosen to be orthogonal:

(B̂i|B̂ j) = Tr(B̂†
i B̂ j) = Nδi j, (2.11)

where N is a normalization factor and δi j corresponds to the Kronecker delta.
Here we review the different operator bases, which we will find useful for expressing

both the interaction Hamiltonians and the density operator throughout the Thesis and Papers
I-III. The single-element operator basis comprises operators |M1⟩⟨M2|. |M1⟩ are Zeeman
eigenfunctions as discussed earlier. Each operator in the Zeeman function basis represents a

5



CHAPTER 2. INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE

single-element of the density matrix, thus have been named single-element operators. Each
operator is associated with an order p, where p = M1 −M2. As a result the operators can be
separated into three groups with p = 0, p > 0 and p < 0, as shown below:

Î(M)
p =|M⟩⟨M|, (2.12)

Î(M1,M2)
+ =|M1⟩⟨M2|, (2.13)

Î(M1,M2)
− =|M2⟩⟨M1|. (2.14)

The operators I(M1,M2)
± indicate coherences between states |M1⟩ and |M2⟩ with M1 > M2, and

I(M)
p represents the population of the state M.

The single-element operators are associated with the frequently used Cartesian basis op-
erators (Ê, Îz, Îx, Îy) by the following equations:

Ê =
+I

∑
M=−I

Î(M)
p , (2.15)

Îz =
+I

∑
M=−I

MÎ(M)
p , (2.16)

Îx =
+I

∑
M=−I

1
2

√
I(I +1)−M(M+1)

(
Î(M+1,M)
+ + Î(M+1,M)

−

)
, (2.17)

Îy =
+I

∑
M=−I

1
2i

√
I(I +1)−M(M+1)

(
Î(M+1,M)
+ − Î(M+1,M)

−

)
. (2.18)

Another convenient basis that will be used throughout this work is the set of fictitious
spin-1/2 operators [30] given by:

Î(M1,M2)
x =

1
2

(
Î(M1,M2)
+ + Î(M1,M2)

−

)
, (2.19)

Î(M1,M2)
y =

1
2i

(
Î(M1,M2)
+ − Î(M1,M2)

−

)
, (2.20)

Î(M1,M2)
z =

1
2

(
Î(M1)
p − Î(M2)

p

)
. (2.21)

Each operator corresponds to the x-, y- and z-components of the spin within the respective
operator subspace (M1,M2).

Finally, we define the basis of the irreducible spherical tensor operators (ISTO) T̂lm of
rank l and order m. The complete basis of a single spin I consist of operators with ranks l = 0
to 2I, and orders m =−l to l in integers steps. [31]

2.2.3 The spin Hamiltonian

The dynamics of any quantum system is governed by the Schrödinger equation and the appro-
priate Hamiltonian. Though there are various types of spin interactions, each of them can be

6



CHAPTER 2. INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE

described as a coupling between two vectors via a rank-2 Cartesian tensor, which holds all the
information about the spatial properties of the interaction. Thus, for an arbitrary interaction
Λ we can write the interaction Hamiltonian as follows:

Ĥ(Λ) = Îi ·ω(Λ) · Î j, (2.22)

where Îi represents a spin vector or a vector field, Î j is the same or different spin vector to Îi

and ω(Λ) is a rank-2 Cartesian tensor in frequency units, which is given by a 3×3 matrix. This
tensor represents both size and orientation dependence of the interaction. The spin interaction
tensors are diagonal in a particular coordinate system, which is called the principal axis frame
(PAF) and the corresponding eigenvalues are the principal values of the tensor.

Often it is more convenient to express the field, spin, and spatial parts of the interaction
Hamiltonian in an irreducible spherical tensor representation. In this representation the spin
Hamiltonian of an interaction Λ is expressed as a scalar product of two irreducible spheri-
cal tensors, corresponding to a spatial and a spin angular momentum part. The ISTO (T̂lm)
describing the spin part have been introduced in the Section 2.2.2. We note that the Carte-
sian tensor ω(Λ) contains nine real components and can be decomposed into three irreducible
spherical tensors, a rank-0 tensor equal to 1

3 Tr(ω(Λ)), an assymetric rank-1 tensor and a sym-
metric rank-2 tensor. Thus, the Hamiltonian of interaction Λ in the irreducible spherical
tensor basis is given by:

Ĥ(Λ) =
2

∑
l=0

+l

∑
m=−l

(−1)m
ω

(Λ)
lm T̂ (Λ)

l−m. (2.23)

For many NMR interactions the asymmetric part of the tensor ω(Λ) is either zero or it does not
contribute to the signal in the high-field approximation. Therefore, usually only the rank-0
and the symmetric rank-2 part need to be considered.

In that case the tensor ω(Λ) is diagonal in the PAF of the symmetric part of the tensor
(ω(Λ)sym). The tensor components can be ordered according to the Haeberlen convention
|ω̃(Λ)sym

zz | ≥ |ω̃(Λ)sym
xx | ≥ |ω̃(Λ)sym

yy |. [32] The rank-2 spherical tensor components are given
by:

ω̃
(Λ)
20 =

√
3
2

∆ω
(Λ), (2.24)

ω̃
(Λ)
2±1 = 0, (2.25)

ω̃
(Λ)
2±2 =−1

2
ηΛ∆ω

(Λ). (2.26)

Here tilde denotes that the tensor components are evaluated in the PAF of the symmetric part
of ω(Λ). Symmetric anisotropy and assymetry are given by:

∆ω
(Λ) = ω̃

(Λ)sym
zz , (2.27)

ηΛ =
ω̃

(Λ)sym
yy − ω̃

(Λ)sym
xx

∆ω(Λ)
. (2.28)

7
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In general, NMR experiments are carried out in the high-field limit, in which the mag-
nitude of the Zeeman interaction is much greater than any of the other spin interactions.
Therefore, the form of the Hamiltonian can be simplified by treating the spin interactions as
a perturbation to the Zeeman Hamiltonian. The perturbation expansion is evaluated by trans-
forming the interaction Hamiltonian into the rotating frame (the reference frame rotating at
the transmitter frequency), followed by an average Hamiltonian expansion according to the
Baker-Campbell-Haussdorff expansion. [33; 34] Typically it is sufficient to truncate the ex-
pansion to first-order, however, for the quadrupolar interaction the second-order term is often
required to describe the spin dynamics correctly. As a result, in the high-field (or secular)
approximation only spin operators T̂l0 with order m = 0 are retained and so the Hamiltonian
of the interaction Λ is written as:

Ĥ(Λ) =
2

∑
l=0

ω
(Λ)
l0 T̂ (Λ)

l0 . (2.29)

In Section 2.3 we provide concrete interaction Hamiltonians of the relevant spin interactions.

2.2.4 Reference frame transformations

The irreducible spherical tensor can be expressed in different frames of reference. It proves
to be convenient to express the spatial part in the principal axis frame (PAF) of the tensor. We
note that for some NMR interactions different spatial tensors of the same rank may couple
to spin tensors of different spin ranks. Thus, we define l as the space rank and λ as the spin
rank. Furthermore, the order of the spatial part m and spin part µ take values of m = −l to
+l and µ =−λ to +λ in integer steps, respectively. In the high-field limit we can write the
Hamiltonian of interaction Λ as:

Ĥ(Λ) = ∑
l,λ

ω
(Λ)
l0,λ0T̂ (Λ)

λ0 . (2.30)

The coefficient ω
(Λ)
l0,λ0 represents spatial part of the interaction Λ, which is related to the

components in the PAF via a rotation between the PAF and laboratory frame:

ω
(Λ)
l0,λ0 =

+l

∑
m=−l

ω̃
(Λ)
lm,λ0D(l)

m0(αPL,βPL,γPL), (2.31)

where D(l)
m′m(α,β ,γ) are the Wigner rotation matrix elements of rank l, [35] and the Euler

angles (αPL,βPL,γPL) specifying the orientation of PAF in the laboratory frame. The Wigner
rotation matrix elements can be expressed in terms of the reduced matrix elements dl

m′m by
dividing the contribution of each Euler angle into a separate factor:

D(l)
m′m(α,β ,γ) = exp

(
−im′

α
)
d(l)

m′m(β )exp(−imγ). (2.32)

We can notice that as a consequence of the high-field approximation the interaction is inde-
pendent of the Euler angle γPL.
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In solid-state NMR four reference frames are commonly used the laboratory frame (L),
the rotor frame (R), crystal frame (C) and the PAF (P). The relation between them can be
expressed with Wigner rotation matrix elements in a similar manner as shown in Eq.2.31. In
Paper I we define the interaction Hamiltonians using the PAF, crystal and laboratory frames,
since under static conditions the rotor frame can be ignored.

In Paper II and III we employ magic-angle spinning (MAS) so the rotor frame becomes
crucial for the description of the Hamiltonians. However, to facilitate the discussion we re-
move the rotation to the crystal frame, which effectively means that we combine the PAF with
the crystal frame orientation. According to this notation we write the Hamiltonian for a sum
of different interactions as:

Ĥ0(t) = ∑
Λ

Ĥ(Λ)
0 (t) = ∑

Λ,l,λ
Ω

(Λ)
l0,λ0(t;γPR)t̂

(Λ)
λ0 , (2.33)

where Ĥ(Λ)
0 (t) is the individual interaction Hamiltonian. The t̂(Λ)

λ0 are reduced spin tensor

operators [36] of rank λ related to ISTO as t̂(Λ)00 = T̂ (Λ)
00 , t̂(Λ)10 = T̂ (Λ)

10 , t̂(Λ)20 =
√

2
3 T̂ (Λ)

20 and

t̂(Λ)30 =
√

10
3 T̂ (Λ)

30 . We utilize the reduced spin tensor operators to avoid awkward numerical
factors in further equations. Ω

(Λ)
l0,λ0(t;γPR) is the orientational- and time-dependent frequency

shift of the interaction. The orientational dependence is described by a set of Euler angles
ΩPR = (αPR,βPR,γPR) relating the PAF to the rotor frame and a set of Euler angles ΩRL(t) =
(ωrt,βRL,0), which specify the orientation of the rotor frame with respect to the laboratory
frame. Since we are interested in looking at the Hamiltonian under spinning conditions the
Euler angle αRL is time-dependent and proportional to the spinning frequency ωr. The Euler
angle βRL is chosen so that the reduced Wigner element d(2)

00 would be zero, hence any time-
independent terms arising from rank-2 tensors would be removed. This “magic-angle” is
given by arctan

(√
2
)

. Thus, the spatial component is given by:

Ω
(Λ)
l0,λ0(t;γPR) =

+l

∑
m=−l

ω
(Λ)
c,l0,λ0,m(γPR)exp(−imωrt), (2.34)

where ω
(Λ)
c,l0,λ0,m(γPR) are time-independent coefficients expressed as:

ω
(Λ)
c,l0,λ0,m(γPR) =

+l

∑
m′=−l

ω̃
(Λ)
lm′,λ0D(l)

m′m(αPR,βPR,γPR)d
(l)
m0(βRL). (2.35)

Furthermore, the description of spin dynamics under MAS can be facilitated by defining a
carousel denoted by c for the coefficient ω

(Λ)
c,l0,λ0,m(γPR) that comprises all crystallites, which

occupy the same orientations during the sample rotation, but at different times. [37] In prac-
tice, the crystallites within a certain carousel are those with same αPR and βPR, but different
γPR.
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2.2.5 Propagators

We are now in a position to discuss the impact of a pulse sequence on a nuclear spin system,
which is described by the time evolution of the density operator ρ̂(t). The coherent evolution
of ρ̂(t) is dictated by the Liouville–von Neumann equation:

dρ̂(t)
dt

=−i[Ĥ(t), ρ̂(t)]. (2.36)

We note that any incoherent processes, such as relaxation are not considered. The general so-
lution to the Liouville-von Neumann equation is produced by sandwiching the initial density
operator between the forward and backward system propagator:

ρ̂(t) = Û(t,0)ρ̂(0)Û(t,0)−1. (2.37)

Here Û(t,0) is the propagator, corresponding to the Hamiltonian Ĥ(t). Depending on the
type of Hamiltonian Ĥ(t) the propagator can be separated into three groups. We begin with
the simplest case, when the Hamiltonian Ĥ is time-independent. So the propagator Û(t1, t2)
between some arbitrary time points t1 and t2 is given by:

Û(t2, t1) = exp
[
−iĤ(t2 − t1)

]
. (2.38)

We encounter this situation in solution and static solid-state NMR during periods of free
precession. This can be extended to a pulse sequence with piecewise time-independence,
hence the total propagator of the sequence would be given by the product of the individual
propagators for each time-independent process. We find that the transformation of density
operator ρ̂(t1) to ρ̂(t2) via propagator Û(t2, t1) with a corresponding Hamiltonian Ĥ is more
succinctly illustrated as follows:

ρ̂(t1)
Ĥ(t2−t1)−−−−−→ ρ̂(t2) (2.39)

We employ these strategies in Paper I to describe pulse sequences under static conditions.
Next we consider when the Hamiltonian self commutes at any arbitrary time, i.e. satisfies[

Ĥ(t1), Ĥ(t2)
]
= 0 for all times t1 and t2. In the present case, the propagator is given by:

Û(t2, t1) = exp
[
−i
∫ t2

t1
Ĥ(t)dt

]
. (2.40)

This represents the situation in solid-state MAS NMR of an isolated single spin. This form
of the propagator is important in Papers II and III.

Finally, we discuss the most general case, in which the Hamiltonian is time-dependent
and does not self commute for any arbitrary time, i.e.

[
Ĥ(t1), Ĥ(t2)

]
= 0 is not satisfied for

all times t1 and t2. The propagator describing the evolution between t1 and t2 is expressed as:

Û(t2, t1) = T̂ exp
[
−i
∫ t2

t1
Ĥ(t)dt

]
, (2.41)
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where T̂ is the Dyson time-ordering operator, which arranges the sequence of propagators
in correct order. Although this is the most general solution, it is not analytically useful and
approximate solutions need to be considered. We review one such approach in detail in Sec-
tion 2.2.6. These strategies are employed in Paper III to describe phase-modulated low-power
sequences under MAS.

Here we continue by demonstrating the evolution of a single-spin under MAS subject to
several interactions Λ. We consider an isolated single spin or single spin subject to dipolar
interactions only under the weak coupling regime, hence the Hamiltonian in Eq.2.33 self
commutes. According to the second case, the propagator describing the evolution between
time points ta and tb is given by:

Û0(tb, ta;γPR) = exp
(
−i
∫ tb

ta
Ĥ0(t)dt

)
= ∏

Λ,l,λ
exp
(
−iΦ(Λ)

l0,λ0(tb, ta;γPR)t̂
(Λ)
λ0

)
, (2.42)

where Φ
(Λ)
l0,λ0(tb, ta;γPR) is the integrated phase, which is accrued during the evolution of the

density operator between time points ta and tb and is expressed as:

Φ
(Λ)
l0,λ0(tb, ta;γPR) =

∫ tb

ta
Ω

(Λ)
l0,λ0(t;γPR)dt. (2.43)

Assuming our initial density operator consists of a single-element operator |Mi⟩⟨M j| then
the evolution is described by:

Û0(tb, ta;γPR)|Mi⟩⟨M j|Û0(tb, ta;γPR)
−1 =

exp

(
−i ∑

Λ,l,λ
Φ

(Λ)
l0,λ0(tb, ta;γPR)Ξ

(Λ)
λ0,Mi,M j

)
|Mi⟩⟨M j|. (2.44)

Here Ξ
(Λ)
λ0,Mi,M j

defines the symmetry order of rank λ of the spin transition from state |M j⟩ to
|Mi⟩, which is given by:

Ξ
(Λ)
λ0,Mi,M j

= ⟨Mi|t̂(Λ)λ0 |Mi⟩−⟨M j|t̂(Λ)λ0 |M j⟩. (2.45)

We can notice that the acquired phase Eq.2.44 is a sum of the individual phases arising from
each interaction Hamiltonian. If we would detect and Fourier transform the “signal” a spin-
ning sideband manifold would emerge. We can show this explicitly by separating the phase
factor in Eq.2.44 into a non-periodic part due to the evolution of the time-independent fre-
quency components, and periodic part that we expand as a Fourier series:

exp

(
−i ∑

Λ,l,λ
Φ

(Λ)
l0,λ0(t,0;γPR)Ξ

(Λ)
λ0,Mi,M j

)
= exp

(
−i ∑

Λ(ti),l,λ
ω

(Λ)
c,l0,λ0,0Ξ

(Λ)
λ0,Mi,M j

t

)

×
+∞

∑
µ=−∞

A(µ)
c,MiM j

(γPR)exp
(
−iφ (µ)

c,Mi,M j
(γPR)

)
exp(−iµωrt). (2.46)
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Here A(µ)
c,MiM j

(γPR)exp
(
−iφ (µ)

c,MiM j
(γPR)

)
are the complex Fourier coefficients expressed as:

A(µ)
c,MiM j

(γPR)exp
(
−iφ (µ)

c,MiM j
(γPR)

)
=

1
τr

∫
τr

0
exp

(
−i ∑

Λ(td),l,λ
Φ

(Λ)
l0,λ0(t,0;γPR)Ξ

(Λ)
λ0,MiM j

)
exp(iµωrt)dt. (2.47)

The labels Λ(ti) and Λ(td) represent the time-independent and -dependent interactions, re-
spectively. The Fourier coefficients are composed of amplitudes and phases that are related
to the symmetry order (Ξ(Λ)

λ0,Mi,M j
) and crystallite orientation. The Fourier series represents

the spinning-sideband manifold of the anisotropic interactions. The formal description here,
in principle, has shown the origin of the formation of sidebands in spinning solids. We
note that the amplitude A(µ)

c,MiM j
(γPR) is the intensity of the µth-order sideband and the phase

φ
(µ)
c,MiM j

(γPR) is the sideband phase.
We find it useful to employ symmetry properties first reported by Levitt [37], which show

(see Paper III for more detail) that the sideband amplitude is independent of γPR, while the
sideband phases have a well-defined γPR dependence:

A(µ)
c,MiM j

(γPR) = A(µ)
c,MiM j

(0)≡ A(µ)
c,MiM j

, (2.48)

φ
(µ)
c,MiM j

(γPR) = φ
(µ)
c,MiM j

(0)−Φ
(Λ)
l0,λ0(γPR/ωr,0;0)+µγPR. (2.49)

Therefore, the Fourier series coefficient amplitudes depend on αPR and βPR, but not on γPR

and henceforth we define the µth order sideband amplitude as A(µ)
c,MiM j

.

2.2.6 Average Hamiltonian theory

As discussed in Section 2.2.5 a general Hamiltonian does not self commute at different times,
and so the propagator takes a form that is not practically applicable for analyzing spin dy-
namics. However, strategies that yield approximate solutions are available, such as, nu-
merical simulations [38–40], Floquet theory [41–45] or average Hamiltonian theory (AHT)
[33; 46; 47]. AHT and Floquet theory are most commonly employed to describe periodic
Hamiltonians and cyclic propagators. However, here we only focus on AHT, in which the
propagator is expressed as a function of a time-independent average Hamiltonian:

Û(tb, ta) = exp
(
−iHτab

)
. (2.50)

Here H is the average Hamiltonian and τab is the time step tb − ta. The propagator describes
the evolution over one complete period of the Hamiltonian, hence AHT is restricted to the
observation of the density operator to time points that are integer multiples of the period. The
average Hamiltonian (H) can be expanded as a Magnus series [48]:

H =
∞

∑
k=1

H(k)
, (2.51)
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where H(k) is the kth order average Hamiltonian. The first three terms have the following
integral expressions:

H(1)
=

1
τab

∫ tb

ta
Ĥ(t)dt, (2.52)

H(2)
=

1
2iτab

∫ tb

ta
dt
∫ t

ta
dt ′
[
Ĥ(t), Ĥ(t ′)

]
, (2.53)

H(3)
=

−1
6τab

∫ tb

ta
dt
∫ t

ta
dt ′
∫ t ′

ta
dt ′′
{[

Ĥ(t)
[
Ĥ(t ′), Ĥ(t ′′)

]]
+
[
Ĥ(t ′′)

[
Ĥ(t ′), Ĥ(t)

]]}
. (2.54)

The Hamiltonians do not describe the exact spin dynamics during the time period τab, but
allow the prediction of the average dynamics over this time interval. We can notice that
the higher order average Hamiltonians become increasingly more complex, so the series is
usually truncated with the first few orders. However, to still have an accurate description of
the spin dynamics we need to ensure that the Magnus series converges rapidly for any time
ta ≤ t ≤ tb. This condition is satisfied if the norm of the Hamiltonian

(
||Ĥ(t)||

)
is sufficiently

small so that ||Ĥ(t)||τab ≪ 1.
The convergence of the Magnus expansion can be improved by transforming the total

Hamiltonian (Ĥ(t)) into a suitable interaction frame. In Paper III the Hamiltonian is trans-
formed into the interaction frame of the large anisotropic interaction(s) and AHT is applied
to describe the spin dynamics.

2.2.7 Interaction-frame Hamiltonian

As discussed in Section 2.2.6 the form of the propagator is often rather complicated and so
approximate solutions are found using AHT. However, in order to apply AHT successfully
we need to transform into an interaction frame, in which the Magnus series would converge
quickly. Consider a Hamiltonian of the system with a dominant contribution Ĥ0(t) and a
small contribution Ĥ1(t):

Ĥ(t) = Ĥ0(t)+ Ĥ1(t). (2.55)

If we choose Ĥ0(t) so that the corresponding propagator Û0(t) has an exact solution, we can
transform the small interaction into the frame of the dominant interaction as shown below:

H̃1(t) = Û0(t)−1Ĥ1(t)Û0(t)+ i
(

d
dt

Û0(t)−1
)

Û0(t) (2.56)

The Hamiltonian H̃1(t) represents the small interaction as viewed from the coordination
frame of the dominant interaction. As a result the norm of the Hamiltonian ||H̃1(t)|| has
been decreased and the convergence of the Magnus series would be improved.

The most common interaction frame in NMR is the rotating-frame (not to be confused
with the rotor frame), in which the observer follows the rotation of the resonant part of the
applied radio-frequency field.
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2.3 Interactions in solid-state NMR
So far we have described the interactions in a very general form, so in this Section we review
in more detail the most relevant interactions for present work. Usually NMR interactions are
grouped as internal and external. External interactions are referred to as perturbations of the
spin system arising from the instrument, whereas internal perturbations originate from the
sample itself. The Zeeman interaction reviewed in Section 2.1 is an example of an external
interaction, since it originates from the interaction of the nuclear magnetic moment with an
external magnetic field. In this Section we will first review the nuclear spin interaction with
radio-frequency (RF) fields, followed by an account of the most essential internal interactions
to the present work.

2.3.1 Interaction with Radio-frequency pulses

RF pulse with constant amplitude and phase. The nuclear spin interacts with the magnetic
field produced by a RF pulse as shown below:

ĤRF =−γiÎi ·BRF(t). (2.57)

Typically RF pulses are applied in the transverse plane (the xy-plane) and so the time-
dependent magnetic field of the pulse is given by:

BRF(t) = 2B1 cos(ωreft +φp)ex, (2.58)

where 2B1 and φp are the magnetic field amplitude and phase of the RF pulse, respectively.
We note that the magnetic field produced by the RF pulse consists of two components a
resonant and non-resonant. Transformation of the Hamiltonian into the interaction frame of
the resonant component (and ignoring the non-resonant part) gives:

ĤRF = ωRFRz(φp)ÎxRz(φp)
−1, (2.59)

where ωRF is nutation frequency or more often we refer to it as the RF field amplitude. Ra(θ)
is the rotation operator about a axis through angle θ .

Any nuclear spin components that are not parallel to the applied RF field will nutate about
the RF field. Employing the density operator formalism we can illustrate an excitation pulse
as follows:

Îz
π/2Îx−−−→−Îy, (2.60)

where the phase of the pulse is chosen to be 0, i.e. the magnetic field component of the RF
pulse is along the x-axis by convention. While π/2 represents the flip angle βp = ωRFτp,
where τp is the pulse length.

The constant phase and amplitude pulses reviewed here are simple to implement exper-
imentally and straightforward for analysing spin dynamics. However, in practice instrument
limitations, such as RF inhomogeneity, give rise to a distribution of RF field amplitudes (and
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phases) across the sample, thus lead to a distribution of flips angles. [49] Furthermore, the
excitation bandwidth (the span of frequencies that can be efficiently excited) of a pulse is in-
versely proportional to the pulse length, so longer pulses exhibit poorer excitation bandwidth.
These effects can hinder the acquisition of intact NMR spectra, particularly when the nuclear
spin systems we wish to study are subject to large anisotropic interactions.
RF pulse with time-dependent amplitude and phase. Improvement in the excitation band-
width and response to RF inhomogeneity have been obtained by employing short high-power
adiabatic pulses (SHAPs) . [50; 51] The basic principle behind adiabatic pulses is to lock the
spin magnetization to an effective field (Beff) and move the effective field so that population
inversion or a specific change of coherences is achieved. The Hamiltonian of an adiabatic
pulse is given by:

Ĥ1(t) = ω1(t)R̂z(φp(t))ÎxR̂z(φp(t))−1, (2.61)

where ω1(t) is the time-dependent RF field amplitude and φp(t) represents the time-
dependent phase. To describe the effect of an adiabatic pulse on a spin system we would
need to first transform the total Hamiltonian into the interaction representation of the RF
phase, followed by a transformation into the first-adiabatic frame. [51] We have explained in
detail this process in Paper I, here we only quote the resulting propagator:

ÛSHAP = Rz(φmax)Ry(π)exp(−iξ1Iz)exp

(
−iξ2

√
2
3

T̂20

)
R−1

z (φmax). (2.62)

In the derivation we have assumed that we have a single spin subject to the shift and first-order
quadrupolar interactions. The phase φmax = φp(0) = φp(τp) is the maximum phase value of
the adiabatic pulse, τp is the pulse length, ξ1 and ξ2 are the phases acquired due to the shift
or first-order quadrupolar interaction, respectively.

2.3.2 The chemical shielding interaction

The nuclear Zeeman Hamiltonian provides a correct description of the nuclear spin interac-
tion with an external magnetic field of a bare nucleus. However, it is seldom that we study
such systems, usually the nuclei are surrounded by electrons. In the presence of the magnetic
field the electron motion induces a local magnetic field, which usually opposes the external
magnetic field, thus shielding the nucleus. This is the so-called diamagnetic contribution of
the shielding σσσdia. Moreover, the external magnetic field also distorts the electronic ground
state by mixing in certain excited electronic states. The excited states provide a paramagnetic
contribution to the shielding tensor σσσpara. [52] Thus, the chemical shielding interaction is at
the intersection between internal and external interactions. The general form of the chemical
shielding Hamiltonian is given by:

ĤIC = γIB0 ···σσσ · Î, (2.63)

where σσσ =σσσdia+σσσpara is the chemical shielding tensor. In diamagnetic systems, i.e. systems
without unpaired electrons, this chemical shielding tensor completely describes the shielding
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experienced by a nucleus and it has been denoted by Pennanen and Vaara as the orbital con-
tribution σσσorb. [53] However, in paramagnetic systems we also need to take into account con-
tributions due to the unpaired electrons (σσσS). Thus, the shielding for any system is described
by the sum of the orbital term and the contribution arising from the unpaired electrons:

σσσ =σσσ
orb +σσσ

S. (2.64)

We describe the shielding interaction with unpaired electrons in more detail in Section 2.3.4.
We can transform the Hamiltonian in Eq.2.63 into the rotating frame and treat it as a

perturbation to the Zeeman Hamiltonian, for which the first-order term is given by:

Ĥ(1)
CS =−ω0

[
−
√

1
3

σ00 +

√
2
3

σ20

]
Îz. (2.65)

We notice that the chemical shielding tensor depends on the terms of spherical rank-0 and
rank-2. The antisymmetric part of the tensor does not contribute to the observable signal,
because the spin operators with rank-1 and order-0 are zero. The rank-0 term can be simpli-
fied and is referred to as the isotropic shielding σ00 = −

√
3σiso. In experimental NMR we

measure the chemical shift tensor δδδ instead of the shielding. The shielding tensor and shift
are related to each other via an isotropic shielding of a reference system as shown below:

δδδ = σ
ref
iso1−σσσ . (2.66)

Since the two are related by a constant factor it is often that the definitions are used inter-
changeably. Throughout the Thesis and the Papers we will refer to it as the (chemical) shift
interaction.

The shift Hamiltonian in the high-field approximation is given by:

ĤS = Ω(ΩSC,ΩCL)Îz. (2.67)

Here Ω(ΩSC,ΩCL) is the resonance frequency, which is expressed as:

Ω(ΩSC,ΩCL) = ω0δiso +

√
2
3

ω0

+2

∑
m′=−2

+2

∑
m=−2

δ̃2m′D(2)
m′m(ΩSC)D

(2)
m0(ΩCL), (2.68)

where ΩSC = (αSC,βSC,γSC) and ΩCL = (αCL,βCL,γCL) are sets of Euler angles relating the
principal axis frame (PAF) of the shift tensor to the crystal frame, and the crystal frame to the
laboratory frame, respectively. δ̃2m′ are the rank-2 irreducible spherical tensor components
of the shift tensor and are given by:

δ̃20 =

√
3
2

∆δ , (2.69)

δ̃2±1 = 0, (2.70)

δ̃2±2 =−1
2

ηS∆δ , (2.71)
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where ∆δ and ηS are the shift anisotropy and the asymmetry parameter of the shift tensor,
respectively. According to Haeberlen convention (|δ̃zz −δiso|⩾ |δ̃xx −δiso|⩾ |δ̃yy −δiso|) the
shift parameters (δiso, ∆δ , η) are defined as follows [32]:

δiso =
δ̃xx + δ̃yy + δ̃zz

3
, (2.72)

∆δ = δ̃zz −δiso, (2.73)

ηS =
δ̃yy − δ̃xx

∆δ
, (2.74)

where δ̃zz, δ̃yy, δ̃xx are the Cartesian tensor principal components of the shift tensor.
Finally, we discuss the symmetry order of the chemical shift interaction (or in general

the shift interaction). As shown in Section 2.2.5 the evolution of an interaction depends
on the symmetry order, which takes a specific value for each interaction and the nuclear spin
transition. For the shift interaction the spin rank λ is 1, so according to Eq.2.45 for a transition
from state |M j⟩ to state |Mi⟩ symmetry order is given by:

p = Mi −M j. (2.75)

This is equivalent to the definition of the order p in Section 2.2.2. In Paper I and II we
heavily use the symmetry order to facilitate the analysis of the refocussing properties of the
pulse sequences.

2.3.3 The quadrupolar interaction

For nuclei with spin I > 1/2 the charge distribution of the nucleus is not spherical, meaning
that the nucleus possesses a nuclear quadrupolar moment. The quadrupolar interaction arises
due to the coupling between the nuclear quadrupole moment and the surrounding electric-
field gradient (EFG). The symmetric and traceless EFG tensor is calculated as the second
derivative of the electrostatic potential with respect to position. In the PAF, the EFG tensor
V principal components are arranged according to the Haeberlen convention |Ṽzz| ⩾ |Ṽxx| ⩾
|Ṽyy|. [32] The EFG anisotropy and assymmetry are related to the Cartesian components as
follows:

eq = Ṽzz, (2.76)

ηQ =
Ṽyy −Ṽxx

Ṽzz
. (2.77)

The general form of the Hamiltonian of the quadrupolar interaction is given by:

ĤIQ =
eQ

2I(2I −1)h
Î ·V · Î. (2.78)

Here, eQ is the nuclear quadrupolar moment. We define the quadrupole splitting frequency
as:

ω
PAF
Q =

3πCQ

2I(2I −1)
, (2.79)
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where CQ is the quadrupolar coupling constant given by CQ = e2qQ/h.
As described earlier for the chemical shielding we treat the quadrupolar interaction as a

perturbation to the Zeeman interaction. Thus, in the high-field approximation the first-order
quadrupolar interaction Hamiltonian is expressed as [29; 46]:

Ĥ(1)
Q = ωQ(ΩQC,ΩCL)

[
Î2
z −

1
3

I(I +1)Ê
]
, (2.80)

where ωQ(ΩQC,ΩCL) is the quadrupolar splitting frequency for a nuclear spin, for which the
PAF of the EFG tensor has an orientation in the crystal frame defined by the Euler angles
ΩQC = (αQC,βQC,γQC). Furthermore, the orientation of each crystallite is related to the
laboratory frame by a set of Euler angles ΩCL = (αCL,βCL,γCL). Thus, the quadrupolar
splitting frequency is given by:

ωQ(ΩSC,ΩCL) =

√
2
3

ωPAF
Q

eq

+2

∑
m′=−2

+2

∑
m=−2

Ṽ2m′D(2)
m′m(ΩQC)D

(2)
m0(ΩCL), (2.81)

where Ṽ2m′ are spherical tensor components of the EFG tensor and are given by:

Ṽ20 =

√
3
2

eq, (2.82)

Ṽ2±1 = 0, (2.83)

Ṽ2±2 =
1
2

ηQeq. (2.84)

According to Eq.2.45 for a transition from state |M j⟩ to state |Mi⟩ the symmetry order of
the first-order quadrupolar interaction is given by:

d = M2
i −M2

j . (2.85)

The symmetry order d is often referred to as the satellite order. We see that for symmetric
transitions, such as the central transition of half-integer quadrupolar nuclei and DQ transition
for spin I = 1 are unaffected by the first-order quadrupolar interaction. Furthermore, the form
of the coherence order and satellite order are different this will be exploited in Paper I and II
to separate and correlate the two interactions.

In contrast to the shift interaction, truncation of the quadrupolar interaction Hamiltonian
at the first-order does not provide a full description of the observed NMR spectra, thus higher-
order terms are needed. The second-order average Hamiltonian is given by:

Ĥ(2)
Q =

4(ωPAF
Q )2

9ω0

[
W00

(
9

5
√

5
t̂30 +

4I(I +1)
5
√

5
t̂10

)
+W20

(
−9

5

√
2
7

t̂30 +
4I(I +1)−3

10
√

14
t̂10

)

+W40

(
−51

4

√
1
70

t̂30 −
12I(I +1)−9

10
√

70
t̂10

)]
, (2.86)
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where the coefficient WL0 represents the coupled spatial tensor of two spherical tensor com-
ponents as shown below:

WL0 = ∑
m
⟨22m−m|L0⟩v2mv2−m. (2.87)

Here ⟨22m−m|L0⟩ are Clebsch-Gordan coefficients and vpk are the spherical tensor compo-
nents of the reduced EFG tensor v = V/eq. We can notice that the second-order quadrupolar
interaction Hamiltonian depends on a rank-0, rank-2 and rank-4 tensor. The rank-0 term is
spatially isotropic, but will lead to an additional contribution to the isotropic shift. The rank-2
and rank-4 are spatially anisotropic. The rank-4 interaction cannot be completely averaged
by MAS and so the spinning sidebands exhibit a broadening due to this contribution.

2.3.4 The hyperfine interaction

In paramagnetic systems, i.e. systems with unpaired electrons, the nuclear magnetic moment
can couple to the unpaired electron magnetic moment leading to the hyperfine interaction.
The hyperfine coupling Hamiltonian is expressed as:

ĤSI = Ŝ ·A · Î, (2.88)

where Ŝ represents the operator for electron spin and A is the hyperfine coupling tensor. In the
non-relativistic approximation, the hyperfine coupling tensor can be separated into a rank-0
term and a rank-2 component as shown below:

A = AFC1+ASD, (2.89)

where AFC is the Fermi contact (FC) term, which is purely isotropic (rank-0). ASD is the
rank-2 spin-dipolar (SD) component. [54; 55]

The FC part of the hyperfine interaction is directly proportional to the unpaired elec-
tron density at the nuclear site. Physically this represents the delocalised unpaired electron
density in the s-orbital centred at the nucleus. The spin density is transferred from the para-
magnetic centre to the s-orbitals of the nucleus of interest via bonds, therefore allows to gain
insights into the bonding network of the system. Whereas the SD component is a through
space interaction between the nucleus and unpaired electron density. SD part leads to the
so-called pseudo contact shift δPC and an additional anisotropic contribution to the chemical
shift tensor.

In principle, the Hamiltonian in Eq.2.88 takes the form of a heteronuclear coupling and
a splitting of the NMR resonances would be expected, however, experimentally we observe
a contribution to the shift tensor instead. This can be explained by two properties of the
electron spin. Firstly, the electron Zeeman interaction is much larger than the nuclear Zeeman
interaction, which leads to an unequal population difference of the two nuclear transitions in
the four level spin system (Fig.2.1(a)), thus different intensities of the two components of the
doublet (Fig.2.1(b)). Secondly, electron relaxation times are significantly shorter than the
nuclear relaxation times, which effectively “decouples” the NMR spectrum. [56] Therefore,
the resulting singlet position is shifted due to the “paramagnetic shift” (Fig.2.1(b)).
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(a) (b)

Figure 2.1: Illustration of the spin energy levels and NMR spectrum of a two-spin system I-S,
where a nuclear spin I = 1/2 is coupled to an electron spin S = 1/2. In (a) is shown the array
of four energy levels 1-4, assuming that |ω0,S| > |ω0,I | > J, ω0,S > 0, ω0,I < 0, and J > 0. The
two I-spin transitions are shown with a red and blue arrow, and are labelled with their frequencies
∆ω1→2 and ∆ω3→4. The nuclear spin I spectrum is shown in (b) and exhibits diferent intensities
of the two components of the doublet because the larger energy separation between the pairs
of I-spin energy levels in the two transitions leads, via the Boltzmann distribution, to different
equilibrium spin state population differences. The rapid electronic relaxation of S “decouples”
the I spin spectrum to give a singlet which is positioned at the centre of mass of the two doublet
components. The singlet is thus offset from −ω0,I by an offset frequency −ω0,Iδ

S
iso, where δ S

iso is
the “paramagnetic shift” due to the electron S. Reproduced from [18], with permission of Elsevier.

For a paramagnetic insulator the FC part of the shift takes the form:

δFC =
2
3

ρ
α−β (0)χ, (2.90)

where ρα−β (0) is the unpaired electron density in the s-orbital and χ is the susceptibility per
paramagnetic centre. However, a paramagnetic shift can also be observed in metals, which is
referred to as the Knight shift K. [57; 58] In metallic systems the hyperfine interaction arises
due to the nuclear spin interaction with the conduction electrons, i.e. electrons that are near
the Fermi level. In conventional metals the FC part of the Knight shift [29; 59] is given by:

KFC =
2
3
⟨|φk(0)|2⟩EF χP, (2.91)

where ⟨|φk(0)|2⟩EF is the average unpaired electron density of the s-band electrons near the
Fermi level and χP is the Pauli susceptibility, which is directly proportional to the number of
states at the Fermi level N(EF). For simple metals the Knight shift is temperature independent
and the magnitude depends on the number of charge carriers at Fermi level.

For both paramagnetic insulators and metals the combination of large hyperfine couplings
and stochastic fluctuations of the electronic magnetic moment lead to very fast longitudinal
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relaxation times (T1) of the nuclear spin. Typically, this is the most significant contribution to
the observed longitudinal relaxation in these systems. In simple metals, the FC term usually
dominates the relaxation and it can be shown that the longitudinal relaxation T1 is given by:

1
T 1

=
π

9
µ

2
0 µ

2
Bγ

2
I g2

eℏ⟨|φk(0)|2⟩EF N(EF)kBT, (2.92)

where µ0 is the magnetic permeability in vacuum, µB is the Bohr magneton and ge is the
electron g-factor. From Eq.2.91 and 2.92 we can notice that for conventional metals the
quantity K2

FCT1T is constant. This is the so-called Korringa relation. [60] In Paper IV we use
both the Korringa relation and differences in the form of the FC shift between paramagnetic
insulators and metals to determine the electronic structure of barium titanium oxyhydride.

Finally, we note that bulk magnetic properties of the paramagnetic sample can also con-
tribute to both the isotropic shift and the broadening of the resonances. [22; 61–64] In pow-
ders there exists a non-uniform distribution of crystal sizes, which can take any random ori-
entation, since magnetic susceptibility is in general anisotropic each crystallite generates a
unique magnetic field, which depends on the specific crystal structure, crystallite size and
orientation. The produced inhomogeneous magnetic field in the sample leads to a distribu-
tion of isotropic shifts and shift anisotropies. Collectively, these effects are referred to as bulk
magnetic susceptibility (BMS) effects.

2.4 Interpretation of NMR parameters
Thus far, we have focussed on the form of the interaction Hamiltonians and the evolution
of the density operator. Here we continue by discussing the link between NMR parameters
and properties of materials. Most commonly, the shift interaction is determined using NMR,
which is related to the magnetic shielding of the nucleus. The shielding arises due to the in-
duced electron orbital motion and the distortion of the electronic wavefunction by mixing with
excited electronic states by the external magnetic field. Both effects are sensitive to the local
electron distribution surrounding the nucleus and give rise to distinct isotropic shifts and shift
anisotropies for different chemical substituents. For instance, in Paper A we measure the 15N
spectrum of nitrogen-doped graphene and identified pyridine and pyrolidine type nitrogen
moieties (see Fig.2.2) based on the 15N isotropic shift values. These local nitrogen environ-
ments were then linked to the catalytic activity in the material. In paramagnetic materials the
hyperfine interaction between the nucleus and the unpaired electrons provides an additional
contribution to the shift interaction, which can yield information about the nature of bonding,
delocalisation of the unpaired electrons onto the atoms, ion dynamics and crystallite shape.
[19–22] While the quadrupolar interaction is sensitive to the local geometry and the dynam-
ics on the µs-ms timescale. [65–67] We note that the dipolar interaction between the nuclear
spins gives information regarding the distance between two nuclei, which has proven to be
remarkably valuable in determining the three-dimensional structures of biomacromolecules.
[68] However, for the present discussion information extracted from the shift and quadrupolar
interactions is the most relevant.
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Figure 2.2: Directly excited 15N MAS NMR spectra of the SK_N sample collected at 7 kHz
MAS and 14.1 T, shown together with chemical shifts calculated for hypothetical structural motifs.
Experimental chemical shifts are given in black, calculated 15N shifts are in blue. All shifts are
in ppm. Reproduced from Ref. [69] with permission from the Royal Society of Chemistry.

The interpretation of the measured NMR parameters in solids is rarely straightforward,
and requires quantum chemical computations to rationalize the observed data. In Section
2.4.1 and 2.4.2 we review the basic principles of density functional theory in periodic solids
and the subsequent calculation of EFG tensor parameters.

2.4.1 Basics of density functional theory

In order to calculate NMR parameters or any other quantity related to the electronic struc-
ture, we first must calculate the electronic structure, which is achieved by solving the time-
independent Schrödinger equation:

ĤΨ(r1,r2, ...,rN ,R1,R2, ...,RM) = EΨ(r1,r2, ...,rN ,R1,R2, ...,RM), (2.93)

where Ĥ is the Hamiltonian, Ψ(r1,r2, ...,rN ,R1,R2, ...,RM) is the wavefunction composed
of N electrons with positions ri and M nuclei with positions R j and E is the energy of the
system. Since the electrons are much lighter than the nuclei and consequently move much
faster it can be assumed that the nuclei are stationary with respect to the electrons. This
is called the Born-Oppenheimer approximation and is applied to most quantum chemical
calculations. [70]

Density functional theory (DFT) is based on the premise that the wavefunction can be
expressed as a functional of the electron density ρ(r). Development of DFT was pioneered
by Hohenberg and Kohn, [71] who first showed that the external potential Vext, hence energy
E, is uniquely determined by the ground state density ρ(r) and so the energy functional is
given by:

E[ρ(r)] = F [ρ(r)]+
∫

Vext(r)ρ(r)dr. (2.94)

22



CHAPTER 2. INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE

The first term F [ρ(r)] corresponds to the electron kinetic and electron-electron interaction en-
ergy, while second is due to electron interactions with an external potential Vext(r). Secondly,
Hohenberg and Kohn demonstrated that the electron density corresponding to the energy min-
imum is that of the ground state. This implies that the variation principle can be employed
for finding the ground state wavefunction. However, the exact form of the functional F [ρ(r)]
is unknown, so practical calculations are hindered. Improvement on the method was reported
by Kohn and Sham who proposed that the system of N interacting electrons is replaced by
a system of noninteracting N electrons with the same density ρ(r). [72] Following this ap-
proach the functional F [ρ(r)] is expressed as:

F [ρ(r)] = Ts[ρ(r)]+EH[ρ(r)]+Exc[ρ(r)], (2.95)

where Ts[ρ(r)] is the kinetic energy term of a non-interacting electron, EH[ρ(r)] is the
electron-electron Coulombic energy functional (Hartree term) and Exc[ρ(r)] is the exchange-
correlation functional, which describes deviation of the kinetic energy and Coulombic energy
between the non-interacting system and the real system. Furthermore, Kohn and Sham ex-
pressed the density of the system ρ(r) in terms of one-electron orthonormal orbitals as shown
below:

ρ(r) =
N

∑
i=1

|φi(r)|2. (2.96)

Starting with this definition of the electron density, Eq.2.95 can be minimized to obtain, the
following one-electron Kohn-Sham equations:(

−1
2

∇
2 +

∫
ρ(r′)
|r− r′|

+Vext +Vxc

)
φi(r) = εiφi(r), (2.97)

where Vxc is the exchange-correlation potential given by:

Vxc =
δExc[ρ(r)]

δρ(r)
. (2.98)

The Kohn-Sham equations take a similar form to the Schrödinger equation. These equations
can be solved following a self-consistent method. The procedure begins with a guess density
and the calculation of the potentials. Afterwards, the Kohn-Sham equations are solved, which
give a new set of single-electron orbitals and electron density. The new density is utilized in
the second iteration, and so forth until the eigenvalues between two iterations do not change
within a certain precision.

Apart from the Born-Oppenheimer approximation the DFT description has been exact,
however, the form of the exchange-correlation functional is unknown. The main advantage
of the current DFT formalism is that the energy contribution due to the exchange-correlation
functional is significantly smaller than the single-electron kinetic or the Hartree term and
approximations can be applied to the exchange-correlation functional. Thus, predominantly
different DFT methods only differ in the form of the exchange-correlation functional. One
of the simplest form, in which the exchange functional is approximated by treating the local
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electron density as a uniform gas. The method has been denoted as local density approx-
imation (LDA), however, it performs poorly in most systems apart from metals. [73] An
improvement in the method is obtained by assuming a nonuniform gas. In this approach the
exchange-correlation functional depends both on the density and the first derivative of the
density. The method is called the generalized gradient approximation (GGA). [74] The func-
tional proposed by Perdew, Ernzerhof and Burke (PBE) [75] is one of the most popular GGA
methods and is also used in Paper IV.

However, a significant problem remains, which is inherent to the DFT formulation re-
viewed above. An error arises due to the Coulombic energy term, which includes an interac-
tion of the electron density with itself, hence has been called the self-interaction error. [76]
Neither LDA or GGA approaches can compensate for the error, and these methods suffer
from excessive delocalization of the electrons due to the self-repulsion of the electron den-
sity. Hybrid DFT, which includes a fraction of exact (Hartree-Fock) exchange energy, has
been proposed to mitigate the self-interaction errors. [77] However, the calculation of the
exact exchange is computationally expensive and may lead to overlocalization of electrons.
Alternatively, the self-interaction error can be alleviated using a computationally less de-
manding approach, such as DFT+U . [78; 79] The method treats the delocalized states using
a Hubbard model, while the rest of the electrons are treated with the conventional DFT for-
malism. Delocalization effects are most significant for d and f orbitals and, in general, the
Hubbard-like term is added to electrons occupying these orbitals. The total DFT+U energy
(including the additional on-site interaction energy) is expressed as follows:

EDFT+U
tot [ρ(r)] = EDFT

tot [ρ(r)]

+∑
I

(
U
2 ∑

m,σ ̸=m′,σ ′
nIσ

m nIσ ′
m′ −

U I

2
nI(nI −1)

)
, (2.99)

where EDFT
tot [ρ(r)] is the standard DFT energy functional. The first term in the braces repre-

sents the Hubbard term, while the second term is a double counting correction, to account for
the part included in the standard DFT functional interaction energy. nIσ

m are the occupation
numbers defining an orbital on atom I, in state m with spin σ .

Typically, theU parameter is chosen so that calculated bandgap would be match the exper-
imental value. [80] However, the U value can be determined without the use of experimental
parameters. For instance, in Paper IV the U parameter is selected so that the total energy
of the system is linearly dependent on filling a defect level, which is a property of an exact
exchange-correlation functional described previously. [81]

2.4.2 DFT in periodic solids

Until now, we have not discussed the form of the Kohn-Sham orbitals. For isolated molecules
we find it convenient to expand the orbitals in terms of a linear combination of atomic orbitals
generating a basis set. In solids atoms comprise an infinitely periodic lattice, hence any
physical quantity of the system is equivalent at points related by translation of the lattice
constant. In calculations this is realized by employing the periodic boundary condition, which
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greatly reduces the size of the system. In a periodic lattice with a lattice vector R according to
Bloch’s theorem the single particle wavefunction can be expressed as a plane wave function:

φn,k(r) = un,k(r)eik·r, (2.100)

where k is the wavevector of the cell. n defines different states at the same k-point. un,k(r)
is a function with a periodicity of the lattice (uk(r) = uk(R+ r)), which is expressed as a
Fourier series:

un,k(r) =
1√
Ω

∑
G

cn,k,GeiG·r. (2.101)

Here Ω is the unit cell volume, G represents the reciprocal lattice vectors and cn,k,G are
Fourier coefficients. Thus, the single electron wavefunction is given by:

φn,k(r) =
1√
Ω

∑
G

cn,k,Gei(k+G)·r (2.102)

It follows from Bloch’s theorem that if φn,k(r) is a solution, then φn,k+G(r) is as well. As a
result the wavefunction can be evaluated in the first Brillouin zone (BZ) , which is the primi-
tive reciprocal space unit cell. In principle, the BZ constitutes an infinite number of k-points,
however, in practice, to reduce the computational demand the BZ is discretely sampled. In
Paper IV we employ the k-point sampling method introduced by Monkhorst and Pack. [82]
Furthermore, Eq.2.102 indicates that for a complete basis set the plane wave expansion con-
tains an infinite number of vectors G. Therefore, the expansion is usually truncated to include
a finite number of plane wave functions within a sphere of maximum kinetic energy, given
by the energy cut-off (Ecut):

ℏ2

2m
|k+G|2 ≤ Ecut (2.103)

The parameter Ecut is typically chosen by examining the convergence of the total energy of the
system with respect to Ecut. Needless to say, the computational effort scales with increasing
Ecut. Close to the nucleus a large number of G-vectors (high Ecut) are required due to the rapid
oscillations of the core electron wavefunctions. This complication is solved by applying the
pseudopotential approximation, which assumes that the core electrons are essential unaffected
by chemical bonding and can be considered as fixed (or frozen) in the atomic configuration.
[83] In this treatment the core electrons are replaced by an effective field acting on the valence
electrons. This potential is constructed such that the true wavefunction is reproduced beyond
a specific distance from the nucleus, while the core electron wavefunctions are represented
by a smooth pseudopotential.

The pseudopotential approach significantly reduces the computational effort, however, it
fails in calculating physical properties at the nuclear sites, for instance, the EFG tensor. Accu-
rate properties can be computed by reconstruction of the true all-electron density. Projector
augmented wave (PAW) [84] approach has been proposed for calculation of these parame-
ters, along with the extension of gauge invariant projector augmented wave (GIPAW) [85; 86]
method. The PAW method employs a linear transformation to project the pseudo wavefunc-
tion corresponding to the core electrons onto the true all-electron wavefunction. This allows
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the calculation of the ground state charge density and subsequently the EFG tensor. We find
these calculations very useful in Paper IV in order to determine the hydrogen occupancy in
barium titanium oxyhydride.
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3
Separation of the shift and

quadrupolar interactions in static
powders

Typically solid-state NMR is employed to study microcystalline powders. Crystallites in these
samples take random orientations with respect to the applied magnetic field. For each crys-
tallite orientation nuclear spins subject to anisotropic interactions lead to distinct signals the
superposition of which is known as the powder pattern (see Fig.3.1(a)). A representative
powder pattern spectrum of a spin I = 1 (or any other spin) subject to exclusively the shift
interaction is shown in Fig.3.1(a). In an environment with an anisotropic electric-field gra-
dient (EFG) the spin transitions of a spin I = 1 nucleus are also affected by the quadrupolar
interaction. A powder spectrum of a spin I = 1 nuclei subject to the first-order quadrupo-
lar interaction is given in Fig.3.1(b). The lineshape is often referred to as the Pake doublet.
[87] The origin of the doublet can be viewed as the superposition of two mirror-image shift
interaction powder pattern spectra arising from each of the transitions evolving in opposite
direction (blue and orange in Fig.3.1(b)). In the case, when both interactions are present
the spectrum becomes more complex (Fig.3.1(c)) and quantitative analysis of the interaction
tensor parameters becomes complicated.

In principle these spectra can be obtained using the simplest NMR experiment, the one-
pulse sequence. However, in practice we do not observe ideal performance of the sequence
due to instrumental limitations. Firstly, the signal acquisition cannot be started immediately
after the pulse, since the change from excitation to detection mode is not instantaneous. Sec-
ondly, the use of pulses with high RF field amplitude can introduce ringing artefacts at the
beginning of the time domain signal (the free induction decay (FID)), which leads to severe
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Figure 3.1: Simulated static NMR spectra of powders. (a) shows crystallites with different orien-
tations with respect to the external magnetic field and the resulting spectra of four of these unique
crystallite orientations. Superimposed is the overall powder pattern lineshape. The spin I = 1
nucleus is subject to only the shift interaction in this case. In (b) we have the spectrum of a spin
I = 1 system subject to only the first-order quadrupolar interaction. Superimposed are the spectra
of each of the two transitions shown in orange and blue. (c) shows the spectrum of a spin I = 1
nucleus subject to both the shift and first-order quadrupolar interactions. In the simulations shift
tensor parameters are δiso = 0, ∆δ = 500 ppm and ηS = 0.7 and the quadrupolar tensor parame-
ters are CQ = 100 kHz and ηQ = 0.2. Apdated from [88] with permission of Wiley.

distortions of the baseline in the frequency domain. These issues are usually mitigated by
including a delay, called the dead time δde, before the start of the acquisition (see Fig.3.2(a)).
However, evolution due to both the isotropic and anisotropic interactions commences with
excitation of transverse magnetization. Hence incorporation of the dead time in the sequence
neglects the first few points of the FID and the beginning of the evolution as a result induces
considerable phase dispersion across the spectrum as shown in Fig.3.2(a). These effects are
exacerbated for very broad resonances (as observed in systems with paramagnetic shift and
quadrupolar interactions), since the period of evolution of the interaction decreases and a
larger phase is accrued due to the interaction for the same dead time length.

For a spin I = 1/2 system (or spin I = 1 subject to a negligible quadrupolar interaction)
this has been resolved by using the spin- (p-) echo sequence given in Fig.3.2(b), [89] which
incorporates the dead time into the second delay τ . The π/2 pulse is the excitation pulse
followed by a π pulse sandwiched in between two delays τ . The second part of the sequence
(τ − π − τ) has the property of refocussing interactions dependent on coherence p. The
refocussing properties of the sequence are explained as follows: the isotropic and anisotropic
shift interactions are time-independent in the present case and so the accrued phase during
the first period τ is given by ΩSτ . The π pulse changes the sign of the coherence order p,
hence the acquired phase during the second delay is −ΩSτ . The overall phase cancels at the
end of this sequence, thus at the beginning of the signal acquisition the shift interaction is
refocussed. This is illustrated in Eq.3.1 using single element operators.

Î(+1,0)
+

ĤSτ−−→ exp[−iΩSτ]Î(+1,0)
+

π Îx−−→ exp[−iτΩS]Î
(0,−1)
−

ĤSτ−−→ Î(0,−1)
− (3.1)

Therefore, all the points of the FID are collected and the spectrum remains free of any phase
dispersion. However, the evolution due to the first-order quadrupolar interaction depends on
the satellite order d and would not be refocussed by the spin-echo sequence. The refocussing
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Figure 3.2: Sequences for acquiring 1D NMR spectra. On the left pulse sequences along with
symmetry pathways are shown for the single pulse with a dead time (a), spin-echo (b) and solid-
echo (c) experiments. On the right side are shown the corresponding simulated spectra for a
spin I = 1 nucleus subject to either the shift, first-order quadrupolar or both interactions. Here
the filled rectangle and empty rectangle represent π/2 and π , respectively. For simulations shift
tensor parameters are δiso = 0, ∆δ = 500 ppm and ηS = 0.7 and the quadrupolar tensor parameters
are CQ = 100 kHz and ηQ = 0.2.

properties of the sequence are demonstrated with simulations for different interactions in
Fig.3.2(b).

The solid-echo sequence given in Fig.3.2(c) can be employed to refocus the evolution
of both interactions or just the first-order quadrupolar interaction. [90; 91] In analogy to
the spin-echo sequence the first pulse excites the coherences and is followed by an evolution
period τ and a refocussing pulse.

Î(+1,0)
+

[ĤS+ĤQ]τ−−−−−−→ exp[−iτ(ωQ +ΩS)]Î
(+1,0)
+

π/2Îx−−−→
1
2

exp[−iτ(ωQ +ΩS)]Î
(0,−1)
+ +

1
2

exp[−iτ(ωQ +ΩS)]Î
(+1,0)
− (3.2)

We notice that the second π/2 pulse generates two terms with positive Î(0,−1)
+ and negative

Î(+1,0)
− coherence as shown in Eq.3.2. The two operators have the same satellite order d,

which is opposite to the initial operator Î(+1,0)
+ . Employing coherence selection methods [92]

we can choose to retain one of the two terms in the second line of Eq.3.2. If we select the
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first term a d-echo is formed, while the shift interaction evolves throughout the period 2τ:

select p=+1−−−−−−→ 1
2

exp[−iτ(ωQ +ΩS)]Î
(0,−1)
+

[ĤS+ĤQ]τ−−−−−−→ 1
2

exp[−2iτΩS]Î
(0,−1)
+ . (3.3)

On the other hand if we select the second term both p- and d-echoes are formed, effectively
refocussing the evolution due to both the first-order quadrupolar and the shift interaction as
shown below:

select p=−1−−−−−−→ 1
2

exp[−iτ(ωQ +ΩS)]Î
(0,1)
−

[ĤS+ĤQ]τ−−−−−−→ 1
2

Î(0,1)− . (3.4)

Furthermore, we illustrate the refocussing of both interactions with simulations in Fig.3.2(c),
which show intact spectra in all three cases with the shift or first-order quadrupolar inter-
actions only and the combination of the two. However, Eq.3.4 also alludes to a significant
disadvantage of the sequence that the sensitivity is reduced by a factor of two, since we re-
tain only half of the available signal components. Nevertheless, the solid-echo is a valuable
sequence for acquiring spectra of spin I = 1 nuclei. Moreover, the 1D spectra, in which the
shift or the first-order quadrupolar interaction dominate (see Fig.3.1(a) and 3.1(b)) can be
used to extract the tensor parameters of the dominating interaction. For systems in which
both interactions are of similar magnitude the individual NMR parameters are not readily
extracted (see Fig.3.1(c)). The interpretation of the NMR data is particularly complicated in
paramagnetic systems, which give rise to featureless spectra due to the combination of large
shift anisotropies, BMS effects and the quadrupolar interaction.

This issue has been addressed previously by employing methods for separation of the
shift (including the isotropic shift, shift anisotropy, and BMS contributions) and first-order
quadrupolar interactions. Two classes of such sequences have been reported the shifting echo
[93; 94] and the asymmetric π-pulse-inserted quadrupole-echo [95; 96] experiments. How-
ever, the sequences display suboptimal performance for routine applications due to either low
sensitivity or poor excitation bandwidth. Moreover, the resulting spectra from each sequence
are often contaminated with a sharp artefact. In Paper I we examine the shifting echo se-
quences and rationalize how the methods can be improved by employing adiabatic pulses.
Our findings are summarised in Sections 3.1 and 3.2.

3.1 Shifting p- and d-echo sequences
Antonijevic and Wimperis pioneered a two-dimensional (2D) static NMR experiment for
separating the shift from the first-order quadrupolar interaction. [93] The sequence consists
of three π/2 pulses as shown in Fig.3.4(a). The first pulse excites the coherences, while the
second is a solid-echo that forms a d-echo at t = t1, but allows the interactions dependent
on p to evolve. Consequently, the evolution due to the first-order quadrupolar interaction
is refocussed, while the shift interaction evolves for the duration of t1. The last pulse acts
as a second solid-echo during which the evolution is refocussed of both interactions. As a
result, in the acquisition period a d-echo forms at t2 = 0, while a p-echo at t2 = t1. The
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Figure 3.3: Schematic representation of the time domain shifting p- and d-echo experiments.
(a) and (b) show the respective shifting p- and d-echo experiment time domain data before and
after shearing. The green and orange arrows represent d- and p-echo ridges in the time domain.
Reproduced from [97], with permission of Elsevier.

echo ridges in the 2D time domain data are illustrated schematically in Fig.3.3(a). Since the
position of the p-echo in the time domain moves with increasing t1 the sequence has been
called as the shifting p-echo. Signal detection in the sequence begins after the final π/2 pulse
so that the whole echo is acquired and pure 2D absorption-mode lineshapes are obtained
after Fourier transform. The 2D frequency-domain projection onto the indirect dimension
ω1 would give a lineshape corresponding to the shift interaction, while the lineshape in the
direct dimension ω2 consists of a convolution of both the shift and the first-order quadrupolar
interaction. Complete separation of the two interactions is achieved by applying a shearing
transformation parallel to t1 with a shear ratio κ = −1. After the shearing transformation
the p-echo ridge becomes parallel to the t2 axis (see Fig.3.3(a)), hence the shift interaction
does not evolve in this dimension. A simulated Fourier transformed and sheared spectrum is
provided in Fig.3.4(a). Pure shift and first-order quadrupolar interactions are observed in the
projections onto each of the axis, which allows extraction of the tensor principal components.
Furthermore, the 2D lineshape can be used to determine the Euler angles relating the two
tensors.

Walder et al. devised an alternative sequence for separation of the two interactions that
has a higher sensitivity, but a poorer excitation bandwidth. [94] The difference in the per-
formance between the sequences arises due to the substitution of the second π/2 pulse with
a π pulse (see Fig.3.4(a),(b)). The π pulse forms a spin-echo during t1 period, which re-
focusses the evolution of the shift interaction, while the first-order quadrupolar interaction
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evolves. The final π/2 pulse, in analogy to the previous sequence, generates p- and d-echoes.
However, in this case the p-echo forms at the time point t1 = 0, while the d-echo at t2 = t1,
consequently the pulse sequence is designated as the shifting d-echo experiment. Similarly
as before a shearing transformation with the same coefficient is required for complete separa-
tion of the two interactions (see Fig.3.3(b)). In contrast to the preceding experiment the pure
interaction lineshapes are located on the orthogonal axis as shown in the simulated spectrum
in Fig.3.4(b). As discussed earlier a solid-echo selects only half of the signal components,
therefore the use of a π pulse doubles the detected signal intensity. Although the longer pulse
duration leads to a reduction in the excitation bandwidth.

In Paper I we examine the performance of the two pulse sequences on 2H in deuterated
copper(II) chloride dihydrate and deuterated barium titanium oxyhydrides. The sheared and
Fourier transformed experimental 2H spectra of CuCl2 · 2D2O are given in Fig.3.4(a) and
3.4(b). For both experiments besides the expected 2D 2H lineshape we observe a sharp arte-
fact in the middle of the quadrupole dimension. The artefact emerges as a result of flip-angle
misset and pulse imperfections such as finite-pulse effects and RF inhomogeneity. Assuming
that these effects account for a pulse flip angle error of ε , the signal components present in
the shifting p-echo sequence after the t1 period are given below:

Î(+1,0)
+ −→ 1

2
exp[−iΩS t1]Î

(0,−1)
+ − 1

2
ε exp[−i(ΩS +ωQ)t1]Î

(+1,0)
+ . (3.5)

We see that two terms are available, which have the same coherence order, but different satel-
lite order. Hence the terms cannot be separated with phase cycling, since only p coherences
are selected explicitly, while d coherences are selected indirectly. The second term arises
from an unwanted symmetry order pathway, in which the sign of both p and d remain un-
changed after the second π/2 pulse. Therefore, the phase factor in the latter term shows that
both the shift and the first-order quadrupolar interaction have evolved during t1 and will lead
to an artefact appearing along the anti-diagonal ω1 =−ω2. Following the shearing transfor-
mation described above the artefact will be positioned at zero frequency in the quadrupole
dimension as observed in Fig.3.4(a).

For the shifting d-echo sequence the artefact will also occur due to the appearance of
unwanted d pathways. We show that at the end of t1 the operator has evolved as:

Î(0,−1)
− −→ (1−3ε

2)exp[−iωQ t1]Î
(+1,0)
+ +2ε

2 Î(0,−1)
+ . (3.6)

The second term originates from an unwanted symmetry order pathway, in which the sign of
both the p and d coherences have changed. This leads to the simultaneous refocussing of the
evolution of the shift and first-order quadrupolar interaction, hence a sharp peak appears in
the quadrupole dimension.

To summarise, here we have demonstrated that the shifting p- and d-echo sequences
achieve separation of the shift and first-order quadrupolar interactions, however, the spec-
tra are readily contaminated with an artefact resulting from unwanted symmetry order path-
ways. These artefacts interfere with the signal of interest and complicate the interpretation
the spectra, particularly when multiple local 2H environments are present. In Section 3.2 we
introduce new sequences which are void of any artefacts and achieve broadband excitation.
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Figure 3.4: 2D spectra and pulse sequences for separation and correlation of shift and first-order
quadrupolar interactions. Shifting p- (a), shifting d- (b), double adiabatic shifting d- (c) and
quadruple adiabatic shifting d- (d) echo sequences and the corresponding experimental and sim-
ulated 2D spectra of 2H in CuCl2·2D2O. Here the filled rectangle, empty rectangle and rectangle
with a diagonal represent π/2, π and adiabatic pulses, respectively. Time periods t1 and t2 are the
evolution periods in the indirect and direct dimension, respectively, and τ , τ1, τ2, ∆τ = τ1−τ2 are
free precession periods to facilitate correct echo formation. pI and dI are the symmetry pathways
for the experiments. Reproduced from [97], with permission of Elsevier.
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3.2 Adiabatic shifting d-echo sequences
In Paper I we demonstrate that the issues of the two pulse sequences outlined in the Section
3.1 can be overcome by implementing adiabatic pulses. Application of a single short-high
power adiabatic pulse (SHAP) to a spin I = 1 nucleus subject to both shift and first-order
quadrupolar interactions induces a sign change of the coherence order p, however, a phase is
accrued during the SHAP due to the evolution of the two interactions:

Î(0,−1)
−

ÛSHAP−−−→−exp[i(ξS −ξQ −2φmax)]Î
(+1,0)
+ . (3.7)

The propagator ÛSHAP expresses the transformation of a spin I = 1 nucleus throughout a
SHAP as defined in Eq.2.62. ξS and ξQ are the accrued phases resulting from the evolution
of the shift and first-order quadrupolar interaction, respectively. The additional phase 2φmax
emerges from the time-dependent adiabatic pulse phase function. Together these phases will
induce distortions across the spectrum. In order to remove the unwanted phase factor the
excitation sculpting principle is employed. [98; 99] More specifically a tandem of SHAPs,
otherwise called the double adiabatic echo sequence, is used for spin I = 1/2 nuclei to cancel
the accrued phases due to the shift evolution and the pulse phase as shown below:

−exp[i(ξS −ξQ −2φmax)]Î
(+1,0)
+

ÛSHAP−−−→ exp[−2iξQ]Î
(0,−1)
− . (3.8)

We notice that the phase due to the first-order quadrupolar interaction remains, since the sign
of the satellite order d was unaffected by the SHAPs. For the same reason the sequence fails
to refocus the evolution due to the first-order quadrupolar interaction during the interpulse
delays, which have been ignored in Eq.3.8 to facilitate the current discussion.

Introduction of a π/2 pulse between the two SHAPs will effectively refocus both inter-
actions and remove any accrued phases resulting from the SHAPs. Choosing the operator in
Eq.3.7 as the starting point we can show that the density operator at the end of the sequence
is free of any phase factors:

−exp[i(ξS −ξQ −2φmax)]Î
(+1,0)
+

π/2Îx−−−→ select p=+1−−−−−−−→

− 1
2 exp[i(ξS −ξQ −2φmax)]Î

(0,−1)
+

ÛSHAP−−−→ 1
2 Î(+1,0)

− . (3.9)

Again we have omitted the evolution of the interactions during the interpulse delays to sim-
plify the equation. Another approach for refocussing both of the interactions and cancelling
any unwanted phases arising from the SHAPs would be to position a pair of SHAPs before
and after the π/2 pulse. Beginning with the density operator after the double adiabatic echo
in Eq.3.8 we explicitly show that the accrued phases are removed using this arrangement of
pulses:

exp[−2iξQ]Î
(0,−1)
−

π/2Îx−−−→ select p=+1−−−−−−−→ 1
2 exp[−2iξQ]Î

(0,−1)
+

ÛSHAP−−−→

− 1
2 exp[−i(ξS +ξQ −2φmax)]Î

(−1,0)
−

ÛSHAP−−−→ 1
2 Î(0,−1)

+ . (3.10)
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We continue by demonstrating that these sequences can be employed for separating and
correlating the shift and first-order quadrupolar interactions. Provided that we choose the
pulse timings according to the pulse schemes given in Fig.3.4(c) and 3.4(d) the two sequences
yield analogous spectra to the shifting d-echo sequence. Therefore, the sequences are denoted
as the double adiabatic shifting d-echo (see Fig.3.4(c)) and quadruple adiabatic shifting d-
echo (see Fig.3.4(d)) experiments, respectively.

In the former sequence the first adiabatic pulse refocusses the shift interaction during the t1
period. The π/2 pulse inverts the sign of satellite order d, while the adjoining SHAP changes
the p order to generate p- and d-echoes at the same position in time as for the conventional
shifting d-echo experiment. Under ideal conditions the obtained spectra using the two shift-
ing d-echo sequences are indistinguishable as shown by simulations in Fig.3.4(b) and 3.4(c).
In practice, instrumental limitations such as insufficient RF power and RF inhomogeneity
lead to the appearance of a sharp artefact in the conventional experiments. However, adia-
batic pulses are impervious to RF field inhomogeneity provided the adiabatic condition holds,
hence substitution of the second pulse in the sequences with a SHAP would remove or signif-
icantly reduce the artefact. This is confirmed by the sheared 2H 2D spectrum of CuCl2 ·2D2O
acquired using the double adiabatic sequence shown in Fig.3.4(c). As expected the artefact is
almost negligible, however, the overall 2D lineshape of the signal is distorted. The observed
distortion in the spectrum can be explain by pulse angle errors in the second π/2, which lead
to an incomplete elimination of the accrued phases during the SHAPs.

In the quadruple shifting d-echo sequence (Fig.3.4(d)) the first pair of SHAPs refocusses
the evolution of the shift interaction during t1 and removes phase errors due to the shift in-
teraction and the pulse phase. The following π/2 pulse reverses the signs of p and d orders,
while the second pair of SHAPs effectively leaves the symmetry orders unchanged, but can-
cels the accrued phase due to the evolution of the first-order quadrupolar interaction during
the first pair of SHAPs. Therefore, p- and d-echoes form at the same time points as in the
previous shifting d-echo sequences. Since each pair of SHAPs cancel part of the phase error,
the overall elimination of the accrued phase should improve. This conjecture is supported
by the experimental 2H spectrum in Fig.3.4(d), which shows an artefact-free intact 2D line-
shape. The correctness of the 2D lineshape was further verified by extracting the shift and
quadrupole tensor parameters along with the Euler angles, which match well with previously
reported values. [93; 94]

In conclusion, the new shifting d-echo sequence containing four SHAPs yields artefact-
free spectra with undistorted 2D lineshapes. Moreover, the sequence has a greater excita-
tion bandwidth than the conventional shifting d-echo, while maintaining the same sensitivity.
However, the sequence may not be suitable for investigating systems with spin I = 1 nuclei,
which exhibit very short coherence lifetimes due to the relatively long pulse length of SHAPS
(each 50 µs). Nevertheless, we conclude that the new quadruple adiabatic shifting d-echo se-
quence is superior to the previous pulse schemes for separation and correlation of the shift
and first-order quadrupolar interactions. In Paper IV we apply the novel sequence to study the
hydride local environment and the electronic structure in the barium titanium oxyhydrides.
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4
Separation of the shift and

quadrupolar interactions in
spinning powders

In the Chapter 3 we introduced some of the most elegant static solid-state NMR sequences.
However, these experiments exhibit very low sensitivity and resolution, on the account of the
signal extending over a continuum of frequencies under static conditions. Sample spinning
can increase both the sensitivity and resolution, since the anisotropic interactions are averaged
concentrating the signal into discretely spaced sidebands as shown in Fig.4.1(c) and 4.1(d).
[100; 101] The origin of sidebands is explained by the periodically time-dependent modula-
tion of the spatial part of the interactions, while the remaining time-independent components
broaden the spinning sidebands. For interactions with space rank-2, such as the shift and
first-order quadrupolar interactions, the time-independent contribution is removed by rotat-
ing about an axis at the “magic-angle” (βRL = arctan

√
2) with respect to the main magnetic

field. Therefore, magic-angle spinning (MAS) provides an additional improvement in the
resolution for rank-2 interactions.

The form of the spinning sideband manifold is affected by the spinning frequency. For
instance, when the MAS frequency exceeds the span of frequencies in a stationary sample (∆)
due to the combination of all anisotropic interactions the majority of the signal is concentrated
into the centreband (the sideband located at the isotropic position) and the spectrum is void of
any orientation-dependent information (Fig.4.1(c)). While at “slower” spinning frequencies
(∆ > ωr) spectra contain sidebands, which encode the anisotropic part of the interactions,
and allows the extraction of the tensor parameters (Fig.4.1(d)). However, as discussed in
Chapter 3 the presence of several interactions in static spectra of spin I = 1 nuclei can impose
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Figure 4.1: NMR spectra of a powder sample under MAS. (a) Schematic showing the MAS
rotor oriented at the magic-angle with respect to the external magnetic field. Simulated powder
spectra of a spin I = 1 system subject to the shift and first-order quadrupolar interaction under
static conditions (b), 10 kHz MAS (c) and 100 kHz MAS (d). Reproduced from Ref. [102] with
permission from the Royal Society of Chemistry.

difficulties on deconvolving the individual interaction parameters. Analogous problems are
encountered in spectra obtained under MAS, therefore, pulse sequences for separation of
interactions are required.

Previously, Spaniol et al. [103] suggested two sequences for the separation of the shift
and first-order quadrupolar interactions under MAS, the so-called two-pulse and three-pulse
sequence. The two-pulse sequence is, in principle, a spin-echo sequence, and exhibits ex-
cellent sensitivity (retains all of the available signal components), however, the sequence has
a poor excitation bandwidth and the spectrum consists of sidebands with phase-twist line-
shape. [104] The three-pulse sequences displays broadband excitation and gives rise to pure
absorption-mode lineshapes for the sideband manifold in the spectrum. The improvement
comes with a tradeoff of reduced sensitivity by a factor of 3. However, for both sequences the
main objective of separating the shift and first-order quadrupolar interactions is achieved only
partially, therefore, limiting the practical use of the sequences for studying spin I = 1 nuclei.
More recently, a spin-echo sequence with off-MAS was employed to separate and correlate
the time-independent parts of the rank-2 anisotropies. [105] The experiment requires pre-
cise calibration of the “off-angle” value, which proves to be difficult for conventional MAS
probes. In addition, the resolution is lowered compared to standard MAS experiments, which
could impede the study of systems with multiple resonances.

In Paper II we report that the phase-adjusted spinning sideband (PASS) experiment can
be employed for separating and correlating the anisotropic parts of the shift and first-order
quadrupolar interactions under MAS. Our findings are summarised in Sections 4.1 and 4.2.
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4.1 Theoretical description of the PASS sequence
Originally the phase-adjusted spinning sideband experiment was introduced by Dixon [106;
107] and was intended for separating the isotropic and anisotropic parts of the shift tensor.
Excluding the excitation pulse, the sequence is composed of four π pulses the positions of
which are modified with each increment so that the isotropic shift is refocussed, while the
shift anisotropy progressively evolves. However, the time period containing the π pulses is
not constant, which induces an additional modulation due to the transverse relaxation and
hinders complete separation of the isotropic and anisotropic parts.

More recently, Antzutkin and coworkers [108] reported a constant time experiment with
five π pulses (see Fig.4.2), which solves this complication. The constant delay T , which
begins immediately after the excitation pulse and ends at the start of the acquisition, is fixed
to an integer multiple of rotor periods Nτr, where N = 1+6n and n is a non negative integer.
Setting the start of the acquisition at time point t = 0, the position of the qth pulse is defined at
time −T +τq. We proceed by demonstrating analytically that the sequence can also separate
the shift anisotropy from first-order quadrupolar interaction. Considering a spin I = 1 nucleus
subject to the shift interaction, the integrated phase due to the evolution in the PASS sequence
is given by:

ΦS(t2;γSR) = Ωiso(τseq − t2)+2
5

∑
q=1

(−1)q+1
ξc(−T + τq;γSR)

−ξc(−T ;γSR)−ξc(t2,γSR), (4.1)

where ξc(t;γSR) is a phase function given by:

ξc(t;γSR) =
+2

∑
z=−2,z̸=0

ω
(z)
c (γSR)

−izωr
exp(−izωrt). (4.2)

Furthermore, τseq in Eq.4.1 is:

τseq =−T +2
n

∑
q=1

(−1)q+1
τq. (4.3)

In the PASS experiment we map the evolution of the shift anisotropy in the indirect dimen-
sion. The extent of evolution is quantified by introducing a “pseudo-t1” variable denoted as
the pitch Θ. If Ninc increments are used in the experiment, then the pitch for the ith increment
(i = 1,2, . . . ,Ninc) is Θ = 2Nπ(i−1)/Ninc. The progressive evolution of the shift anisotropy
and concurrent refocussing of the isotropic shift with increasing pitch is controlled by the
pulse positions τq according to:

2
5

∑
q=1

(−1)q+1
ξc(−T + τq;γSR)−ξc(−T ;γSR) = ξc(Θ/ωr;γSR) (4.4)

τseq = 0 (4.5)
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Figure 4.2: PASS pulse sequence. On the left we have the PASS pulse sequence with the sym-
metry pathways. On the right simulated PASS spectra are shown for a spin I = 1 nucleus subject
to either the first-order quadrupolar interaction or the shift anisotropy. Reproduced from [109],
with permission of AIP Publishing.

In practice these equations are solved numerically to give pulse position times τq for each
increment i and have been tabulated previously. [108] Based on Eq.4.4 and 4.5 we can derive
the time domain powder averaged signal of the PASS sequence, which is given by a Fourier
series:

S(Θ; t2) =
+∞

∑
m=∞

Im exp[i(Ωiso +mωr)t2]exp[−imΘ]. (4.6)

Im corresponds to the sideband intensity expressed as:

Im =
1

4π

∫ 2π

0
dαSR

∫
π

0

[
C(m)

q

]2
sin(βSR)dβSR. (4.7)

Inspection of Eq.4.6 reveals that the “pseudo-t1” dimension is modulated only by the shift
anisotropy, while both parts of the shift interaction evolve in the direct dimension. According
to Eq.4.6 the correlation between the two dimensions leads to generation of sidebands along
the antidiagonal ω2 =−ω1 (see Fig.4.2). In order to ensure pure absorption-mode lineshapes
the number of increments Ninc is chosen as 2k with k = 1,2,3.... This constraint arises as
a result of the Fourier transform of the indirect dimension yielding a Dirac delta function
δ (ω1 −mωr).

We now turn to discussing the PASS spectrum of a single spin I = 1 nucleus subject to the
first-order quadrupolar interaction. From the satellite order d diagram in Fig.4.2 we notice
that the d-order remains unaffected throughout the sequence and under static conditions this
would indicate that evolution occurs during this time period. However, MAS provides a
periodic modulation of the spatial part of the interaction and refocusses the interaction every
rotor period if the spin part is not perturbed. Since the constant time period T is a multiple of
a rotor period, at beginning of the acquisition at t = 0 the first-order quadrupolar interaction
is refocussed. Thus, we write the expression of the accrued phase for each transition as:

±ΦQ(0;γQR) =±ξq

(
t2 +

γQR
ωr

;0
)
∓ξq

(
γQR
ωr

;0
)
. (4.8)
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Table 4.1: Best fit tensor parameters obtained from the 2D quadruple shifting d-echo (static) and
PASS (MAS) spectra of CuCl2·D2O.

Method δiso (ppm) ∆δ (ppm) ηS CQ (kHz) ηQ
Static 78±2 −153±3 0.87±0.03 118.3±0.6 0.86±0.01
MAS 76.8±0.2 −179±5 0.77±0.03 120.0±1.8 0.84±0.03

Sample α (◦) β (◦) γ (◦)
Static 94.5±0.3 89.8±0.9 3.5±0.3
MAS 108±6 117±3 2±4

Again we can derive the powder averaged time domain signal:

S(t2) =
+∞

∑
n=−∞

(
In + I−n

)
exp[inωrt2], (4.9)

where the amplitude In is the sideband intensity due to one of the spin transitions:

In =
1

4π

∫ 2π

0
dαQR

∫
π

0

1
2

[
C(n)

q

]2
sin(βQR)dβQR. (4.10)

In the spectrum the spinning sideband manifolds of each transition are superimposed, and
so the sideband intensity is a sum of the amplitudes

(
In + I−n

)
. As predicted the first-order

quadrupolar interaction does not evolve during the “pseudo-t1” dimension and the sidebands
are observed at zero frequency (see Fig.4.2).

We have established that the shift anisotropy evolves during the “pseudo-t1” period, while
the projection on the direct dimension will comprise contributions from both interactions.
Elimination of the shift anisotropy from the direct dimension is achieved by performing a
shearing transformation parallel to the “pseudo–t1” dimension with a shear ratio of κ =−1,
in analogy to the static experiments described in Chapter 3. The projection onto one axis
shows the shift anisotropy, while the second gives first-quadrupolar interaction together with
the isotropic shift. Therefore, we denote these dimensions as shift anisotropy and isotropic
shift/quadrupole dimensions. Furthermore, the sideband intensities of the 2D spinning side-
band manifold provide information about the relative orientation between the two tensors.
However, we note that a major disadvantage of the sequence is the poor excitation bandwidth
due to the use of five π pulses.

4.2 Experimental performance of the PASS sequence
We continue by evaluating the performance of the sequence experimentally and compare
the results with the static methods. In Paper II we have examined two paramagnetic sys-
tems Ni(CD3COO)2 · 4H2O and CuCl2 · 2D2O and two different samples of an anion con-
ductor oxhydride BaTiO3−xDy. However, here we will only focus on the most challenging
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Figure 4.3: Experimental and simulated 2H PASS spectra of CuCl2 ·2D2O. From left to right are
given experimental, best fit, and best fit residual 2H PASS spectra of CuCl2 ·2D2O. Both experi-
mental and simulated spectra have been sheared. The projection of the isotropic shift/quadrupole
dimension shows the spinning-sideband manifold, while the projection of the shift anisotropy di-
mension shows the profile of the spinning sideband intensities. Spectra were acquired/simulated
at 4 kHz MAS. Reproduced from [109], with permission of AIP Publishing.

case CuCl2 ·2D2O, which exhibits the largest anisotropic interactions for 2H among the stud-
ied samples. The sheared and Fourier transformed spectrum of CuCl2 · 2D2O is given in
Fig.4.3. Inspection of the spectrum reveals considerable phase distortions in the isotropic
shift/quadrupole dimension, which arise due to the poor excitation bandwidth of π pulses.
In order to quantify the impact of the finite pulse effects and pulse imperfections on the 2D
lineshape we proceed by extracting the NMR parameters of the individual interactions and
the Euler relating the two tensors.

In an effort to obtain the isotropic shift and EFG tensor components we fit the isotropic
shift/quadrupole dimension. Subsequently, the 2D lineshape was fit to procure the shift
anisotropy and assymetry together with the Euler angles defining the orientation between
the two tensors. The best fit values from the PASS and static quadruple adiabatic shifting
d-echo experiment are collected in Table 4.1. While the isotropic shift and the quadrupolar
parameters are in agreement between the static and MAS experiments, the shift anisotropy
and asymmetry exhibit considerable differences and do not match within the margin of er-
ror (Table 4.1). The discrepancy is most likely a result of the poor excitation bandwidth of
the π pulses, which generate unwanted satellite order d pathways. As discussed in Chapter
3 phase cycling cannot eliminate these undesirable pathways, since the d-order is selected
indirectly. The artefact pathways lead to incomplete refocussing of the evolution due to the
first-order quadrupolar interaction during the “pseudo-t1” evolution period. This evolution
of the first-order quadrupolar interaction provides an additional source of broadening to the
shift anisotropy dimension, thus increasing the extracted shift anisotropy value and influenc-
ing the accuracy of the asymmetry parameter. Similarly, the α and β Euler angles relating
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the orientation between the two tensors show significant differences (15−30◦) between the
static and MAS experiments. Again we can rationalize this systematic error on the basis of
the low excitation bandwidth.

Nevertheless, we conclude that accurate tensor components can be procured, in particular
of the quadrupolar parameters and isotropic shift, employing the PASS sequence. In addi-
tion, due to MAS the sensitivity is significantly increased, hence shortening the experimental
time. Furthermore, the sequence opens the avenue to study more complex samples containing
multiple local hydrogen environments.
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5
Excitation of large anisotropic

interactions by low-power
irradiation

The discussed solid-state NMR techniques have hitherto focussed on experiments that per-
form well on systems with anisotropic interactions smaller or similar in magnitude to the
available RF field amplitude. In many cases the nuclear hyperfine interaction and first-order
quadrupolar interaction spread the resonances over several MHz, which renders the excitation
and manipulation of the signal by conventional pulses and even adiabatic pulses ineffective.
Furthermore, due to the very broad resonance a reduction in both sensitivity and resolution
is observed for these systems. In the context of spin I = 1 nuclei this is one of the main
challenges for widespread investigation of the 14N, the most prevalent isotope of nitrogen
with a natural abundance of 99.6%. Several approaches have been proposed for broadband
excitation of these resonances. [110–113]

In static solids adiabatic pulses have been employed to achieve excitation windows up to
1 MHz, still acquisition of several subspectra at different transmitter offset frequencies are
necessary to obtain the complete lineshape. This leads to long experimental times, which can
be improved by using the Carr-Purcell-Meiboom-Gill acquisition that refocusses the magne-
tization dephasing due to the anisotropic interactions during the FID and increases the sen-
sitivity of the experiment. [110; 111] As explained in Chapter 4 MAS experiments have the
advantage over static methods in terms of sensitivity and resolution. Under MAS broadband
excitation can be obtained by using the delays alternating with nutation for tailored excitation
pulse scheme, [112; 113] which splits the excitation pulse into shorter pulses separated by
a rotor period. As a result the excitation bandwidth is divided into a comb with the tines
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located at the positions of the sidebands. However, the bandwidth of the isotropic resonances
is limited, since the breadth of each tine is a few kHz.

Typically higher resolution is achieved by probing the 14N resonances indirectly via a spin
I = 1/2 nucleus. Originally, this was addressed in 1D experiments using the transfer of pop-
ulations in double resonance (TRAPDOR) method. [114; 115] More recently, 2D methods
have been introduced separately by Gan et al. [116–118] and Bodenhausen et al. [119–122]
for correlating single-quantum (SQ) 14N coherences with spin I = 1/2 nuclei. The advantage
of these methods is two-fold. First, the resolution is significantly increased due to the larger
spectral dispersion of 2D experiments and the narrower linewidth of spin I = 1/2 nuclei.
Second, the sensitivity is enchanced due to the higher gyromagnetic ratio of 1H or 13C. Most
of the methods can be categorized as heteronuclear multiple-quantum correlation (HMQC)
methods, but the experiments differ in the 1H to 14N polarization transfer approach. Many
different strategies for the polarization transfer have been employed, for instance, transfer via
the J-coupling and residual dipolar splitting, [116; 119–121] rotary resonance, [117; 122]
symmetry-based recoupling, [123; 124] TRAPDOR [125; 126] or cross-polarization. [127]
However, these experiments limit the spectral window in the 14N dimension in order to refocus
the first-order quadrupolar interaction. Although recently a TRAPDOR-HMQC experiment
was proposed for removing this restriction. [128]

Alternatively, this can be solved by exciting double-quantum (DQ) 14N resonances. Since
the transition is symmetric for spin I = 1 nuclei it is not affected by the first-order quadrupolar
interaction, which potentially allows to choose the spectral window freely. Furthermore, the
sideband linewidth is less sensitive to the magic-angle misset. The excited DQ coherences
can be detected directly via 14N overtone spectroscopy. [129–131] However, the low excita-
tion efficiency and poor bandwidth has hindered routine application of the method. On the
other hand, the DQ spectrum can be obtained by indirect detection via the single-quantum
coherence of 14N [66; 132] or a spin I = 1/2 nucleus. [119–122; 133]. However, the avail-
able DQ excitation sequences exhibit low and nonuniform excitation efficiency, meaning that
crystallites with different orientations are not excited equally.

In Paper III we address the issue of excitation of large anisotropic interactions under MAS
using phase-modulated pulse sequences with low-power pulses. We begin by providing a gen-
eral theoretical framework applicable to any spin system subject to interactions among which
the Hamiltonians commute. We exemplify the utility of the framework by describing DQ ex-
citation of spin I = 1 nuclei in the low-power regime. In Section 5.1 we provide an overview
of the new theoretical formalism for analysing low-power excitation of large anisotropic in-
teractions. Followed by an application of the theoretical framework to DQ excitation of spin
I = 1 nuclei in Section 5.2.
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5.1 Theoretical description of low-power irradiation of spins
subject to large anisotropic interactions

5.1.1 The jolting frame description

In Paper III we provide a theoretical description of phase-modulated rotor-synchronised pulse
sequences in the low-power regime. In the current context pulses with RF amplitude smaller
than the spinning frequency (|ω1| < |ωr|) are defined as low-power pulses. Moreover, we
consider anisotropic interactions as large if the magnitude of the interaction is exceedingly
larger than the spinning frequency (|Ω(Λ)| ≫ |ωr|). The phase-modulated rotor-synchronised
pulse sequences are often called as symmetry-based sequences [134; 135] and, in general,
are composed of N pulse elements q = 0,1,2, ...,N − 1 in n rotor periods such that the qth
pulse element with phase φq begins at time t(0)q = qτp. τp is the length of each pulse element.
The Hamiltonian of the qth pulse is expressed as:

Ĥ1(tq) = R̂z(φq)Ĥ1(t0)R̂z(φq)
−1, (5.1)

where tq is the time point within the qth pulse (t(0)q ≤ tq < t(0)q+1). Ĥ1(t0) is the RF field
Hamiltonian of the zeroth (q = 0) pulse element. Assuming that φ0 = 0, the Hamiltonian is
given by Ĥ1(t0) = ω1 Îx. Furthermore, following the approach of Levitt et al. [134; 135] for
symmetry-based methods the phase of the qth pulse is expressed as:

φq = 2νπq/N, (5.2)

where ν is the spin winding number. We notice that each pulse element considered here will
produce a rotation about an axis located in the transverse (xy-) plane, thus we designate these
sequences as XNν

n .
We note that the total Hamiltonian Ĥ(t), which includes the internal spin interactions

given in Eq.2.33 and RF field Hamiltonian in Eq.5.1, exhibits two sources of time depen-
dency due to RF pulses and periodic modulation of spatial part of the interaction by MAS.
In general, the Hamiltonian does not self-commute at different times, i.e. [Ĥ(t1), Ĥ(t2)] ̸= 0,
and so the spin dynamics are analyzed by finding approximate solutions, for instance, by
employing average Hamiltonian theory (AHT). [33; 46] To ensure that the expansion of the
average Hamiltonian converges quickly we transform into the interaction frame of the largest
interaction. In the present case, we are examining low-power irradiation of nuclei subject to
large anisotropic interactions, therefore we transform into the interaction frame of the large
anisotropic spin interaction(s), or the so called jolting frame. [112] Formally we can express
the transformation of the Hamiltonian during the qth pulse element into the jolting frame as:

H̃(tq) = Û (large)
0 (tq,0)−1Ĥ1(tq)Û

(large)
0 (tq,0)+ ∑

Λ,small
∑
l,λ

Ω
(Λ)
l0,λ0(tq)t̂

(Λ)
λ0 . (5.3)

The transformation occurs into the interaction frame of the periodic part of the large
anisotropic interaction(s). The sum in Eq.5.3 refers to any remaining internal spin interaction
terms, such as isotropic and small anisotropic interactions.
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It is convenient to examine the features of the jolting frame Hamiltonian by expressing it
as a Fourier series as given below:

H̃(tq) =
+∞

∑
µ=−∞

∑
p=0,±

ĥµ,p(t0)exp(iµωrt0)× exp
[

i
2πq
N

(µn−ν p)
]
. (5.4)

The coefficients ĥµ,p(t0) are expressed as:

ĥµ,p(t0) = ω1

+I

∑
M=−I

1
2

√
I(I +1)−M(M+1)

×
(

A(pµ)
c,M+1,Mexp

(
piφ (pµ)

c,M+1,M(γPR))
)

Î(M+1,M)
p

)
, (5.5)

for coherences p ̸= 0, while for coherence p = 0 the coefficient is given by:

ĥµ,0(t0) = ∑
Λ,l,λ

∆µ,mωc,l0,λ0,−µ(γPR)t̂
(Λ)
λ ,0 . (5.6)

The Hamiltonian (H̃(tq)) in Eq.5.4 describes the exact spin dynamics in the jolting frame. We
see that each jolting frame Hamiltonian term exhibits a spatial dependence via the sideband-
order µ of the spinning sideband manifold and a spin dependence due to the order p of the
corresponding operator in the RF field Hamiltonian. This reflects the two-fold time depen-
dence of the Hamiltonian due to the sample rotation and the pulse sequence. In the Section
5.1.2 we approximate the Hamiltonian using AHT to obtain a qualitative depiction of the spin
physics.

5.1.2 Selection rules

In symmetry-based sequences the spatial part of the interaction is modulated by the sam-
ple spinning, whilst the spin part is affected by the pulse sequence. The relation between
the two time dependencies can be utilized to retain or suppress certain components of the
Hamiltonian. This property has been exploited to decouple or recouple certain spin interac-
tions. Qualitatively the selection of the symmetry-allowed Hamiltonian terms is determined
by selection rules. [134; 135] Therefore, here we discuss the selection rules of the low-power
symmetry-based methods, which are obtained by approximating the jolting frame Hamilto-
nian by AHT.

Eq.5.4 is used to derive the first-order average Hamiltonian given below:

H(1)
=

+∞

∑
µ=−∞

∑
p=0,±

H(1)
µ,p, (5.7)
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where the components of the first-order average Hamiltonian are expressed as:

H(1)
µ,p =

1
τp

∫
τp

0
dt0

+∞

∑
µ=−∞

∑
p=0,±

ĥµ,p(t0)exp(iµωrt0)

× 1
N

N−1

∑
q=0

exp
[

i
2πq
N

(µn−ν p)
]

(5.8)

As expected the first-order average Hamiltonian consists of a sum of different components,
which have a spatial dependence via the sideband-order µ , and a spin dependence due to the
order p of the corresponding operator in the RF field Hamiltonian. Evaluating the sum in
the second line of Eq.5.8 over the pulse elements q, gives the following selection rule for the
first-order average Hamiltonian:

H(1)
µ,p = 0 if µn−ν p ̸= NZ, (5.9)

where Z is any integer. The selection rule indicates that specific terms of the average Hamilto-
nian can be removed by choosing a sequence with XNN

n to satisfy µn−ν p ̸= NZ. Following
a similar procedure selection rules can be derived for higher-order average Hamiltonians. For
the second-order average Hamiltonian the selections rules are summarised as:

H(2)
µ1µ2,p1 p2

= 0 if



µ1n−ν p1 ̸= NZ1

AND
µ2n−ν p2 ̸= NZ2

AND
(µ1 +µ2)n−ν(p1 + p2) ̸= NZ3,

(5.10)

where H(2)
µ1µ2,p1 p2

are the second-order average Hamiltonian components and Z1, Z2 and Z3
are integers. The derived selection rules are identical to the symmetry-based C sequences
of Levitt et al. [134; 135]. Furthermore, in analogy to the conventional symmetry-based
sequences the selection rules depend on the winding number ν , number of rotor periods n
and the number of pulses N. However, here the sideband order µ of the manifold and the
coherence order p encodes the spatial and spin dependence in the jolting frame Hamiltonian,
respectively, while in the formalism developed by Levitt et al. [134; 135] the spin and space
order encode the spin and spatial parts in the Hamiltonian. The selection rules provide a
qualitative assessment of which components are symmetry forbidden. However, the approach
does not give any quantitative insights on the non-zero terms, which in certain cases can be
zero due to “hidden” symmetry. In order to gain information about the magnitude of the
non-zero components numerical simulations or explicit calculations are necessary.

The discussion of the theoretical formalism has been hitherto general and can be employed
to characterize the spin dynamics of any spin I provided the low-power regime is satisfied.
In Section 5.2 we demonstrate the applicability of the theoretical approach by investigating
double-quantum (DQ) excitation for spin I = 1 nuclei.
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5.2 Application to DQ excitation in spin I = 1 nuclei

5.2.1 Theoretical description of double-quantum excitation in spin I = 1 nuclei

In order to analyse the DQ excitation of spin I = 1 nuclei we consider a simplified spin system,
which consists of an isolated spin I = 1 nucleus subject to the isotropic shift and first-order
quadrupolar interactions. We find the approximation to be justified for the systems studied
here, since the first-order quadrupolar interaction is expected to be at least an order of mag-
nitude larger than the shift anisotropy or the second-order quadrupolar interaction. Trans-
forming the total Hamiltonian Ĥ(t) into the interaction frame of the first-order quadrupolar
interaction, yields a jolting frame Hamiltonian with the following coefficients:

ĥµ,±1(t0) =

√
2

2
ω1A(±µ)

c,0,−1exp
(
±iφ (±µ)

c,0,−1(γQR)
)

Î(0,−1)
±

+

√
2

2
ω1A(±µ)

c,+1,0exp
(
±iφ (±µ)

c,+1,0(γQR)
)

Î(+1,0)
± (5.11)

for p ̸= 0 and

ĥµ,0(t0) = ∆µ,0Ω0 Îz (5.12)

when p = 0. We note that the spinning sideband manifold due to the first-order quadrupolar
interaction is symmetric with respect to the centreband and so the sidebands of the two tran-
sitions are related by a reversal about the centreband. The sideband amplitude and phase can
be redefined as:

A(µ)
c,+1,0 = B(µ)

q , φ
(µ)
c,+1,0(γQR) = ξ

(µ)
q (γQR) (5.13)

A(µ)
c,0,−1 = B(−µ)

q , φ
(µ)
c,0,−1(γQR) =−ξ

(−µ)
q (γQR) (5.14)

This symmetry property of the first-order quadrupolar interaction will greatly simplify the
form of the average Hamiltonians of the DQ excitation sequences.

Excitation of DQ coherences from magnetization at thermal equilibrium (Îz = 2Î(+1,−1)
z )

occurs if the RF field term contains DQ spin operators (Î(+1,−1)
± ) as summarised by the trans-

formation below:

exp
(
−iφ Î(+1,−1)

x

)
Î(+1,−1)
z exp

(
+iφ Î(+1,−1)

x

)
= cos(φ)Î(+1,−1)

z − sin(φ)Î(+1,−1)
y . (5.15)

Spin operators with order p = ±2 emerge in the Hamiltonian only with the second-order
average Hamiltonian, therefore, the Hamiltonian must be evaluated at least to the second-
order.
DQ excitation with a single-sideband-selective pulse. First we consider the simplest DQ
excitation scheme in the low-power regime a single-sideband-selective pulse. To facilitate the
discussion we henceforth refer to it as a single pulse and label it as X10

1 in accordance with the
notation introduced in Section 5.1. We begin by deriving the first-order average Hamiltonian.
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Based upon the sequence parameters n= 1, N = 1 and ν = 0 and the selection rules we notice
that Hamiltonian components are symmetry allowed for all sideband-orders µ . In contrast,
the integral in Eq.5.8 is non-zero only for µ = 0, which demonstrates an instance of “hidden”
symmetry within each pulse sequence element that is not predicted by the selection rules.
Hence the first-order average Hamiltonian is given by:

H(1)
QX10

1
=
√

2ω1B(0)
q

(
R̂(+1,0)

z (γQR)Î
(+1,0)
x R̂(+1,0)

z (γQR)
−1

+ R̂(0,−1)
z (γQR)Î

(0,−1)
x R̂(0,−1)

z (γQR)
−1
)
+Ω0 Îz. (5.16)

The Hamiltonian can be interpreted as the application of a RF field to each of the two SQ
transitions. Additionally we have a term due to the evolution of the isotropic shift. Clearly,
DQ coherences are not excited by this Hamiltonian.

We continue by evaluating the second-order average Hamiltonian. The selection rules
reveal that the Hamiltonian components are non-zero for all pairs of (µ1,µ2). As before, the
second-order average Hamiltonian contains terms with “hidden” symmetry, hence sideband-
order pairs of (0,0),(−µ,µ), and (0,µ) are non-zero. The explicit derivation of the “hid-
den” symmetry allowed components and second-order average Hamiltonian is mathemati-
cally more involved and is provided in Paper III. The obtained second-order average Hamil-
tonian is given by:

H(2)
QX10

1
=

ω2
1

2ωr
dΣ

(
Î(+1,−1)
x + Î(+1,0)

z − Î(0,−1)
z

)
, (5.17)

where dΣ is a dimensionless quantity the value of which is determined by the sideband am-
plitude and phase as shown below:

dΣ = ∑
µ ̸=0

1
µ

[(
B(µ)

q

)2
−
(

B(−µ)
q

)2
−2B(0)

q B(µ)
q cos

(
ξ
(µ)
q (γQR)−ξ

(0)
q (γQR)

)
+ 2B(0)

q B(−µ)
q cos

(
ξ
(−µ)
q (γQR)−ξ

(0)
q (γQR)

)]
(5.18)

The Hamiltonian comprises a rank-2 longitudinal spin operator Î(+1,0)
z − Î(0,−1)

z and a DQ
spin operator. The Î(+1,0)

z − Î(0,−1)
z operator commutes with Îz, thus does not influence the

equilibrium magnetization, while the DQ spin operator will excite DQ magnetization. Anal-
ysis of the Hamiltonian also provides insights about the disadvantages of this sequence. The
excitation scheme apart from DQ coherences also generates SQ coherences, which can poten-
tially reduce the excitation efficiency of DQ magnetization, in particular for long irradiation
times. Furthermore, the second-order average Hamiltonian depends on the Euler angle γQR
through the sideband phase in the expression dΣ. This means that the DQ excitation scheme
is not γ-encoded and will lead to the appearance of “artefact” spinning sidebands in the DQ
dimension, unless rotor-synchronization is employed, which reduces the spectral window.
DQ excitation with x-inverse-x sequence. Initially, the x-inverse-x scheme was developed
for heteronuclear decoupling, [136] but since has been applied to DQ excitation of spin I = 1
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Figure 5.1: γ-encoding properties of different XNν
n pulse sequences. (a) shows a schematic rep-

resentation of the sideband pairs contributing to the second-order average Hamiltonian for X21
2,

X6231
6 and X9447

6 sequence. The filled and empty squares represent non-zero and zero terms,
respectively. The DQ excitation efficiency as a function of irradiation time and γQR is given in (b)
for a single 14N spin subject to only the first-order quadrupole interaction. Details of simulations
can be found in Paper III. Reproduced from [137], with permission of AIP Publishing.

nuclei in an effort to eliminate the excitation of SQ terms up to second-order. In our notation
we denote the sequence as X21

2. According to the selection rules the only non-zero terms
in the first-order average Hamiltonian are when p = 0 and µ = 0. The first-order average
Hamiltonian is given by:

H(1)
QX21

2
= Ω0 Îz (5.19)

We notice that the Hamiltonian does not include any RF field terms, hence SQ coherences
will not be excited.

Again the derivation of the second-order average Hamiltonian is mathematically more
involved and complete treatment is given in Paper III. Here we only quote the result, which
is identical to the single pulse case:

H(2)
QX21

2
=

ω2
1

2ωr
dΣ

(
Î(+1,−1)
x + Î(+1,0)

z − Î(0,−1)
z

)
(5.20)

As expected, we see that the Hamiltonian up to the second-order only generates DQ coher-
ences, and so theoretically should give rise to higher DQ excitation efficiencies than a single
pulse sequence. Similarly as the X10

1 sequence, X21
2 scheme is not γ-encoded, since the DQ
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spin operator in the second-order average Hamiltonian is proportional to dΣ, which depends
on the Euler angle γQR. Closer examination of the sum dΣ reveals that components with
sideband pairs (µ1,µ2) = (−µ,0) and (0,µ) are not γ-encoded, while terms with sideband
pairs are independent of γQR, hence are γ-encoded. We illustrate the sideband contributions
to the Hamiltonian schematically in Fig.5.1(a). Furthermore, spin dynamic simulations in
Fig.5.1(b) demonstrate the variation of the DQ excitation magnitude as a function of γQR.
Therefore, we suspect that the design of a γ-encoded sequence would be possible by choos-
ing a set of (n,N,ν) so that the second-order average Hamiltonian would only depend on the
terms with antidiagonal sideband pairs.
New DQ excitation pulse schemes. Here we are interested in designing a γ-encoded pulse
sequence. We begin by considering a general XNν

n sequence. First a restriction is set on
the sequence parameters so that no SQ coherences are excited. From the selection rules in
Eq.5.9 Hamiltonian terms with p =±1 can be removed if n, N are even, and ν = N/2 is odd.
We note that this is but one of many options for eliminating RF field terms in the first-order
average Hamiltonian.

For the second-order average Hamiltonian only the third condition of the selection rules
in Eq.5.10 is met with the chosen n, N and ν values. Furthermore, only p1+ p2 values of +2,
0, −2 are relevant in the present case (see Paper III for more detail) and the selection rule is
reduced to:

µ1 +µ2 =
N
n

Z. (5.21)

We see that the allowed Hamiltonian terms are µ1+µ2 = 0,±N/n,±2N/n,±3N/n, ...There-
fore setting N sufficiently larger than n we can remove any terms other than with µ1+µ2 = 0,
which are γ-encoded. Assuming that we only retain Hamiltonian terms with µ1 +µ2 = 0 the
second-order average Hamiltonian is given by:

H(2)
QXNν

n ad =
ω2

1
2nπωr

∑
µ ̸=0


(

B(µ)
q

)2
−
(

B(−µ)
q

)2

µ2


×
[
µnπ −Ntan

(
µnπ

N

)][
Î(+1,−1)
x + Î(+1,0)

z − Î(−1,0)
z

]
(5.22)

We notice that the Hamiltonian only comprises terms with antidiagonal sideband pairs, thus
sequences XNν

n with N/n greater than the number of sidebands are γ-encoded up to the
second-order. In order to verify these analytical results we examine the X6231

6 sequence.
Fig.5.1(a) shows that for this sequence a few off-antidiagonal terms will still contribute, how-
ever, the sideband intensity products of these pairs will be very small and the resulting Hamil-
tonian terms almost negligible. We confirm this by simulating the DQ excitation efficiency
as a function of the γQR angle, which displays an approximately constant DQ excitation am-
plitude profile (Fig.5.1(b)). The slight modulations of the DQ efficiency are explained by
the interference from higher-order Hamiltonians. Finally, we give an example of a sequence
(X9447

6 ) for which the off-antidiagonal terms are completely removed (see Fig.5.1). Again
small deviations from a constant character of the DQ excitation magnitude are observed, in
analogy to the X6231

6 sequence. Nevertheless, we expect both sequences to be γ-encoded.
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or

1H

14N

14N
(       )(       )

(a)

(b)

Figure 5.2: Dipolar double-quantum heteronuclear multiple-quantum correlation (D-DQ-
HMQC) pulse sequences. D-DQ-HMQC with DQ excitation/reconversion blocks using a single
pulse (a) and XNν

n scheme (b) are provided along with the 1H and 14N coherence pathways. The
filled and empty rectangle represent π/2 and π pulses, respectively. RNν

n are the symmetry-based
heteronuclear dipolar recoupling sequences. Reproduced from [137], with permission of AIP
Publishing.

5.2.2 Experimental evaluation of the DQ excitation pulse sequences

Finally we examine the performance of the DQ excitation schemes experimentally and com-
plement our results with numerical simulations of spin dynamics. As discussed earlier the
DQ coherences can be detected directly via overtone spectroscopy or indirectly by correla-
tion with SQ coherences of 14N or another nucleus. The theoretical description in the current
form is not valid for overtone spectroscopy and so we opt for the latter strategy. Hence we
incorporate the DQ excitation scheme into a HMQC type sequence as shown in Fig.5.2 and
to increase experimental sensitivity we choose to correlate 14N DQ signals with 1H.

Briefly, the first pulse in the sequence given in Fig.5.2 acts on the 1H and excites the 1H co-
herences. The magnetization is transferred to 14N via a symmetry-based hereonuclear dipolar
recoupling scheme (RNν

n ). Next we excite the DQ coherences of 14N, which is followed by the
t1 evolution period. Afterwards, we have the DQ reconversion and the heteronuclear dipolar
reconversion schemes (both identical to the schemes at the beginning of the sequence) that
together generate 1H SQ coherences, which are detected. Finally we note that the π pulse
on the 1H channel refocusses the evolution of any heteronuclear dipolar and J-coupling evo-
lution. Henceforth, we refer to the sequence as the dipolar double-quantum heteronuclear
multiple-quantum correlation (D-DQ-HMQC).

In Paper III we investigate the performance of the DQ sequences on 14N in glycine and
N-acetyl-valine, which represent cases with “moderate” and “large” quadrupolar interactions,
respectively. However, here we review only the results obtained with glycine. We first exam-
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Figure 5.3: Experimental and simulated contour plots for generation of 14N DQ coherence from
microcrystalline powder of glycine. From left to right are shown simulated and experimental DQ
coherence generation efficiency plots as a function of irradiation time and RF field amplitude using
a single pulse (a), X21

2 (b) and X6231
6 (c) for DQ excitation and reconversion. The simulated DQ

generation efficiency was obtain from a DQ-filtered experiment by varying the irradiation time and
RF field amplitude symmetrically of both the excitation and reconversion blocks. The simulations
included the first- and second-order quadrupolar interactions. See Paper III more simulation and
experimental details. Reproduced from [137], with permission of AIP Publishing.
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ine the DQ excitation/reconversion efficiency. Fig.5.3 shows the simulated and experimental
DQ excitation/reconversion efficiency as a function of irradiation time and RF field amplitude
for X10

1 (a), X21
2 (b) and X6231

6 (c) sequences. For short irradiation times (< 0.3 ms) the exper-
imental and simulated plots match very well in the case of X10

1 and X21
2. We notice that X21

2
yields greater DQ excitation efficiency and exhibits good excitation over a larger set of values.
The observed differences are in line with our predictions based on the form of the average
Hamiltonians of the two sequences. For the single pulse SQ coherences are excited, which
leads to lower DQ efficiencies, especially for longer recoupling times. The discrepancy be-
tween the experiment and simulation for longer irradiation times (> 0.3 ms) can be explained
by 14N coherence relaxation. In the case of X6231

6 both simulated and experimental plots of
DQ excitation/reconversion efficiency reveal relatively low excitation efficiency. Moreover,
significant differences between experimental and simulated plots are observed. We ascribe
these discrepancies mainly to RF pulse imperfections. In particular, to the phase transients,
which can form due to the abrupt phase change from 0 to π in the XNν

n sequence.[138; 139]
Subsequent accumulation of the phase errors decreases the DQ excitation efficiency. Similar
detrimental effects are expected for the X21

2, however, due to the fewer number of pulses the
DQ generation is less affected.

While the design of pulse sequences with high DQ excitation efficiency is beneficial for
increasing the experimental sensitivity, uniform excitation of all the crystallite orientations
is equally desirable. Uniform excitation allows the acquisition of spectra with intact rank-
4 second-order quadrupolar lineshapes, hence accurate EFG tensor parameters can be ex-
tracted. Therefore, we continue by assessing the DQ excitation efficiency dependence on the
crystallite orientation. 2D D-DQ-HMQC experiments of glycine were acquired using three
different DQ excitation schemes. Fig.5.4(a) shows the obtained 14N DQ projections for each
of the sequences. The isotropic position and the linewidth essential match with the ideal sim-
ulated spectrum (see Fig.5.4(b) in red), however, any clear-cut features of the quadrupolar
lineshape are absent. The difference between experiment and the simulated lineshapes are
potentially caused by the combination of instrumental limitations and an insufficient descrip-
tion of the spin dynamics in the simulations. Associated with the technical limitations we
have RF inhomogeneity, phase transients, and MAS frequency instability, that can impact the
DQ excitation efficiency and produce distorted quadrupolar lineshapes. From the perspective
of simulations, we assume that we have a perfectly crystalline “sample” containing an isolated
spin subject to only the first-order and second-order quadrupolar interactions. While in a real
sample, the spin is subject also to dipole interactions, relaxation (including anisotropic), in
addition, it may lack crystallinity and exhibit structural disorder. All of these effects influence
the experimental lineshape, but, in general, it is challenging to establish the prevalent con-
tributions and the exact impact of the factors on the lineshape. Finally, we can also identify
inherent factors due to the pulse sequence, for instance, the orientation dependence on the
excitation/reconversion of both the heteronuclear dipolar recoupling and DQ scheme.

Here we are interested in understanding the effect of the latter scheme. Fig.5.4(b) (black)
shows the simulated second-order quadrupolar lineshape using the DQ schemes X10

1, X21
2

and X6231
6 . In order to characterize the contribution from each orientation we simulated

the DQ excitation efficiency as a function of αQR and βQR and results are plotted using a
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Figure 5.4: Experimental and simulated second-order quadrupolar lineshape from microcrys-
talline powder of glycine. (a) shows the experimental projections of the indirect dimension of
2D-D-DQ-HMQC spectra using a single pulse, X21

2 or X6231
6 for DQ generation. Full 2D D-DQ-

HMQC spectra are available in Paper III. Simulated projections of the indirect dimension of 2D
DQ-SQ spectra using single pulse, X21

2 or X6231
6 for DQ generation are provided in (b) in black,

while the ideal second-order quadrupole lineshapes are given in red. The simulated DQ-SQ ex-
periments were performed with the same irradiation times and RF powers as the experimental 2D
D-DQ-HMQC. The DQ excitation efficiency for each crystal orientation (α,β ) is shown in (c)
using a spherical coordinate system (1.0,α,β ). The intensity for each crystallite was acquired
from a DQ-filtered experiment, averaging over 48 γ angles was used. Reproduced from [137],
with permission of AIP Publishing.
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Figure 5.5: 2D D-DQ-HMQC spectra with large spectral window in the indirect dimension of
glycine obtained with X21

2 (a) and X6231
6 (b). Reproduced from [137], with permission of AIP

Publishing.

spherical coordinate system (1.0, αQR,βQR) as shown in Fig.5.4(c). Each point on the sphere
displays the expectation value of the DQ magnetization for a single (αQR,βQR) pair. The over-
all pattern of the excitation efficiency is very similar for the single pulse and X21

2 sequence,
however, slightly lower efficiencies are observed across most (αQR,βQR) pairs for the single
pulse. This is in agreement with our analytical evaluation that revealed that the DQ excitation
is governed by identical second-order average Hamiltonian for both sequences, but SQ terms
are generated in the single pulse case, which lowers the DQ excitation efficiency. Whereas the
X6231

6 sequence displays a distinct excitation efficiency dependence on crystallite orientation
from the other two sequences. These differences are somewhat visible in the experimental
lineshape. While neither sequence produces a spectrum with well-defined quadrupolar line-
shape features, still based on the peak position and the lineshape width accurate quadrupolar
products can be extracted.

We now turn to examine the DQ excitation amplitude dependence of X21
2 and X6231

6
schemes on the third Euler angle γQR. Generally, if the magnitude of the excited or recoupled
coherence depends on the γQR a time modulation due to this Euler angle is introduced. This
modulation induces “artefact” spinning sidebands, which may overlap with genuine peaks. In
Section 5.2.1 we argued that the X6231

6 is γ-encoded, meaning that it is independent of γQR.
In order to verify our predictions we acquired 2D D-DQ-HMQC spectra with a large spectral
window in the indirect dimension of the two XNν

n sequences. To guarantee that the signal is
not modulated by γQR due to the heteronuclear dipolar recoupling sequence we employed a
previously reported γ-encoded sequence. [140] The obtained spectra are shown in Fig.5.5.
As expected the spectrum acquired using X21

2 sequence gives rise to spinning sidebands in
the indirect dimension, while for X6231

6 spinning sidebands are not observed. Therefore,
we were able to successfully design a γ-encoded sequence (X6231

6 ) following the theoretical
approach introduced in Paper III.
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6
Determination of the electronic

structure and hydride occupancy
in barium titanium oxyhydride

Here we continue by demonstrating how the new NMR methods can be employed together
with density functional theory calculations to aid in the elucidation of the electronic structure
barium titanium oxyhydride BaTiO3−xHy. The material BaTiO3−xHy is typically obtained by
reduction of barium titanium oxide with a hydride anion containing compound. During the
synthesis the oxide ions are substituted by hydride ions or expelled to form oxygen vacancies
with stoichiometry x− y. Moreover, due to both processes electrons are introduced in the
otherwise empty Ti 3d-band as a result the material becomes an electrical conductor. In
addition, the oxyhydride exhibits hydride ion conduction. Due to the mixed electron-hydride
ion conduction the material has seen considerable interest for the development of energy
storage devices. In order to tailor the materials conduction properties for specific applications,
we must first have a complete understanding of the underlying conduction mechanisms. [141;
142]

Previously, two hydride ion diffusion mechanisms have been proposed. In the first mech-
anism the hydride ion transforms into a proton and diffuses interstitially through the mate-
rial. In the second mechanism the hydride ion diffusion occurs by hopping between available
oxygen vacancies. A number of studies employing complementary methods, such as iso-
tope exchange, [143] quantum chemical calculations, [144] quasielastic neutron scattering
(QENS) [145] and inelastic neutron scattering (INS) [146] have demonstrated that the latter
mechanism is more consistent with the experimental results. Although majority of the re-
ports on the hydride ion conduction dynamics are in agreement, the electronic structure and
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the corresponding electrical conductivity mechanism remains a subject of dispute.
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Figure 6.1: Possible electronic structures of barium titanium oxyhydride considered in this work.
From left to right the DFT optimized 2×2×2 supercells for a polaron (a), a bandstate (b) and a
double occupied bandstate (c) scenarios are shown. Below the structures the corresponding DFT
calculated electronic bandstructures are shown. The blue and red colours represent occupied and
unoccupied levels, respectively. The unpaired spin density is given by the isosurface in yellow.

The first electrical conductivity experiments pointed towards a semiconducting mecha-
nism in the bulk phase of BaTiO3−xHy. [141] However, the result was ambiguous since the
measurements were carried out on a powder sample without sintering, which may give erro-
neous data due to grain-boundary effects. Recently, more reliable measurements have been
performed on epitaxial thin films, which indicated that with low hydride content (y < 0.2)
BaTiO3−xHy is a semiconductor, whilst at high hydride content (y > 0.2) it is metallic. [147]
A DFT study suggested that the observed semiconducting behaviour in the material is due
to polaron formation. [144] Polarons are quasiparticles comprised of a charge carrier con-
fined to a potential energy well that is self-generated by distorting the local lattice. [148]
In BaTiO3−xHy the substitution of an oxide ion with hydride adds an electron to the empty
Ti 3d-band, where it can potentially localize generating an electron polaron (see Fig.6.1(a)).
Thermally activated polarons can jump between neighboring Ti ions, hence the bulk phase
would exhibit semiconductor-like conductivity. [149] More recently, a combined INS and
DFT investigation indicated that the additional electron favors delocalization among all Ti
3d-bands leading to a bandstate configuration (see Fig.6.1(b)) with metallic electrical con-
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Table 6.1: Isotropic shift of 2H and 2H concentration in BaTiO3−xDy

Sample δiso (ppm) 2H concentration (mol/f.u.)
BTODNAB -8.3 0.13
BTODCA -22 0.23

BTODEXCH -39 0.31

ductivity. [150] Misaki et al. using solid-state NMR also concluded that the oxyhydride is
more likely to have a bandstate electronic structure. However, in contrast to the previous
report the authors proposed that the each hydride site in the bandstate is occupied by two
hydrogens as shown in Fig.6.1(c). [151]

In an effort to finally resolve the electronic structure and occupancy in barium titanium
oxyhydride in Paper IV we employ solid-state NMR combined with DFT calculations. We
begin by examining the 1H and 2H MAS spectra of the oxyhydride. Followed by a compre-
hensive study of the 2H environment by determining the quadrupolar and shift tensor com-
ponents and the response of the parameters to temperature. The most important results of
Paper IV are summarised in Sections 6.1-6.4.

6.1 Comparison of 1H and 2H solid-state NMR

Since the hydride ions are directly bonded to Ti ions we expect that 1H or 2H NMR param-
eters to be very sensitive on the Ti electronic configuration that is whether the 3d electrons
form localized polarons (Fig.6.1(a)) or delocalize among all Ti (Fig.6.1(b) and 6.1(c)). 1H
spectrum acquired under MAS is given in Fig.6.2(a), which shows that for 1H we have ad-
ditional signals due to surface-adsorbed water and/or hydroxyl groups. These background
resonances overlap with the hydride signal, hence complicating quantitative and qualitative
analysis of the spectrum. Therefore, 2H appears to be a better “spy” nucleus to probe the
electronic structure of the material, furthermore, 2H is subject to the quadrupolar interaction,
which later will prove to be crucial for discerning the hydrogen occupancy.

Consequently, deuterated versions of BaTiO3−xHy were prepared. In total three samples
were synthesized. Two were obtained by reducing BaTiO3 with NaBD4 and CaD2, while in
the third case BaTiO3 was reduced with CaH2 followed by a hydride ion exchange with deu-
terium D2. Henceforth each sample is referred to as BTODNAB, BTODCA and BTODEXCH,
respectively. The corresponding 2H MAS spectra of each sample are shown in Fig.6.2(b).
As expected, the spectra are void of any resonances in the region of 0− 6 ppm, which in-
dicates that surface-adsorbed water and hydroxyl groups are not deuterated. The BTODNAB
and BTODCA samples give a single resonance with a negative shift corresponding to the hy-
dride ion, while BTODEXCH shows two hydrogen environments at −39 and −150 ppm. A
previous study reported that in TiD2

2H has a shift of approximately −150 ppm and so we
assign the second resonance in BTODEXCH to this impurity phase. [152] Finally, using the
2H spectra we are able to quantify the hydride content in each sample. The hydride isotropic
shifts are given in Table 6.1, along with the determined hydride concentration y.
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Figure 6.2: MAS NMR spectra of barium titanium oxyhydrides. (a) shows the 1H spectrum at
60 kHz MAS of unlabeled barium titanium oxyhdyride. In (b) from top to bottom are given 2H
spectra at 30 kHz MAS of BTODNAB, BTODCA and BTODEXCH, with their determined hydride
contents y.
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Figure 6.3: Experimental 2H spectra of BTODCA under static and MAS conditions. The static
1D and 4 kHz MAS spectra are shown in (a) and (b), respectively. The static 2D adiabatic shifting
d-echo experiment and 2D PASS at 4kHz MAS are given in (c) and (d), respectively.

6.2 Determination and analysis of the quadrupole and shift
tensor parameters

Needless to say, the spectra in Fig.6.2(b) obtained under 30 kHz completely average the
anisotropic parts of each interaction and no information about the orientation dependence
of the interaction tensors is available. Therefore, in order to extract the interaction tensor
parameters we need to acquire spectra at lower spinning frequencies or under static condi-
tion. The static and 4 kHz MAS 1D spectra of 2H in BTODCA are shown in Fig.6.3(a) and
6.3(b). Both the static powder pattern and sideband manifold are essentially featureless and
individual tensor parameters cannot be recovered. In previous sections we introduced ex-
periments that are tailored for analyzing such 2H environments by separating the shift and
first-order quadrupolar interactions. The sheared spectra obtained using the static adiabatic
shifting d-echo and 4 kHz MAS PASS experiments are given in Fig.6.3(c) and 6.3(d). The
dimension with the quadrupolar interaction for both spectra give rise to pristine Pake dou-
blets. However, in the shift anisotropy dimension of the PASS spectrum only four sidebands
are detected, which implies that accurate anisotropic information or the Euler angles relating
the two interactions cannot be procured. On the other hand, the adiabatic shifting d-echo
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experiment allows determination of these parameters, hence has an advantage over the PASS
sequence for this system. Thus, we acquired adiabatic shifting d-echo spectra for all three
samples.

The sheared adiabatic shifting d-echo spectra of all three BTOD samples are shown
in Fig.6.4. Apart from the sharp peak at zero frequency due to the impurity (TiD2) in
BTODEXCH, the spectral features of the 2H resonance qualitatively are very similar in the
three samples. Surprisingly, despite the presence of oxygen vacancies and anionic disorder
in the lattice the spectra exhibit very well-defined Pake doublets in the quadrupole dimen-
sion, which implies that hydride ions exhibit uniform local structure throughout the material.
To obtain a more quantitative assessment of the NMR parameters we proceed by fitting the
spectra. The best fit and the best fit residual spectra are shown in Fig.6.4 and the extracted
tensor components are summarised in Table 6.2. We notice that the quadrupolar tensor com-
ponents and the Euler angles match within margin of error among the studied samples, which
indicates that the different samples have equivalent local hydride environments and electronic
structures.

With the knowledge that the electronic structure is consistent between the different sam-
ples we continue by elucidating the electronic state. We note that the 2H shift tensor displays
significant differences among the samples (see Table 6.2). Before we explain this observa-
tion, we comment on the discrepancy in the isotropic shift value between the static and MAS
methods. Firstly, due to the broad lineshape in static sample the fit provides a lower accuracy
for the determination of the isotropic shift value. [153] Second, the available model used
for the fit does not account for isotropic shift and shift anisotropy distribution resulting from
structural disorder. Hence, the isotropic shift values estimated from MAS experiments (Ta-
ble 6.1) are used to draw conclusions about the properties of the material. The observed 2H
isotropic shifts are far outside the standard 1H/2H shift range of 0− 12 ppm, which suggest
that the nuclei experience a hyperfine field due to unpaired electrons. In the case of the pola-
ronic state the hyperfine interaction occurs with the electron polaron, while for the bandstate
with the conduction electrons. We anticipate that the dominant contribution to the shift will
arise from the Fermi contact term. [18; 154]

If we treat the polaronic state as a paramagnetic insulator, then the shift depends on the
transferred spin density to the hydrogen s-orbital ρα−β (0) (see Eq.2.90) and so the shift
should be additive with respect to the number of adjacent paramagnetic centres (polarons). In
the present case, we foresee two possible configurations with either one or two polarons next
to the hydride ion. Therefore, we conjecture that with increasing hydride content (potentially
increasing electron polaron concentration) a second shift should emerge at−16.6 ppm, which
is twice the shift position of 2H in BTODNAB. However, this does not occur experimentally.

For the bandstate the FC part of the Knight shift is proportional to the density of states
at the Fermi level (see Eq.2.91), hence depends on the number of electrons in the conduction
band (3d-band of Ti). As mentioned earlier, by substitution of oxide ions with hydride ions
an electron is donated to the the 3d-band of Ti, and so with increasing hydride content the
number of conduction electrons is expected to increase. Thus, the isotropic shift becoming
more negative with higher hydride concentrations (see Table 6.1) is ascribed to the metallic
character of the oxyhydride. Furthermore, the negative sign of the shift is associated with the
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Figure 6.4: 2D static shifting d-echo NMR spectra of different BTOD samples. From left to right
are given experimental, best fit and best fit residual spectra of BTODNAB (a) and BTODCA (b)
and BTODEXCH (c).
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Table 6.2: Best fit shift and quadrupolar tensor parameters and errors for the 2D adiabatic shifting
d-echo spectra of BTODNAB, BTODCA and BTODEXCH.

Sample δiso (ppm) ∆δ (ppm) ηS CQ (kHz) ηQ
BTODNAB −5.8±0.3 40.1±0.3 0.76±0.08 24.2±1.7 0.06±0.06
BTODCA −55.2±0.3 97.0±0.7 0.99±0.01 25.2±0.3 0.03±0.03

BTODEXCH −53.4±0.2 120.8±0.8 0.98±0.02 25.4±0.3 0.06±0.03

Sample α (◦) β (◦) γ (◦)
BTODNAB 44±7 0±7 0±7
BTODCA 34±1 0.7±0.4 0.6±0.3

BTODEXCH 33±2 0.7±0.4 1.0±0.5

polarization mechanism, which means that the conduction electrons in the t2g band polarize
the eg band, resulting in a negative spin density of hydride s-band and consequently a negative
contact shift. [155–157] We conjecture that for the double occupied bandstate the spin density
would be transferred via the delocalisation mechanism, since the position of the hydride ions
allows direct overlap between the H s orbitals and the Ti t2g orbital. Therefore, a positive
contact shift is expected. Next we consider the shift anisotropy, which has contributions from
the orbital and spin-dipolar parts of the Knight shift. We note that the SD term depends on the
density of states at the Fermi level and so the anisotropy should increase in magnitude with
higher hydride concentrations, which explains experimentally observed relationship between
shift anisotropy (see Table 6.1) and the hydride content.

Collectively these data provide strong evidence that the barium titanium oxyhydrides have
a bandstate electronic structure and the NMR shift corresponds to the Knight shift. Finally, we
call attention to the lineshapes of the MAS spectra in Fig.6.2 and of the static shift projection
in Fig.6.4 both of which display a skew towards negative frequencies. Possibly, different
crystallites in the sample have distinct hydride or oxygen vacancy concentrations, which lead
to a distribution of Knight shifts. This corroborates our explanation about the differences in
the observed isotropic values determined from static or MAS methods.

6.3 Temperature dependence of NMR parameters
Until now, we have discussed the shift tensor parameter dependence on the hydride content,
which has suggested that the studied material adopts a bandstate configuration. We provide
further support for the bandstate electronic structure by measuring the temperature depen-
dence of NMR parameters. As discussed in Section 2.3.4 in simple metals according to the
Korringa relation the quantity T1T K2 is constant as function of temperature. [60] The deter-
mined experimental quantity T1T K2 of BTODCA is given in Fig.6.5, which indeed shows a
constant trend in the temperature range 100−300 K. The observation of the Korringa relation
gives unambiguous evidence that the material has a bandstate electronic structure and would
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Figure 6.5: Temperature dependence of NMR parameters. The plot displays the quantity T1T K2

of 2H in BTODCA as a function of temperature.

exhibit metallic conductivity.

6.4 Density functional theory calculations
The presented data have given strong indication that the electrons form delocalized band-
states which is in agreement with previous INS [150] and solid-state NMR [151; 158] stud-
ies. However, we have only speculated about the hydride occupancy based on the sign of the
contact shift. To completely resolve this issue we employ DFT to compute the EFG tensor
parameters for each of the structures in Fig.6.1. Due to the discussed self-interaction error
the 3d Ti electrons are excessively delocalized and the polaronic state cannot be obtained
using GGA functionals. Therefore, we utilize the DFT+U method instead and treat the Ti
3d electrons with an additional Hubbard-like term U . The optimal U value was chosen so
that the total electronic energy is linearly dependent on the charge population of the polaron
level (see Fig.6.6). [150; 159; 160] The deviation from piecewise linearity of system energy
as function of the polaron level population is shown in Fig.6.6. We notice for the value of
U = 2.7 eV the relation is closest to being linear. However, following this approach for the
double occupied bandstate the electrons in the 3d-band of Ti were overlocalized leading to an
unreliable electronic structure, therefore for this case we carried out the calculations without
the U correction.

The DFT optimized geometries, the calculated spin density distribution and the band-
structure of the three BTOH configurations consider here are shown in Fig.6.1. We can
see from the bandstructures that the two bandstates exhibit conduction bands crossing the
Fermi level, while the polaron has a narrow band gap of ∼ 0.65 eV. Establishing that we
have the correct electronic structures we proceed with 2H EFG tensors calculations. The ob-
tained quadrupolar parameters are given in Table 6.3 together with the experimental values
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Figure 6.6: Deviation from linearity of the total electronic energy as a function of the charge of the
system. The plots with suboptimal and optimal U values are given in red and green, respectively.
The calculations were performed on a 2×2×2 supercell with BaTiO2.875H0.125 composition in
the polaronic state.

of BTODCA for comparison. The polaron and single occupied bandstate quadrupolar param-
eters are very similar and differentiation between the two experimentally would not be pos-
sible. However, the double occupied bandstate 2H quadrupolar parameters are distinct with
a quadrupolar coupling larger by a factor of 3 than for the other two structures. We note that
overall the calculated quadrupolar parameters of single occupied bandstate matches reason-
ably well with the experimental values (see Table 6.2). The discrepancy in the quadrupolar
coupling constant between DFT values and experiment can be explained by the presence of
vibrational [146; 150] and/or diffusion [143–145] dynamics of the hydride, which can aver-
age the EFG tensor parameters and consequently lower the quadrupolar coupling constant.
Taking into consideration these possible dynamic effects on the EFG tensor, the calculations
indicate that the vacant oxygen sites are occupied by a single hydrogen.

In conclusion, we have demonstrated that barium titanium oxyhydride has a bandstate
electronic structure with hydride sites occupied by a single hydrogen. Moreover, we have
showed that DFT-assisted solid-state NMR is an exceptional tool for studying the hydride ion
local environment and for differentiating between the electron-nuclear hyperfine coupling
due to electron polarons and conduction electrons.

Table 6.3: DFT computed and BTODCA quadrupolar tensor parameters

State CQ (kHz) ηQ
Polaron 62.5 0.08

Bandstate 60.9 0.0
Double occupied banstate 193.7 0.39

BTODCA 25.2±0.3 0.03±0.03
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In recent years, the study of paramagnetic systems by solid-state NMR has experienced an
increased activity due to advancements in NMR probe design and development of pulse se-
quences. While the current approaches perform well for spin I = 1/2 nuclei, several limita-
tions still remain for quadrupolar nuclei (I > 1/2). This Thesis contributes to the theoretical
description of pulse schemes and adds new sequences to the arsenal of NMR methodology
for spin I = 1 nuclei in paramagnetic systems.

We first undertook the issue of deconvolving spectra of spin I = 1 nuclei subject to
quadrupolar and paramagnetic shift interactions, and BMS effects. This was achieved by
separating the shift (including the isotropic shift, shift anisotropy and BMS effects) from the
first-order quadrupolar interaction. Several NMR approaches in static solids had been re-
ported previously for the separation of the two interactions, however, the different methods
are a compromise between poor excitation bandwidth and sensitivity. Furthermore, all the
methods are susceptible to the formation of an artefact in the spectrum. Here we demonstrated
that by combining the preceding shifting d-echo sequence with short-high power adiabatic
pulses, artefact free experiments with high sensitivity and broad excitation bandwidth can be
obtained.

Secondly, we examined whether the separation could be achieved in spinning solids, since
this would increase the sensitivity and resolution and open new avenues to study systems with
multiple distinct resonances. We show that the previously reported phase-adjust spinning
sideband method, which was originally intended for separation of the isotropic shift and the
shift anisotropy, can be utilized to separate and correlate the shift anisotropy with the first-
order quadrupolar interaction. This is the first example of a sequence for separation of the
two interactions under MAS.

Thirdly, we addressed the excitation of large anisotropic interactions with low-power
pulses under MAS. To this end, we derived a new theoretical framework for analyzing low-

69



CHAPTER 7. SUMMARY

power phase-modulated pulse schemes applied to nuclei subject to anisotropic interaction(s)
much larger than the spinning frequency. The methodology is analogous to the symmetry-
based pulse sequences, however, applicable to the low-power regime. We employed the for-
malism to describe previously reported DQ excitation schemes for spin I = 1 nuclei and
introduced new sequences, including a γ-encoded scheme.

Finally, we applied the static and MAS methods for separation of the quadrupolar and
shift interactions to study the electronic structure of a mixed electron-ion conductor barium
titanium oxyhydride. By employing the new adiabatic shifting d-echo sequence we were able
to extract accurate quadrupolar tensor parameters, which showed that the local hydride en-
vironment does not change with the material composition, hence the electronic structure is
equivalent in each sample. Thus, the shift parameter dependence on the material composition
could be associated with metallic behaviour, which was corroborated by the observed Kor-
ringa relation. Lastly, by calculating the electric-field gradient tensor with density functional
theory we concluded that each hydride site occupies a single hydride ion.

In conclusion, we anticipate that the new methods provided in this work will be very
beneficial for investigating local hydrogen environments in different types of materials. We
foresee that improvement in the excitation bandwidth of the phase-adjusted spinning sideband
sequence could increase the scope of the method even further. Finally, since the new theoret-
ical formalism is general it could open new horizons for the development of novel low-power
sequences for the excitation of spin systems subject to large anisotropic interactions.
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7.1 Sammanfattning
Under de senaste åren har studier av paramagnetiska systemet med fasta tillståndet kärn-
magnetiskresonans (NMR) spektroskopi upplevt en ökad aktivitet, på grund av fram-
steg inom NMR-probdesign och utveckling av pulssekvenser. Även om de nuvarande
metoderna fungerar bra för spinn I = 1/2 kärnor, kvarstår flera begränsningar fortfarande
för kvadrupolära kärnor (I > 1/2). Denna avhandling bidrar till den teoretiska beskrivnin-
gen av pulsscheman och lägger till nya sekvenser till arsenalen av NMR-metodiken för spinn
I = 1 kärnor i paramagnetiska system.

Vi fokuserade först på problemet att analysera spektra av spinn I = 1 kärnor som är inklud-
erar kvadrupol- och paramagnetiska kemiskt skiftinteraktioner. Detta uppnåddes genom att
separera skiftet (inklusive det isotropa skiftet samt, skiftanisotropi) från kvadrupol interaktio-
nen. Flera NMR-metoder för statiska fasta ämnen hade tidigare rapporterats för separationen
av de två interaktionerna, men dessa är en kompromiss mellan dålig excitationsbandbredd och
känslighet. Dessutom, var dessa metoder känsliga för bildandet ave artefakter i spektrumet.
Genom att kombinera den tidigare utvecklad skiftande d-ekosekvensen med korta högeffekts
adiabatiska pulser, introducerades artefaktfria experiment med hög känslighet och bred exci-
tationsbandbredd.

Dessutom, undersökte vi om separationen kunde uppnås i roterande fasta ämnen, efter-
som detta skulle öka känsligheten och upplösningen samt öppna nya vägar för att studera
system med flera distinkta resonanser. Vi visade att den tidigare rapporterade fasjusterande
spinnande sidobandsmetoden, som ursprungligen var avsedd för separation av det isotropa
kemiska skiftet och skiftanisotropin, kan användas för att separera och korrelera skif-
tanisotropin med den kvadrupolära interaktionen. Detta är det första exemplet på en sekvens
för separation av de två interaktionerna under Magic-angle spinning (MAS).

Vidare, behandlade vi excitationen av stora anisotropa interaktioner med lågeffektpulser
under MAS. För detta ändamål härledde vi ett nytt teoretiskt ramverk för att analysera låg-
effektfasmodulerade pulsscheman som tillämpas på kärnor som är föremål för anisotrop
interaktion som är mycket större än rotationsfrekvensen. Metodiken är analog med de
olika symmetribaserade pulssekvenserna. Vi tillämpade formalismen för att beskriva tidi-
gare rapporterade DQ-excitationsscheman för spin I = 1 och introducerade nya sekvenser,
inkluderande ett γ-kodat schema.

Slutligen tillämpade vi de statiska och MAS-metoderna för separation av de kvadrupol
och skift interaktionerna för att studera den elektroniska strukturen hos en blandad elektron-
jonledare av bariumtitanoxihydrid. Genom att använda den nya adiabatiska skiftande d-
ekosekvensen kunde vi extrahera noggranna kvadrupol tensorparametrar, vilket visade att
den lokala hydridmiljön inte förändras med materialsammansättningen, därför är den elek-
troniska strukturen är ekvivalent i varje prov. Således kan skiftparameterberoendet på mate-
rialsammansättningen associeras med materialens metalliska beteende, vilket bekräftades av
den observerade Korringa-relationen. Slutligen, genom att beräkna det elektriska fältets gra-
dienttensor med hjälp av densitetsfunktionella teorin drog vi slutsatsen att varje hydridplats
upptar en enda hydridjon.

Sammanfattningsvis förväntar vi oss att de nya metoder som har utvecklats i detta arbete
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kommer att vara mycket fördelaktiga för att undersöka lokal vätemiljö i olika typer av ma-
terial. Vi förutser att förbättring av excitationsbandbredden för den fasjusterade spinnande
sidosekvensen kan öka omfattningen av metoden ytterligare. Slutligen, eftersom den nya
teoretiska formalismen är allmän kan den öppna nya horisonter för upptäckt av nya lågeffek-
tsekvenser för excitering av de flesta spinnsystem som är föremål för stora anisotropa inter-
aktioner.
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