
Documenta Math. 383

On the Brauer Group of Bielliptic Surfaces

(with an Appendix by Jonas Bergström and Sofia Tirabassi)

Eugenia Ferrari, Sofia Tirabassi, Magnus Vodrup,

and Jonas Bergström

Received: March 20, 2020

Revised: February 11, 2022

Communicated by Gavril Farkas

Abstract. We provide explicit generators of the torsion of the sec-
ond cohomology of bielliptic surfaces, and we use this to study the
pullback map between the Brauer group of a bielliptic surface and
that of its canonical cover.

2020 Mathematics Subject Classification: 14F22
Keywords and Phrases: Bielliptic surfaces, Brauer group, canonical
covers

Contents

1 Introduction 384

2 Background and preliminary results 388

3 Generators for the torsion of the second cohomology for

bielliptic surfaces 395

4 The Brauer map to another bielliptic surface 400

5 The Brauer map to the canonical cover 404

A The homomorphism lattice of two elliptic curves 420

Documenta Mathematica 27 (2022) 383–425



384 E. Ferrari, S. Tirabassi, M. Vodrup, J. Bergström

1 Introduction

Given a smooth complex projective variety Z, its (cohomological) Brauer group
is defined as Br(Z) := H2

ét(Z,O∗
Z)tor. A morphism of projective varieties f :

Z → Y induces, via pullback, a homomorphism fBr : Br(Y ) → Br(Z), which
we call the Brauer map induced by f . The map fBr is studied in [Bea09] in
the setting where f : Z −→ Y is the canonical K3 cover of a complex Enriques
surface Y . More precisely, Beauville identifies the locus in the moduli space
of Enriques surfaces where fBr is not injective (and so trivial, since Br(Y ) is
simple in this case). In this paper we carry out a similar investigation for the
canonical covers of bielliptic surfaces.
A bielliptic surface is constructed by taking the quotient of a product of ellipic
curves A×B by the action of a finite groupG. They were classified in 7 different
types by Bagnera–De Franchis ( [BDF10], see also [Suw69] for a presentation
in a more modern language), as illustrated in Table 1. Since the canonical

Type G Order of ωS in Pic(S) H2(S,Z)tor

1 Z/2Z 2 Z/2Z× Z/2Z

2 Z/2Z× Z/2Z 2 Z/2Z

3 Z/4Z 4 Z/2Z

4 Z/4Z× Z/2Z 4 0

5 Z/3Z 3 Z/3Z

6 Z/3Z× Z/3Z 3 0

7 Z/6Z 6 0

Table 1: Types of bielliptic surfaces and torsion of their second cohomology.

bundle of a bielliptic surface S is a torsion element in Pic(S), it can be used to
define an étale cyclic cover π : X → S, where X is an abelian variety isogenous
to A × B. We then obtain a homomorphism between the respective Brauer
groups: πBr : Br(S) → Br(X). A very natural question is the following.

Question. When is πBr injective? When is it trivial?

As for Enriques surfaces, using the long exact exponential sequence and
Poincaré duality, we have a non canonical isomorphism

Br(S) ≃ H2(S,Z)tor,

so from the fourth column of Table 1, we easily see that this map is trivial
when S is of type 4, 6 or 7. Thus we will limit ourselves to surfaces of type 1,
2, 3, and 5. We will find that the behavior of the Brauer map depends heavily
on the geometry of the bielliptic surface S.
Our first step in this investigation is to focus on bielliptic surfaces of type 2
and 3. By construction, which is written explicitly only in [Nue], they admit a
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degree 2 étale cover π̃ : S̃ → S, with S̃ a bielliptic surface of type 1 (see Exam-
ples 2.4(a) and 2.4(b) below for more details). We investigate the properties
of the induced Brauer map π̃Br : Br(S) → Br(S̃), finding how this behaves
differently in the two cases:

Theorem A. (a) If S is of type 2, then π̃Br : Br(S) → Br(S̃) is trivial.

(b) If S is of type 3, then π̃Br : Br(S) → Br(S̃) is injective.

The main tool behind our argument is a result of Beauville (see Section 2 for
more details) which states that the kernel of the Brauer map of a cyclic étale
cover X → X/σ is naturally isomorphic to the kernel of the norm map Nm :
Pic(X) → Pic(X/σ) quotiented by Im(1−σ∗). We prove that a line bundle on S̃
is in the kernel of the norm map only if it is numerically trivial. Then we reach
our conclusion by carefully computing the norm map of numerically trivial line
bundles. The different behavior of the two type of surfaces is motivated by the
different "values" taken by the norm map on torsion elements of H2(S̃,Z): in
the type 2 case they are sent to topologically trivial line bundles, while this is
not true in the type 3 case.
Theorem A is interesting in itself, and some parts of its proof will be useful in
order to study the Brauer map to the canonical cover for bielliptic surfaces of
type 2.
We now turn our attention to the main focus of this paper: to give a complete
description for the Brauer map to the canonical cover of any bielliptic surface.
We first show, similarly to what happens for Enriques surfaces, that the Brauer
map is injective for a general bielliptic surface. In particular, we show the
following general statement:

Theorem B. Given a bielliptic surface S, let π : X → S be its canonical cover.
If the two elliptic curves A and B are not isogenous, then the pullback map

πBr : Br(S) → Br(X)

is injective.

When A and B are isogenous one encounters the first examples of bielliptic
surfaces with non injective Brauer map. It turns out that the behavior of the
Brauer map depends on the explicit action of the group G on the product
A × B. This is showed in Theorems 5.3, 5.8, 5.10, 5.14, 5.19, and 5.21, where
we give necessary and sufficient conditions for the Brauer map to be injective,
trivial, and, in the case of type 1 surfaces (whose Brauer group is not simple),
neither trivial nor injective. Our very explicit results allow us to construct
examples of bielliptic surfaces exhibiting each of the possible behaviors of the
Brauer map. Unfortunately, the statements are involved, and it is not possible
reproduce them here without a lengthy explanation of the notation used. The
rough geometric picture is the following:
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Type 1: These surfaces are constructed by choosing two elliptic curves A
and B and a 2-torsion point on A. Thus the moduli space has dimension 2.
In order to have a non injective Brauer map one can choose freely the elliptic
curve B, but has only finitely many possibilities for A and the 2-torsion point.
Thus we obtain a 1- dimensional family. In Example 5.9(c), we show that
uncountably many such surfaces exist. On the other hand, only countably
many type 1 bielliptic surfaces can have a trivial Brauer map to their canonical
cover. In fact, to obtain a trivial Brauer map one has to choose the ellipic
curve B among those having complex multiplication.

Type 2: These surfaces are constructed by choosing two elliptic curves A
and B and two 2-torsion points, one on A and one on B. Hence the moduli
space has dimension 2. Similarly to what happens in the previous case, in
order to have a non injective (and hence trivial) Brauer map, only the choice
of the curve B can be made freely, while A must be taken among finitely many
possibilities. We show in this case (cf. Example 5.25(a)) that if the curves A
and B are isomorphic, regardless of the choice of the torsion points, the Brauer
map is trivial.

Type 3: These surfaces are constructed by choosing one elliptic curve A and
a 4-torsion point on it. Therefore the moduli space has dimension 1. In order
to have a non injective (and hence trivial) Brauer map, A must be isogenous
to the curve with j-invariant 1728. Thus there are only finitely many such
surfaces.

Type 5: These surfaces are constructed by choosing one elliptic curve A
and a 3-torsion point on it. We deduce that the moduli space has dimension 1.
In order to have a non injective (and hence trivial) Brauer map, A must be
isogenous to the curve with j-invariant 0. Thus, as in the previous case, there
are only finitely many such surfaces.

The proof of Theorem B uses the same ideas as in the proof of Theorem A. In
fact, we can leverage on the fact that X and S have the same Picard number
(as for the case of a bielliptic cover) to show that line bundles in the kernel of
the norm map are topologically trivial. The result is then obtained by showing
that line bundles in Pic0(X) which are also in the kernel of the norm map are
always in Im(1− σ∗). As a corollary of both Theorem A and B we find

Corollary C (Corollary 5.4). Given an isogeny of abelian varieties ϕ : X →
Y , the corresponding group homomorphism ϕBr : Br(Y ) → Br(X) is not nec-
essarily injective.

More precisely, we provide an explicit example of an isogeny between two
abelian surfaces ϕ : X → Y such that the corresponding group homomorphism
ϕBr is not injective, (see Section 5.2).

This paper is organized as follows. Section 2 contains all the background and
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preliminary results. More precisely, we outline some classical facts on the
geometry of bielliptic surfaces, and present the construction, due to Nuer, of
the bielliptic covers of surfaces of type 2 and 3. We also expose the work of
Beauville [Bea09] which allows us to study the kernel of the Brauer map in terms
of the norm homomorphism of the cover. We conclude the section by describing
the Néron–Severi group of a product of elliptic curves. In Section 3, we provide
explicit generators for H2(S,Z)tor, when S is a bielliptic surface of type 1, 2, 3
or 5. We prove Theorem A in Section 4, while we completely describe the norm
map to the canonical cover in Section 5. Here we also construct examples of
bielliptic surfaces of every type in which the Brauer map behaves differently. In
the Appendix, which is joint work of the second author of the main paper with
J. Bergström, a structure theorem for the homomorphism ring of two elliptic
curves is given in the case of j-invariant 0 or 1728. This will give, in turn,
a really useful description of the Picard group of the product of such curves,
which is fundamental to study the Brauer map of bielliptic surfaces of type 3
and 5.

Notation. We are working over the field of complex numbers C. If X is a
complex abelian variety over C, and n ∈ Z, thenX [n] will denote the subscheme
of n-torsion points of X , while nX : X → X will stand for the "multiplication
by n isogeny". Given x ∈ X a point, then the translation by x will be denoted
as tx. In addition, if dimX = 1 – that is, X is an elliptic curve – then Px will
be the line bundle OX(x − p0) ≃ t∗−xOX(p0) ⊗ OX(−p0) in Pic0(X), where
p0 ∈ X is the identity element.
For any smooth complex projective variety Y we will denote the identity ho-
momorphism as 1Y (or simply 1 if there is no chance of confusion), while KY

and ωY will stand for the canonical divisor class and the dualizing sheaf on Y ,
respectively. If D and E are two linearly equivalent divisors on Y , we will
write D ∼ E; in addition, OY (D) will denote the line bundle associated to the
divisor D.
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2 Background and preliminary results

2.1 Bielliptic surfaces

A complex bielliptic (or hyperelliptic) surface S is a minimal smooth projective
surface over the field of complex numbers with Kodaira dimension κ(S) = 0, ir-
regularity q(S) = 1, and geometric genus pg(S) = 0. By the work of Bagenera–
De Franchis (see for example [Bad01, 10.24-10.27]), the canonical bundle ωS
has order either 2, 3, 4 or 6 in Pic(S), and S occurs as a finite étale quotient
of a product A×B of elliptic curves by a finite group G acting on A by trans-
lations, and on B such that B/G ≃ P1. More precisely we have the following
classification result.

Theorem 2.1 (Bagnera–De Franchis [BDF10], [Suw69, Theorem at p. 473],
[BM77, p. 37]). A bielliptic surface is of the form S = A × B/G, where A
and B are elliptic curves and G a finite group of translations of A acting on B
by automorphisms. They are divided into seven types according to G as shown
in Table 1.

There are natural maps aS : S → A/G and g : S → B/G ≃ P1 which are
both elliptic fibrations. The morphism aS is smooth, and coincides with
the Albanese morphism of S. On the other hand, g admits multiple fibers,
corresponding to the branch points of the quotient B → B/G, with multiplicity
equal to that of the associated branch point. The smooth fibers of aS and g
are isomorphic to B and A, respectively. We will denote by a and b the classes
of these fibers in Num(S), H2(S,Z) and H2(S,Q).

It is well known (see for example [Ser90a, p. 529]) that a and b span H2(S,Q)
and satisfy a2 = b2 = 0, ab = |G|. Furthermore, we have the following descrip-
tion of the second cohomology of S:

Proposition 2.2. The decomposition of H2(S,Z) is described according to the
type of S and the multiplicities (m1, . . . ,ms) of the singular fibers of g : S → P1

as follows:

Type (m1, . . . ,ms) H2(S,Z) H2(S,Z)tor

1 (2, 2, 2, 2) Z[ 12a]⊕ Z[b]⊕ Z/2Z⊕ Z/2Z Z/2Z× Z/2Z

2 (2, 2, 2, 2) Z[ 12a]⊕ Z[ 12b]⊕ Z/2Z Z/2Z

3 (2, 4, 4) Z[ 14a]⊕ Z[b]⊕ Z/2Z Z/2Z

4 (2, 4, 4) Z[ 14a]⊕ Z[ 12b] 0

5 (3, 3, 3) Z[ 13a]⊕ Z[b]⊕ Z/3Z Z/3Z

6 (3, 3, 3) Z[ 13a]⊕ Z[ 13b] 0

7 (2, 3, 6) Z[ 16a]⊕ Z[b] 0
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Proof. See [Ser90a, Tables 2 and 3]. The computation of the torsion ofH2(S,Z)
can be also found in [Iit70,Ser91,Suw69,Ume75].

Since H2(S,OS) = 0, the first Chern class map c1 : Pic(S) → H2(S,Z) is
surjective, so the Néron-Severi group has NS(S) ≃ H2(S,Z). Modulo torsion
we then get

Num(S) = Z[a0]⊕ Z[b0]

where a0 = 1
ord (ωS)a and b0 = ord (ωS)

|G| b.

2.2 Canonical covers

Given a smooth projective variety Y and a torsion line bundle L of order n,
then it is possible to construct a degree n cyclic étale cover π : X → Y such
that π∗L ≃ OX . Roughly speaking (for more details see [BHPvdV15, I.17]),
one considers a trivializing section s ∈ H0(Y,L⊗n), and the total space of L,
p : |L| → Y . Denoting by t ∈ H0(|L|, p∗L) the tautological section, then the
zero-locus of p∗s − tn defines a subvariety X of |L| such that the restriction
p|X : X → Y is a cyclic étale cover with the desired property. When the
canonical line bundle of Y is torsion, as in the case of a bielliptic surface, then
it is possible to execute the aforementioned construction with L ≃ ωX . We,
thus, obtain a cyclic étale cover πY : X → Y , or simply π : X → S, if there is
no chance of confusion, called the canonical cover of Y .
Let now S be a bielliptic surface with canonical bundle of order n. If we let
λS := |G|/n, we have that G ≃ Z/nZ⊕ Z/λSZ. Denote by H := Z/λSZ, then
the canonical cover X is the abelian surface sitting as an intermediate quotient

A×B

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

// S ≃ A×B/G

X ≃ A×B/H.

π

66♠♠♠♠♠♠♠♠♠♠♠♠♠

Thus, X comes with homomorphisms of abelian varieties pA : X → A/H and
pB : X → B/H with kernels isomorphic to B and A, respectively. Denoting by
aX and bX the classes of the fibers A and B in Num(X), we have aX · bX = λS
and the embedding π∗ : Num(S) →֒ Num(X) satisfies

π∗a0 = aX , π
∗b0 =

n

λS
bX . (2.1)

There is a fixed-point-free action of the group Z/nZ on the abelian variety X
such that the quotient is exactly S. We will denote by σ ∈ Aut(X) a generator
of Z/nZ. In what follows, it will be useful to have an explicit description of σ
when S is of type 1, 2, 3, or 5.
Suppose first that S is of type 1, 3, or 5, so G is cyclic, H is trivial, and
X ≃ A × B. If S is of type 3, then the j-invariant of B is 1728, and B
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admits an automorphism ω : B → B of order 4. If S is of type 5, B has j-
invariant 0 and admits an automorphism ρ of order 3 (see for example [BM77, p.
37], [Bad01, List 10.27] or [BHPvdV15, p. 199]). With this notation, there are
points in A τ , ǫ, of order 2, 4, and 3 respectively, such that the automorphism σ
of A×B inducing the covering π is given by

σ(x, y) =











(x+ τ,−y), if S is of type 1,

(x+ ǫ, ω(y)), if S is of type 3,

(x+ η, ρ(y)), if S is of type 5.

(2.2)

We remark that different choices for the automorphism ρ and ω - there are two
possible choices in each case- will lead to isomorphic bielliptic surfaces.
If S is otherwise of type 2, then there are points θ1 ∈ A and θ2 ∈ B, both of
order two, such that X is the quotient of A × B by the involution (x, y) 7→
(x+ θ1, y+ θ2). If we denote by [x, y] the image of (x, y) through the quotient
map, we have that there is a point τ of order 2 in A, τ 6= θ1 such that

σ[x, y] = [x+ τ,−y], (2.3)

where τ ∈ A is a point of order 2, τ 6= θ1.

2.3 Covers of bielliptic surfaces by other bielliptic surfaces

When G is not a cyclic group, or when G is cyclic, but the order of G is not
a prime number, then the bielliptic surface S admits a cyclic cover π̃ : S̃ → S,
where S̃ is another bielliptic surface. This construction, together with the
statement of Lemma 2.3, appears explicitly in the work of Nuer [Nue],and is
implicit in the work of Suwa [Suw69, p. 475]. The main point that we will need
in Section 4 is the description of the pull-back map Num(S) → Num(S̃).

Lemma 2.3. (i) Let S be a bielliptic surface such that ord(ωS) is not a prime
number and take d a proper divisor of n. Then there is a bielliptic surface S̃
sitting as an intermediate étale cover between S and X,

X

πS

44
π
S̃

// S̃
π̃ // S

such that ord (ωS̃) =
ord (ωS)

d and

π̃∗a0 = ã0, π̃
∗b0 = db̃0,

where ã0, b̃0 are the natural generators of Num(S̃).

(ii) Let S be a bielliptic surface with λS > 1, i.e., with G not cyclic. Then
there is a bielliptic surface S̃ sitting as an intermediate étale cover between S
and A×B

A×B

πS

44
π
S̃

// S̃
π̃ // S
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such that λS̃ = 1, ord(ωS̃) = ord(ωS) and

π̃∗a0 = λS ã0, π̃
∗b0 = b̃0,

where ã0, b̃0 are the natural generators of Num(S̃).

In what follows, we will need a more explicit construction of S̃, when S is either
of type 2 or 3.

Example 2.4. (a) Suppose that S is a bielliptic surface of type 3. Then the
canonical bundle has order 4. In addition, the canonical cover X of S is a
product of elliptic curves, that is X ≃ A × B. Using the notation of (2.2),
we obtain S̃ from A×B by taking the quotient with respect to the involution
(x, y) 7→ (x+2ǫ,−y). Thus, we have that S̃ is a bielliptic surface of type 1. The
map π̃ : S̃ → S is an étale double cover with associated involution σ̃. Hence,
given s ∈ S̃, we can see it as an equivalence class [x, y] of a point (x, y) ∈ A×B.
Then we have an explicit expression for σ̃:

σ̃(s) = [x+ ǫ, ω(y)]. (2.4)

(b) Suppose that S is a bielliptic surface of type 2, so the group G is isomor-
phic to the product Z/2Z×Z/2Z. Then we obtain S̃ from A×B by taking the
quotient with respect to (x, y) 7→ (x+ τ,−y), where we are using the notation
of (2.3). Thus, as before, S̃ is a bielliptic surface of type 1 and each s ∈ S̃
can be written as an equivalence class [x, y] of a point (x, y) ∈ A × B. If we
denote again by σ̃ the involution induced by the cover π̃ : S̃ → S, we have the
following:

σ̃(s) = [x+ θ1, y + θ2]. (2.5)

2.4 Norm homomorphisms

Let π : X → Y be a finite locally free morphism of projective varieties of
degree n. To it we can associate a group homomorphism Nmπ : Pic(X) →
Pic(Y ) called the norm homomorphism associated to π. This is constructed in
the following manner. First, one lets B := π∗OX , and defines a morphism of
sheaves of multiplicative monoids N : B → OY : given s a section of B on an
open set U , let ms be the endomorphism of B(U) induced by the multiplication
by s; we set N(s) := det(ms) ∈ OY (U) (see [Gro61, § 6.4, and §6.5] or [Sta19,
Lemma 0BD2] ). The restriction of N to invertible sections induces a morphism
of sheaves of groups N : B

∗ → O∗
Y . Now, given L an invertible sheaf on X ,

π∗L is an invertible B-module and, as such is represented by a cocycle {uij, Ui}
for an open cover {Ui} of Y . Observe that uij ∈ B∗(Uij). The fact that N is
multiplicative ensures that also the vij := N(uij) satisfies the cocycle condition
and so uniquely identifies a line bundle Nmπ(L) on Y . The map L 7→ Nmπ(L)
is a group homomorphism by [Gro61, (6.5.2.1)]. In addition [Gro61, (6.5.2.4)]
ensures that

Nmπ(π
∗M) ≃M⊗n, (2.6)

and we also have the following important property:

Documenta Mathematica 27 (2022) 383–425



392 E. Ferrari, S. Tirabassi, M. Vodrup, J. Bergström

Proposition 2.5. Given two finite locally free morphism π1 : X → Y and
π2 : Y → Z, then

Nmπ2◦π1
= Nmπ2

◦Nmπ1
.

Proof. See [Gro67, Lemma 21.5.7.2].

Suppose now that π : X → Y is an étale cyclic cover of degree n. Then there
is a fixed-point-free automorphism σ : X → X of order n such that Y ≃ X/σ.
In addition we can write B ≃ ⊕n−1

h=0 M
⊗h with M a line bundle of order n

in Pic(Y ). In this particular setting, the norm homomorphism satisfies some
additional useful properties. First, as Nmπ behaves well with base change
( [Gro61, Proposition 6.5.8]), it is not difficult to see that

Nmπ ◦(1X − σ∗) = 0. (2.7)

In addition, as discussed by Beauville in [Bea09], we have that

π∗ Nmπ(L) ≃
n

⊗

h=0

(σh)∗L. (2.8)

In fact, by the definiton of pushforward of divisors ( [Gro67, Definition
21.5.5]), if L ≃ OX(

∑

ai · Di) where the Di’s are prime divisors on X , then
Nmπ(L) ≃ OY (

∑

ai · π∗Di). Therefore, (2.8) follows from the fact that for a
prime divisor D we have that π∗π∗D ∼ ∑n−1

h=0(σ
h)∗D.

Remark 2.6 (Pic0 trick). In what follows, it will be important to provide ele-
ments in the kernel of the norm homomorphism. We will often use the following
trick. Let π : X → Y be an étale morphism of degree n and suppose that there
is a line bundle L on X such that Nmπ(L) ∈ Pic0(Y ). Then there is an element
α ∈ Pic0(X) such that Nmπ(L ⊗ α) is trivial. In fact, as abelian varieties are
divisible groups, it is possible to find β ∈ Pic0(Y ) such that β⊗n ≃ Nmπ(L)

−1.
Then, by (2.6) we get

Nmπ(L⊗ π∗β) ≃ Nmπ(L)⊗ β⊗n ≃ OY .

We conclude this paragraph by saying that, from now on, if there is no possi-
bility of confusion, we will omit the subscript when denoting the norm. That
is we will write Nm instead of Nmπ

2.5 Brauer groups and Brauer maps

For a scheme X , the cohomological Brauer group Br′(X) is defined as the
torsion part of the étale cohomology group H2

et(X,O∗
X). For complex varieties,

this is isomorphic to the torsion of H2(X,O∗
X) in the analytic topology. In

addition, when X is quasi-compact and separated, by a theorem of Gabber
(see, for example, [dJ] for more details) the cohomological Brauer group of X
is canonically isomorphic to the Brauer group Br(X) of Morita-equivalence
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classes of Azumaya algebras on X . In this paper, we will only be concerned
with smooth complex projective varieties, therefore all these three groups will
be isomorphic and will be denoted simply by Br(X). Furthermore, we will only
speak of the Brauer group of X , without any additional connotation.
If S is a bielliptic surface, the exponential sequence yields that H3(S,Z) ≃
H2(S,O∗

S), so that the Brauer group of S is isomorphic to the torsion of
H3(S,Z). By Poincaré duality and the universal coefficients theorem, the tor-
sion of H3(S,Z) is (non canonically) isomorphic to the torsion of H2(S,Z), so
the isomorphism type of the Brauer group of S can be deduced in terms of
Proposition 2.2.
Crucial to our purposes will be the following result of Beauville which describes
the kernel of the Brauer map πBr when π is a cyclic étale cover.

Proposition 2.7 ( [Bea09, Prop. 4.1]). Let π : X → S be an étale cyclic
covering of smooth projective varieties. Let σ be a generator of the Galois
group of π, Nm: Pic(X) → Pic(S) be the norm map and πBr : Br(S) → Br(X)
be the pullback. Then we have a canonical isomorphism

Ker(πBr) ≃ KerNm/(1− σ∗) Pic(X).

2.6 The Neron–Severi of a product of elliptic curves

In this paragraph we want to describe Num(A × B) when A and B are two
elliptic curves. We will do so by using the identification of Num(X) ≃ NS(X)
which holds for abelian surfaces. We believe that many of these topics might be
well known by experts, but we were not able to find a rigorous literature, thus
we wrote this for the reader convenience. In the first part of this paragraph,
we will follow closely the narrative of [HLT19].
Let A be an elliptic curve over C with identity element p0, then there is a
lattice Λ such that A ≃ C/Λ. Identify A with its dual and consider PA the
normalized Poincaré bundle on A×A:

PA ≃ OA×A(∆A) ⊗ pr∗1OA(−p0) ⊗ pr∗2OA(−p0),

where ∆A ⊂ A × A is the diagonal divisor and pr1, pr2 are the projections
of A × A onto the first and second factor respectively. Observe that if x is a
point in A, then the topologically trivial line bundle Px is simply PA|A×{x} ≃
PA|{x}×A.
Take another elliptic curve B, and consider the product A×B, with projection
prA and prB onto A and B respectively. Given two line bundles LA and LB
on A and B respectively, and a morphism ϕ : B → A, we define a line bundle
on the product A×B

L(LA, LB, ϕ) := (1A × ϕ)∗PA ⊗ pr∗ALA ⊗ pr∗BLB. (2.9)

As a direct consequence of the see-saw principle (see, for example [Mum70,
Section 10]), it is possible to see that, if MA and MB are two other line bundles
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on A and B, and ψ : B → A is another homomorphism, then

L(LA ⊗MA, LB ⊗MB, ϕ+ ψ) ≃ L(LA, LB, ϕ)⊗ L(MA,MB, ψ).

In addition, the universal property of the dual abelian variety ensures that
every line bundle L ∈ Pic(A×B) is of the form L(LA, LB, ϕ) for some invertible
sheaves LA and LB and a morphism ϕ. Therefore, we have an isomorphism

Pic(A×B) ≃ Pic(A)× Pic(B) ×Hom(B,A).

We now quotient by numerically trivial line bundles and let [A] and [B] denote
the numerical classes of the fibers of the two projections. We find that

H2(A×B,Z) ≃ Num(A×B) ≃ Z · [B]× Z · [A]×Hom(B,A). (2.10)

Let us denote by l(deg(LA), deg(LB), ϕ) the first Chern class of L(LA, LB, ϕ).
Then, every class in Num(A×B) can be written as l(m,n, ϕ) for some integers n
and m and an isogeny ϕ. In what follows, we will often refer to line bundles (or
numerical classes) in Hom(B,A) as elements of the Hom-part of Pic(A×B) (or
of Num(A×B)). For our purposes, it will be really important to pick explicit
generators for Num(A × B) to see how the automorphism σ acts on H2(A ×
B,Z). In order to do that, we need to investigate the Z-module structure on
Hom(B,A).
So, suppose that there is a nontrivial isogeny ϕ : B → A. Then, we know
that Hom(B,A) has rank 1, if A does not have complex multiplication, and 2
otherwise (more details about elliptic curves with complex multiplication can
be found in the Appendix).
Suppose the first, so that there exists an isogeny ψ : B → A such that l(0, 0, ψ)
generates the Hom-part of H2(A×B,Z). We will call such isogeny a generating
isogeny for Num(A×B). Observe that, since l(0, 0, ψ) is necessarily a primitive
class, ψ cannot factor through any "multiplication by n" map. That is, we
cannot write ψ = n ·ψ′ for any n. In particular, for any integer n we have that
Kerψ does not contain B[n] as a subscheme.
Suppose now that A has complex multiplication, and again fix a nontrivial
isogeny ϕ : B → A. Then also B has complex multiplication, and Hom(B,A)
is a rank 2 free Z-module. We pick generators ψ1 and ψ2, and we have that,
for any line bundle L on A×B, there are two unique integers h and k, and two
line bundles MA and MB on A and B respectively, such that

L ≃ L(MA,MB, h · ψ1 + k · ψ2). (2.11)

In addition, we can write

H2(A×B,Z) = 〈l(1, 0, 0), l(0, 1, 0), l(0, 0, ψ1), l(0, 0, ψ2)〉 . (2.12)

In the particular cases in which the j-invariant of B is either 0 or 1728, then
Theorem A.1 in the Appendix yields a more accurate description. In fact, if

Documenta Mathematica 27 (2022) 383–425



On the Brauer Group of Bielliptic Surfaces 395

we denote by λB : B → B the automorphism ρ or ω (see again the Appendix
or Paragraph 2.2), we have that there exist an isogeny ψ : B → A such that,
in (2.11) and (2.12) we can take ψ1 = ψ and ψ2 = ψ ◦ λB. So we have that

H2(A×B,Z) = 〈l(1, 0, 0), l(0, 1, 0), l(0, 0, ψ), l(0, 0, ψ ◦ λB)〉 . (2.13)

In this case, we say that ψ is again a generating isogeny for H2(A × B,Z).
Observe again the isogenies ψi, as well as ψ, cannot factor through the multi-
plication by an integer or they could not generate the whole Hom(B,A).

3 Generators for the torsion of the second cohomology for biel-

liptic surfaces

In this section, we give explicit generators for the torsion of H2(S,Z) in terms
of the reduced multiple fibers of the elliptic fibration g : S → P1. More precisely
we will prove the following statement:

Proposition 3.1. Let S = A × B/G be a bielliptic surface. Denote by Di

the reduced multiple fibers of g : S → P1 with the same multiplicity. Then the
torsion of H2(S,Z) is generated by the classes of differences Di−Dj for i 6= j.

The reader who is familiar with the work of Serrano might find similarities
between the above statement and Serrano’s description of the torsion of
H2(X,Z) when there is an elliptic fibration ϕ : X → C with multiple fibers
(cfr. [Ser90b, Corollary 1.5 and Proposition 1.6]); however Serrano uses the
additional assumption that h1(X,OX) = h1(C,OC), which clearly does not
hold in our context.

Before proving Proposition 3.1 we need two preliminary Lemmas.

Lemma 3.2. Let g : S → P1 be a pencil with connected fibers. Let D1 and D2

be two distinct reduced multiple fibers. Let m1 and m2 be the corresponding
multiplicities. Then, for all non negative integers n,

D1 ≁ nD2. (3.1)

Proof. The statement is obvious for n = 0, so one has to check for n > 0. By
contradiction, assume D1 ∼ nD2, and let F be the generic fiber of g. Then

h0(S,OS(F )) = h0(P1, g∗OS(F ))

= h0(P1,OP1(1)⊗ g∗OS)

= h0(P1,OP1(1)) = 2.

Since h0(S,OS(D1)) ≤ h0(S,OS(m1D1)) = h0(S,OS(F )), it follows that
h0(S,OS(D1)) ≤ 2.
The absurd hypothesis is used here: ifD1 ∼ nD2, then, since the supports ofD1

and D2 are disjoint, H0(S,OS(D1)) has at least two independent sections, and
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therefore the dimension of H0(S,OS(D1)) is 2. Thus, since D2
1 = 0 implies

that the linear system |D1| has no basepoints (see for example [Bea96, II.5]),
the map determined by |D1|, ϕ|D1| : S −→ P1, is actually a morphism. Note
that both D1 and nD2 are fibers of this morphism.
Let now C be the generic fiber of ϕ (which is irreducible by semicontinuity).
Since C ·D1 = 0, one gets C · F = 0 for any fiber F of g. This implies that g
and ϕ|D1| have the same generic fiber. So one can write C = F for a fiber F
of g. But then

D1 ∼ F ∼ m1D1,

which in turn implies that OS(D1)
⊗(m1−1) ≃ OS , which is a contradiction.

Lemma 3.3. Let S = A×B/G be a bielliptic surface with its fibrations aS : S →
A/G and g : S → P1. Let D1 and D2 be two reduced multiple fibers of g. Then
the restriction of OS(D1 −D2) to the generic fiber of aS is trivial.

Proof. Let F = g−1(p) be a smooth fiber of g. Here p is the orbit G · y of a
point y ∈ B not fixed under any element of G. Let i be natural inclusion of a
general fiber F into S, and denote by π : A × B → S the quotient map. We
will choose an embedding of A into S via an isomorphism ϕ : A→ F such that
we get a commutative diagram

A A×B

F S

A/G.

ϕ

j

π

i

ψ aS

To this end we let ϕ : A → F be the isomorphism x 7→ G · (x, y) and j be the
embedding x 7→ (x, y). Let yi ∈ B, for i = 1, 2, be points fixed under a subgroup
of G of order mi. Then the multiple fibers Di are contained in π(A × {yi}),
and have multiplicity mi. Denote by pB is the projection A × B → B and
y1, y2 ∈ B are the points corresponding to D1, D2, respectively, we have that
π∗OS(D1 −D2) = p∗BOB(y1 − y2). Then, we have

ϕ∗i∗OS(D1 −D2) ≃ j∗π∗OS(D1 −D2)

≃ j∗p∗BOB(y1 − y2).

As pB ◦ j is the constant map we have that this is clearly trivial. Hence,
ϕ∗i∗OS(D1 − D2) is trivial, and since ϕ is an isomorphism, we deduce the
statement.

For the remainder, we identify F and A via the isomorphism ϕ defined in the
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proof above. So we get the following commutative triangle.

A S

A/G.

i

ψ aS
(3.2)

Note that ψ is an isogeny of degree |G|. In particular we have also that the dual
isogeny
ψ∗ : Pic0(S) → Pic0(A) has degree |G| (see, for example [BL13, Proposi-
tion 2.4.3]).
With these observations, we are now ready to start proving Proposition 3.1.
Denote with Dk the multiple fibers of g, and let mk be their multiplicity. We
first remark that, by the canonical bundle formula for elliptic fibrations (see
e.g. [Bad01, Thm. 7.15]) applied to g : S → P1, we can write

ωS ≃ g∗OP1(−2)⊗OS

(

∑

k

(mk − 1)Dk

)

.

Choosing points p, q on P1 giving rise to the fibers miDi and mjDj we get that

KS ∼ −Di −Dj +
∑

k 6=i,j
(mk − 1)Dk. (3.3)

Since ωS is a nontrivial element in Pic0(S) (see [BHPvdV15, p. 199]), we
conclude that the classes ofDi+Dj and

∑

k 6=i,j(mk−1)Dk coincide inH2(S,Z).
Moreover, we observe that KS restricts trivially to A, so ωS yields a nontrivial
element in Kerψ∗. Note that if Di and Dj have the same multiplicity m, the
difference Di −Dj induces a (possibly trivial) torsion element in H2(S,Z) of
order m. We prove Proposition 3.1 by showing that a sufficient number of these
is nontrivial so to generate the torsion of H2(S,Z). We proceed by a case by
case analysis, studying separately bielliptic surfaces of type 1, 2, 3, and 5. The
key point in the argument is the observation that, if [Di −Dj ] is trivial, then
the line bundle OS(Di−Dj) belongs to Pic0(S). In addition, using Lemma 3.3
and the diagram (3.2), we would have that ψ∗OS(Di−Dj) ≃ OS , in particular
OS(Di − Dj) ∈ Kerψ∗, while Lemma 3.2 ensures that OS(Di − Dj) cannot
be OS . A closer study of the structure of Kerψ∗ ≃ Ĝ will bring us to the
desired conclusion.

3.1 Type 1 bielliptic surfaces

In this case, we have that Kerψ∗ is the reduced group scheme Z/2Z, and the
fibration g : S → P1 has four multiple fibers all of multiplicity 2. Hence, up to
reordering the indices (3.3) yields

KS ∼ Di −Dj +Dk −Dl. (3.4)
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In particular, as the canonical divisor is algebraically equivalent to 0, for dis-
tinct indices i, j, k, and l we have that Dj −Di is algebraically equivalent to
Dk −Dl. Thus, we get three classes in H2(S,Z)

[D1 −D2] = {D1 −D2, D3 −D4},
[D1 −D3] = {D1 −D3, D2 −D4},
[D1 −D4] = {D1 −D4, D2 −D3},

(3.5)

which a priori are neither distinct nor nontrivial. Since H2(S,Z)tors is iso-
morphic to the Klein 4-group, we need to show that they are indeed different
classes and are not zero. Note that, if two classes are equal, since they both are
2-torsion and the third class is clearly equal to the sum of the first two, then
the remaining class would be trivial. Thus, it will be enough to show that for
any two distinct indices the divisor Di−Dj is not algebraically equivalent to 0.
Suppose otherwise that for some indices we have that OS(Di −Dj) ∈ Pic0(S),
then (3.4) would imply that also OS(Dk−Dl) would be in Pic0(S). The above
discussion yields that both OS(Di − Dj) and OS(Di − Dj) are nontrivial el-
ements of Kerψ∗, which has only one nontrivial element, ωS. Then we can
write

ωS ≃ OS(Di −Dj)⊗OS(Dk −Dl) ≃ ω⊗2
S ≃ OS ,

which brings a contradiction, and thus we may conclude.

3.2 Type 2 bielliptic surfaces

Here H2(S,Z)tors ≃ Z/2Z, Ker(ψ∗) ≃ Z/2Z × Z/2Z, and like in the previous
case there are four multiple fibers, each of multiplicity 2. As above we get the
three classes induced by D1−D2, D1−D3 and D1−D4, and we want to show
that they cannot be all trivial. Suppose that two of these classes, say [D1−D2]
and [D1 −D3], are trivial in H2(S,Z). For i = 2, 3 set Li := OS(D1 −Di) and
Mi := OS(Di−D4), then the Li’s and theMi’s determine nontrivial elements of
Kerψ∗, which has only three nonzero elements. We deduce that some of these
must be the same line bundle. The only option which would not contradict
Lemma 3.2 would be that Li ≃Mj for some i 6= j. But then we would have

ωS ≃ Li ⊗Mj ≃ L⊗2
i ≃ OS ,

which would be a contradiction. Hence at most one of the three classes can
be trivial, and indeed one is actually trivial because the two nontrivial classes
must coincide, implying the third is trivial.

3.3 Type 3 bielliptic surfaces

Here H2(S,Z)tors ≃ Z/2Z and Ker(ψ∗) ≃ Z/4Z, but now we have two fibers of
multiplicity 4 and one of multiplicity 2. Denote by E the reduced multiple fiber
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of multiplicity 2 and by D1, D2 the reduced multiple fibers of multiplicity 4.
By the canonical bundle formula, we get

KS ∼ E −D1 −D2.

Then in H2(S,Z) we have the following equalities

[E − 2D1] = [D2 −D1], and [E − 2D2] = [D1 −D2].

We need to show that they are not both trivial. Suppose by contradiction
they are both zero in H2(S,Z), then, as before we have that OS(E− 2D1) and
OS(E − 2D2) are nontrivial elements of Kerψ∗. Since both these line bundles
have order two in Pic(S), and Kerψ∗ has only one element of order 2, we
deduce that

OS(E − 2D1) ≃ OS(E − 2D2).

But then

ω⊗2
S ≃ OS(E −D1 −D2)

⊗2

≃ OS(E − 2D1)⊗OS(E − 2D2)

≃ OS(E − 2D1)
⊗2 ≃ OS ,

which is impossible because ωS is of order 4. Therefore E − 2D1 and E − 2D2

induce the same nontrivial torsion element of H2(S,Z).

3.4 Type 5 bielliptic surfaces

Here H2(S,Z)tors ≃ Z/3Z, Ker(ψ∗) ≃ Z/3Z, and there are three multiple
fibers, each of multiplicity 3. By the canonical bundle formula, we get

KS ∼ −Di −Dj + 2Dk = (Dk −Di) + (Dk −Dj).

Again, KS is algebraically equivalent to zero, so we get that [Dk − Di] =
[Dj −Dk] in H2(S,Z). Running through the indices we get the two classes

[D1 −D2] = {D1 −D2, D3 −D1, D2 −D3},
[D1 −D3] = {D1 −D3, D3 −D2, D2 −D1}.

We need to show that they are distinct and both nontrivial. Observe that if
they were the same class then both classes would be trivial, so it is enough to
show that they are not the zero class. Again, suppose by contradiction that
[Dk −Di] = 0 in H2(S,Z), then we can write

ωS ≃ OS(D1 −D2)⊗OS(D1 −D3),

with OS(D1−D2) and OS(D1−D3) for nontrivial elements in Ker(ψ∗). Neither
OS(D1 −D2) nor OS(D1 −D3) can be isomorphic to the canonical bundle ωS ,
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or we would have OS(Dk − Di) ≃ OS , contradicting Lemma 3.2. As Kerψ∗

has only two nontrivial elements, we necessarily have

OS(D1 −D2) ≃ OS(D1 −D3)

and so OS(D2 −D3) ≃ OS , which contradicts again Lemma 3.2, thus we can
conclude.

4 The Brauer map to another bielliptic surface

Let S be a bielliptic surface of type 2 or 3. Then by Examples 2.4(a) and 2.4(b)
there is a 2:1 cyclic cover π̃ : S̃ → S, where S̃ is a bielliptic surface of type 1.
As in paragraph 2.3 , we will denote by σ̃ the involution induced by π̃. In this
section, we are concerned with studying the Brauer map π̃Br : Br(S) → Br(S̃).
Surpisingly we reach two antipodal conclusions, depending on the type of the
bielliptic surface.
Recall that, as S̃ is a bielliptic surface of type 1, the elliptic fibration qB : S̃ →
P1 has four multiple fibers D1, . . . , D4 of multiplicity 2, corresponding to the
four 2-torsion points of B. We will denote by τij the line bundle OS̃(Di−Dj).

4.1 Bielliptic surfaces of type 2

Suppose that S is of type 2, and note that the involution σ̃ acts on the set of
the Di’s by exchanging them pairwise. Up to relabeling we can assume that
σ̃∗D1 ∼ D2 and σ̃∗D3 ∼ D4. By (2.8), we therefore have that

π̃∗(Nm(τ13)) ≃ τ13 ⊗ σ∗τ13 ≃ τ13 ⊗ τ24 ≃ ωS̃ , (4.1)

where the last equality is a consequence of (3.4).Thus, if we denote by γ the
generator of Ker π̃∗, we get that

Nm(τ13) ∈ {ωS, ωS ⊗ γ} ⊂ Pic0(S).

Then we can use the Pic0 trick (Remark 2.6), and find a β ∈ Pic0(S) such that
Nm(π̃∗β ⊗ τ13) is trivial.

Lemma 4.1. In the above notation, the line bundle π̃∗β ⊗ τ13 does not belong
to the image of 1− σ̃∗

Before going forward with the proof, let us notice how, as an easy corollary, we
get

Corollary 4.2. If S is of type 2, then the induced map πBr : Br(S) → Br(S̃)
is trivial.

Proof of Lemma 4.1. We will show that the class of τ13 in H2(S̃,Z) is not in
the image of 1− σ̃∗. Denote by [τij ] the algebraic equivalence class of the line

Documenta Mathematica 27 (2022) 383–425



On the Brauer Group of Bielliptic Surfaces 401

bundle τij . Then, by Proposition 2.2 and (3.5), for every L in Pic(S̃) there are
integers n, m, and h, and k such that

c1(L) =
n

2
· a+m · b+ h · [τ13] + k · [τ14].

Then it is easy to see that

(1− σ̃∗)c1(L) = 2h · [τ13] + 2k · [τ14] = 0.

But on the other side we have that c1(π̃∗β⊗τ13) = [τ13] is not trivial, thus π̃∗β⊗
τ13 cannot possibly lie in the image of (1 − σ̃∗), and the lemma is proved.

4.2 Bielliptic surface of type 3

In this paragraph we aim to show the following statement:

Theorem 4.3. If S is a bielliptic surface of type 3, then the Brauer map
π̃Br : Br(S) → Br(S̃) induced by the cover π̃ : S̃ → S, where S̃ is bielliptic of
type 1, is injective.

We will use 2.7 and show that Ker(Nm)/ Im(1 − σ∗) is trivial. There are two
key steps:

1. We first study the norm map when applied to numerically trivial line
bundles;

2. then we prove that all the line bundles L in Ker(Nm) are numerically
trivial.

4.2.1 Norm of numerically trivial line bundles

We will use the notation of Example 2.4. Observe that we have the following
diagram

S̃

a
S̃

��

π̃ // S

aS

��
A/G ϕ

// A/H,

(4.2)

where G ≃ Z/2Z, and H is Z/4Z.

Remark 4.4. Note that the bottom arrow, ϕ, is an isogeny of degree 2. As the
vertical arrows are the Albanese maps of S̃ and S respectively, we have that
π̃∗ : Pic0(S) → Pic0(S̃) coincides with the isogeny dual to ϕ. In particular it
is surjective.

Our first step in the study of the norm homomorphism for numerically trivial
line bundles is to see how it behaves when applied to the generator of the
torsion of H2(S̃,Z). In order to do that, we remark that the automorphism ω
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acts on B[2] with at least one fixed point, the one corresponding to the identity
element of B. Since ω has order 4, it cannot act transitively on the remaining
three points on B[2]. Thus the action has at least two fixed points. We deduce
that σ̃ acts on the set of the reduced multiple fibers by leaving fixed at least
two of them, let us say D1 and D2. If the action were trivial, then we would
have that all the line bundles τij are invariant under the action of σ̃ and as a
consequence they would be pullbacks of line bundles coming from S. We would
deduce that all the torsion classes of H2(S̃,Z) are pullbacks of classes from
H2(S,Z), which is impossible. Thus we know that σ̃ exchanges D3 and D4.
Then we can prove the following Lemma.

Lemma 4.5. Let n and m be two integers. Then the norm of the line bundle
τ⊗n13 ⊗ τ⊗m14 is zero if, and only if, n and m have the same parity. In addition,
we have that Nm(τ⊗n13 ⊗ τ⊗m14 ) is not in Pic0(S) if n and m are not congruent
modulo 2.

Proof. Observe first of all that, thanks to the above discussion, the line bundle
τ34 ≃ τ13 ⊗ τ14 is invariant with respect to the action of σ̃. In particular we
can write τ34 ≃ π̃∗τ where τ is a line bundle on S whose algebraic equivalence
class is the only nontrivial class in H2(S,Z)tors.
Now, if n and m are both even, then τ⊗n13 ⊗ τ⊗m14 is the trivial line bundle, and
there is nothing to prove. Otherwise, if n and m are odd, then

Nm(τ⊗n13 ⊗ τ⊗m14 ) ≃ Nm(τ34) ≃ τ⊗2 ≃ OS .

Conversely, suppose that n and m are not congruent modulo 2. Up to ex-
changing n and m, we can assume that m is even, while n is odd. Then
τ⊗n13 ⊗ τ⊗m14 ≃ τ13. Again, by (2.8), we get

π̃∗ Nm(τ13) ≃ τ13 ⊗ σ̃∗τ13 ≃ τ34 ≃ π̃∗τ.

We deduce that Nm(τ13) is either equal to τ or to τ ⊗ ω⊗2
S . In any case it is

not algebraically equivalent to zero and so the statement is proven.

Remark 4.6. (a) Observe that τ34 is in the image of 1 − σ̃∗, as we have that
τ34 ≃ OS̃(D3)⊗ σ̃∗OS̃(−D3).
(b) We will see in what follows that the different behavior of the norm map
applied to torsion classes is what determines the contrast between the type 2
and type 3 bielliptic surfaces. In particular, the fact that the norm map of a
torsion class is not necessarily algebraically trivial is what does not allow us to
use Remark 2.6 in order to provide a nontrivial class in Ker(Nm)/ Im(1− σ̃∗)

Now we turn our attention to the elements of Pic0(S̃) whose norm is trivial. We
will show that they never determine nonzero classes in Ker(Nm)/ Im(1− σ̃∗).

Lemma 4.7. Denote by Nm : Pic(S̃) → Pic(S) the norm homomorphism. Let
L ∈ Pic0(S̃), such that Nm(L) = OS. Then the class of L in Ker(Nm)/ Im(1−
σ∗) is trivial.
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Proof. We have to show that such L is in the image of the morphism 1− σ̃∗. By
Remark 4.4, we can write L ≃ π̃∗M with M ∈ Pic0(S). Then our assumption
warrants that

OS ≃ Nm(L) ≃M⊗2.

We deduce that M is a 2-torsion point in Pic0(S). Now we know that Pic0(S)[2]
is a group scheme isomorphic to Z/2Z × Z/2Z. Let γ be the element ω⊗2

S ∈
Pic0(S)[2] then we can find β ∈ Pic0(S)[2], β nontrivial, such that

Pic0(S)[2] = {OS , γ, β, γ ⊗ β}.

In particular, as π̃∗γ ≃ OS̃ , we have

Ker(Nm) ∩ Pic0(S̃) = {OS̃ , π̃
∗β}. (4.3)

Now we aim at producing a line bundle α ∈ Pic0(S̃)∩Im(1−σ̃∗), α 6≃ OS̃ . Thus
we will have that Pic0(S̃) ∩ Im(1 − σ̃∗) is a nontrivial subgroup of Ker(Nm) ∩
Pic0(S̃). From (4.3) we deduce that

Ker(Nm) ∩ Pic0(S̃) = Pic0(S̃) ∩ Im(1− σ̃∗),

and so the statement.
To this aim, let ǫ ∈ A′ := A/G the image of the point ǫ ∈ A defining the
involution σ̃ (see (2.4)). Denote also by p0 the identity element of A′; observe
that by the construction of bielliptic surfaces ǫ 6= p0. Consider the following
line bundle on S̃:

α := a∗
S̃
(OA′(p0)⊗ t∗ǫOA′(−p0)).

Clearly α is a nontrivial element in Pic0(S̃). In addition by (2.4) we see that

α ≃ a∗
S̃
(OA′(p0))⊗ σ̃∗a∗

S̃
(OA′(−p0)),

and therefore it is in the image of 1− σ̃∗. Thus we can conclude.

4.2.2 Injectivity of the Brauer map

We are now ready to prove Theorem 4.3. We will do so by showing the following
statement.

Proposition 4.8. If L ∈ Ker(Nm) then L is numerically trivial.

Before proceeding with the proof, let us show how this implies Theorem 4.3.
Let L be a line bundle in the kernel of the norm map. Then Proposition 4.8
yields that

L ≃ α⊗ τ⊗n13 ⊗ τ⊗m14

for some positive integers n and m, and for some α ∈ Pic0(S̃). Write again
α ≃ π̃∗β, and observe that if n and m are not congruent modulo 2, then by
Lemma 4.5,we get

Nm(L) ≃ β⊗2 ⊗ τ,
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which is not algebraically trivial. We deduce that n and m must have the same
parity. Now we apply the first part of Lemma 4.5 and see that α ∈ Ker(Nm).
In particular, Lemma 4.7 implies that α ∈ Im(1− σ̃∗), and so the class of L in
Ker(Nm)/ Im(1 − σ̃∗) is the same as the class of τ34. But Remark 4.6(a) tells
us that the latter is trivial and so Theorem 4.3 is proved.

Proof of Proposition 4.8. Let L be in the kernel of the norm map. Lemmas 2.3
and 2.3 imply that π̃∗ Num(S) is a sublattice of index 2 of Num(S̃). In par-
ticular, L⊗2 is numerically equivalent to the pullback of a line bundle from S.
Thus we can write

L⊗2 ≃ π̃∗M ⊗ α⊗ τ⊗n13 ⊗ τ⊗m14

for some positive integers n and m, and for some α ∈ Pic0(S̃). Again, by
Remark 4.4 we can write α ≃ π̃∗β for some β ∈ Pic0(S), and so, up to substi-
tuting M with M ⊗ β we have that

L⊗2 ≃ π̃∗M ⊗ τ⊗n13 ⊗ τ⊗m14 .

If we show that M is numerically trivial, we can conclude. Observe that

OS ≃ Nm(L)⊗Nm(L)

≃ Nm(L⊗2)

≃M⊗2 ⊗Nm(τ⊗n13 ⊗ τ⊗m14 )

≃M⊗2 ⊗ τ⊗(n+m),

where the last equality is a consequence of Lemma 4.5. As τ is numerically
trivial we conclude that the same is true for M .

5 The Brauer map to the canonical cover

In this section we study the Brauer map πBr : Br(S) → Br(X) when S is a
bielliptic surface and X is its canonical cover. Then there is an n to 1 étale
cyclic cover π : X → S, where n denotes the order of the canonical bundle ωS .
Thus, as in the previous section, we can use Beauville’s work [Bea09] to study
the kernel of the πBr via the norm homomorphism Nm : Pic(X) → Pic(S). As
in the other cases the Brauer group is trivial, we can assume that S is of type
1, 2, 3, or 5. Recall that, independently from the case at hand, there are two
elliptic curves A and B such that X is isogenous to A×B. In addition, for an
abelian surface X , we have that Num(X) and NS(X) coincide.
In what follows we will see that the geometry of the Brauer maps depends
much on the geometry of A × B, and in particular on which kind of isogenies
there are between A and B. Throughout this section we will use the notation
established in paragraph 2.2.
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5.1 The norm of numerically trivial line bundles

Our first step will be proving the following proposition, which will allow us to
study the norm map from a strictly numerical point of view.

Proposition 5.1. Let L ∈ Pic0(X) ∩Ker(Nm). Then L is in Im(1− σ∗).

Before going any further we need to describe more precisely our setting and
introduce some notation.
Observe first that, if we let as in 2.2 pA : X → A/H and pB : X → B/H be
the two elliptic fibrations of the abelian variety X , then Pic0(X) is generated
by p∗A Pic0(A/H) and p∗B Pic0(B/H); thus we can write any L ∈ Pic0(X) as
p∗Aα ⊗ p∗Bβ, where α ∈ Pic0(A/H), β ∈ Pic0(B/H). In this notation we have
the following.

Lemma 5.2. For every β ∈ Pic0(B/H) we have that p∗Bβ is in the image of
1 − σ∗. In particular these line bundles are in the kernel of the norm homo-
morphism.

Proof. We suppose first that G is cyclic and so the group H is trivial, and
X ≃ A×B. We proceed with a case by case analysis.
Type 1 case. Since abelian varieties are divisible groups, there exist γ ∈ Pic0(B)
such that γ⊗2 ≃ β. Then by (2.2) we have that

(1− σ∗)p∗Bγ ≃ p∗Bγ ⊗ (σ∗p∗Bγ)
−1 ≃ p∗B2

∗
Bγ ≃ p∗Bβ,

and the statement is proven in this case.
Type 3 case. In this case the j-invariant of B is 1728 and there is an auto-
morphism ω of B of order 4. Consider the map 1 − ω : B → B. Since this is
not trivial it is an isogeny, and in particular (1 − ω)∗ : Pic0(B) → Pic0(B) is
surjective. Let γ ∈ Pic0(B) such that (1 − ω)∗γ ≃ β, then by (2.2) we have

(1 − σ∗)p∗Bγ ≃ p∗B(1− ω)∗γ ≃ p∗Bβ,

and the statement is proven in this case.
Type 5 case. This case is similar to the previous one in which instead of ω we
use the automorphism ρ. We note that (1−ρ) : B → B is nontrivial, and so an
isogeny. In particular the dual map (1 − ρ)∗ : Pic0(B) → Pic0(B) is surjective
and we can find γ such that (1 − ρ)∗γ ≃ β. Again (2.2) yields:

(1− σ∗)p∗Bγ ≃ p∗B(1− ρ)∗γ ≃ p∗Bβ,

and the statement is proven.
Type 2 case. In this case, the group H is not trivial but it is cyclic of order 2.
Let B′ := B/H , and observe that we have the following diagram

X

pB

��

σ // X

pB

��
B′ −1B′

// B′.
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So let, as in the type 1 case, γ ∈ Pic0(B′) be such that 2∗B′γ ≃ β, then we will
have again that (1− σ∗)p∗Bγ ≃ p∗Bβ and the proof is concluded.

Proof of Proposition 5.1. Now let L = p∗Aα ⊗ p∗Bβ ∈ Pic0(X) such that
Nm(L) ≃ OS . Lemma 5.2 implies that also p∗Aα is in the kernel of the norm ho-
momorphism. In addition, we have that the class of L in Ker(Nm)/ Im(1−σ∗)
is just the class of p∗Aα. We have a commutative diagram

X

pA

��

π // S

aS

��
A/H ϕ

// A/G,

where the bottom arrow is an isogeny of degree n. In particular, we can write
p∗Aα ≃ π∗M with M ∈ Pic0(S). Moreover, we have that

OS ≃ Nm(p∗Aα) ≃M⊗n,

thus we have that

p∗A
(

Pic0(A/H)
)

∩Ker(Nm) = π∗ (Pic0(S)[n]
)

.

It easy to see that the right-hand side above is a cyclic group of order n. Since
Im(1 − σ∗) is a subgroup of the kernel of the norm, if we provide an element
of order n in p∗A

(

Pic0(A/H)
)

∩ Im(1− σ∗), we would conclude that

p∗A
(

Pic0(A/H)
)

∩ Im(1− σ∗) = p∗A
(

Pic0(A/H)
)

∩Ker(Nm)

and consequently the statement of Proposition 5.1. Let p0 be the identity
element of A/H , using the notation of 2.2 and (2.3) we set

γ :=



















OA(p0)⊗ t∗τ (OA(−p0)), if S is of type 1,

OA/H(p0)⊗ t∗τ ′(OA/H(−p0)), if S is of type 2,

OA(p0)⊗ t∗ǫ (OA(−p0)), if S is of type 3,

OA(p0)⊗ t∗η(OA(−p0)), if S is of type 5;

where τ ′ is the image of τ under the isogeny A→ A/H . Then γ is a nontrivial
element of Pic0(A/H) with the desired property. In addition, by (2.2) (2.3),
we have that p∗Aγ ≃ (1− σ∗)p∗AOA(p0), and so we can conclude.

Now we are ready to start our investigation of the Brauer map πBr : Br(S) →
Br(X). We first put ourselves in generic situation in which there are no non-
trivial morphisms between A and B.
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5.2 The Brauer map when the two elliptic curves are not isoge-

nous

If there are no isogenies between A and B, then the lattice Num(X) has rank 2
and it is generated by the classes of the two fibers, aX and bX . In addition,
π∗ Num(S) is a sublattice of Num(X) of index n. So, let L be in the kernel of
the norm map. We have that L⊗n is numerically equivalent to the pullback of
a line bundle from S. More precisely we can write

L⊗n ≃ π∗L′ ⊗ p∗Aα⊗ p∗Bβ ≃ π∗M ⊗ p∗Bβ,

with β ∈ Pic0(B/H). Lemma 5.2 ensures that π∗M is in the kernel of the norm
map. In particular, M is an n-torsion element in Pic(S). We deduce that it
is numerically trivial, and so L was numerically trivial to start with. Now we
apply Proposition 5.1 and deduce the following statement.

Theorem 5.3. If S := A × B/G is a bielliptic surface such that the elliptic
curves A and B are not isogenous, then the Brauer map to the canonical cover
πBr : Br(S) → Br(X) is injective.

Before going to the next case, observe that if S is a bielliptic surface of type 2,
then we have the following diagram

A×B
π
S̃

//

ϕ

��

S̃

π̃

��
X πS

// S.

If A and B are not isogenous, Theorem 5.3) above implies that the Brauer map
induced by πS is injective. On the other side, Corollary 4.2 implies that the
Brauer map induced by πS ◦ ϕ is trivial. Then the Brauer map induced by ϕ
cannot be injective and we have

Corollary 5.4. If ϕ : X → Y is an isogeny of abelian varieties, the map
ϕBr : Br(Y ) → Br(X) is not necessarily injective.

5.3 The Brauer map when the two elliptic curves are isogenous

Suppose now that A and B are isogenous. Our first step will be to use the
description of the Picard group and of the Néron–Severi of A × B, that we
outlined in 2.6, in order to find the image of 1 − σ∗, and the numerical type
of line bundles in the kernel of the norm homomorphism when S is a cyclic
bielliptic surface. We begin with the following Lemma.

Lemma 5.5. Suppose that G is a cyclic group, so that X ≃ A × B. If L ∈
Pic(A× B) is in the kernel of the norm map, then c1(L) = l(0, 0, ϕ) for some
isogeny ϕ : B → A.
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Proof. By the result of 2.6, we have that c1(L) = l(m,n, ϕ) for two integers n
and m and an isogeny ϕ. Suppose that S is of type 1 and L is in the kernel
of the norm map. By (2.8), we have that L ⊗ σ∗L is trivial. In particular,
c1(L ⊗ σ∗L) is zero. But then we get the following

0 = c1(L⊗ σ∗L)

= c1(L) + σ∗c1(L)

= l(m,n, ϕ) + l(m,n,−ϕ) = l(2m, 2n, 0).

We conclude that n = m = 0. At the same time, if S is of type 5, we have that

0 = c1(L) + σ∗c1(L) + (σ2)∗c1(L) = l(3m, 3n, 0).

Finally, if S is of type 3 we get

0 = c1(L) + σ∗c1(L) + (σ2)∗c1(L) + (σ3)∗c1(L) = l(4m, 4n, 0),

so the statement is proven.

We turn now our attention to the Brauer map in general, and we study it by
performing a case by case analysis on the different type of bielliptic surfaces.

5.3.1 Bielliptic surfaces of type 1

In this paragraph, we study the Brauer map to the canonical cover of bielliptic
surfaces of type 1. If B does not have complex multiplication, we fix, once
and for all, ψ : B → A be a generating isogeny. Otherwise we fix ψi : B →
A, for i = 1, 2 two generators of Hom(B,A). Our first step is to describe
(1− σ∗) Pic(A×B).

Lemma 5.6. Let S be a bielliptic surface of type 1, and consider L ∈ (1 −
σ∗) Pic(A × B), then there exist three integers m, h and k, and a line bundle
β ∈ Pic0(B) such that

L ≃
{

L(P⊗m
τ , β, 2h · ψ1 + 2k · ψ2) if B has complex multiplication (CM).

L(P⊗m
τ , β, 2h · ψ) if B does not have CM;

Proof. We do the complex multiplication case, the other is similar. Let M ∈
Pic(A ×B), then by the results of 2.6 we have that M ≃ L(MA,MB, h · ψ1 +
k · ψ2). We can write MA ≃ OA(n · p0) ⊗ α and MB ≃ OB(m · q0) ⊗ γ
for q0 the identity element of B, some integers n and m and some topologically
trivial line bundles α and γ. We recall that, by the Theorem of the Square,
topologically trivial line bundles on abelian varieties are translation invariant
(see for example [Mum70, p. 74]. Thus we can write

σ∗M ≃ L (t∗τOA(n · p0)⊗ α,

OB(m · q0)⊗ γ−1 ⊗ (−h · ψ1 − k · ψ2)
∗Pτ ,−h · ψ1 − k · ψ2

)

.
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Observe that, as γ ranges in all Pic0(B), also β := γ⊗2 ⊗ (h · ψ1 + k · ψ2)
∗Pτ

ranges in the whole Pic0(B). In addition, we have that

(1− σ∗)M ≃ L
(

P⊗n
τ , β, 2h · ψ1 + 2k · ψ2

)

.

Remark 5.7. It is not difficult to check that, for any two integers h and k,

L(0, 0, 2h · ψ1 + 2k · ψ2) = L(0, 0, h · ψ1 + k · ψ2)⊗ σ∗L(0, 0, h · ψ1 + k · ψ2)
−1,

and so it is in Im(1− σ∗).

We are now ready to prove one of the main statements of this section:

Theorem 5.8. Suppose that S is a bielliptic surface of type 1 whose canonical
cover is A × B with A and B isogenous elliptic curves. Then the Brauer map
to the canonical cover of S is not injective if, and only if, one of the following
mutually exclusive conditions is satisfied:

1. the elliptic curve B (and so A) does not have complex multiplication and
ψ∗Pτ is trivial;

2. the elliptic curve B (and so A) has complex multiplication and we have
that at least one of the following line bundles is trivial

L1 := ψ∗
1Pτ , L2 := ψ∗

2Pτ , L3 := (ψ1 + ψ2)
∗Pτ . (5.1)

Proof. We deal with the complex multiplication case that is slightly more in-
volved. The argument for the other case is very similar.
Before explaining the details of our reasoning we would like to give, for the
reader convenience, a quick outline of the proof. The key observation is that
the assumption on the line bundles (5.1) are equivalent to the norm of one of
the following invertible sheaves to lies in Pic0(S).

M1 := (1×ψ1)
∗
PA, M2 := (1×ψ2)

∗
PA, M3 := (1× (ψ1 +ψ2))

∗
PA. (5.2)

Therefore, if the assumptions are verified, we can use the Pic0 trick (Re-
mark 2.6) to produce an element in the kernel of the norm map. Such an
element will give, by construction, a nontrivial class in KerNm / Im(1 − σ∗).
Conversely, if none of the line bundles is trivial, then an element in the kernel
of the norm map will be forced to be numerically equivalent to (1× 2 · ϕ)∗PA

for some isogeny ϕ ∈ Hom(B,A). Then we will apply Lemma 5.6 and see that
such a line bundle lies in Im(1 − σ∗), so no element of Pic(A × B) yields a
nontrivial class in KerNm / Im(1− σ∗).
Now, for the complete argument, observe first that by (2.8) and the see-saw
principle, it is easy to check that, for every α in Pic0(A) and every isogeny
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ϕ : B → A,

π∗ Nm((1× ϕ)∗PA ⊗ p∗Aα) ≃ (1× ϕ)∗PA ⊗ (1× ϕ)∗P−1
A ⊗

⊗ p∗Aα
⊗2 ⊗ p∗Bϕ

∗Pτ

≃ p∗Aα
⊗2 ⊗ p∗Bϕ

∗Pτ .

(5.3)

Suppose first that one of the three line bundles in (5.1) is trivial. To fix the
ideas we can assume that ψ∗

1Pτ is trivial, the argument is identical in the other
cases. Then, by (5.3), we have that Nm((1×ψ1)

∗
PA) is in the kernel of π∗, so

in particular it is in Pic0(S). We can therefore apply Pic0 trick (Remark 2.6),
and find γ ∈ Pic0(S) such that the norm of (1×ψ1)

∗PA ⊗ π∗γ is trivial. But,
by Lemma 5.6, we have that (1× ψ1)

∗PA ⊗ π∗γ is not in the image of 1− σ∗

and so it defines a nontrivial class in KerNm / Im(1 − σ∗), and one direction
of the statement is proven.
Conversely, suppose that there is a line bundle L on X which identifies a
nontrivial class in KerNm / Im(1− σ∗). By Lemmas 5.5 and 5.6, we can write

L ≃ (1× h · ψ1 + k · ψ2)
∗
PA ⊗ p∗Aα⊗ p∗Bβ,

for two integers h and k, and two topologically trivial line bundles α and β.
Note that h and k cannot be both even, for otherwise Lemma 5.6 and Re-
mark 5.7 yield that [L] = [p∗Aα⊗p∗Bβ] ∈ KerNm / Im(1−σ∗) which, by Propo-
sition 5.1, implies that [L] = 0 . Thus we can assume that one between h and k
is odd. Then, by Lemma 5.2 and Lemma 5.6, we have that

L ≃ (1× ψi)
∗
PA ⊗ p∗Aα⊗M, or L ≃ (1 × ψ1 + ψ2)

∗
PA ⊗ p∗Aα⊗M,

with M in Im(1− σ∗). In particular, a twist of a line bundle in 5.2 has trivial
norm. We deduce, by (5.3), that one of the line bundles in (5.1) is trivial and
the statement is proved.

Example 5.9. (a) Suppose that A ≃ B. If A does not have complex multi-
plication, then we can take ψ = ±1A. In particular we have that ψ∗Pτ is never
trivial and the Brauer map is injective.

(b) Suppose again that A ≃ B, and that the j-invariant of A is 1728. Then
End(A) ≃ Z[i] and the multiplication by i induces an automorphism ω of A of
order 4, and we can take 1A and ω as generators of End(A). Suppose that Pτ
is a fixed point† of the dual automorphism ω∗. Then (1A + ω)∗Pτ is trivial,
and the Brauer map is not injective.

(c) We can also use a similar argument to construct uncountably many
type 1 bielliptic surfaces with non injective Brauer map. Let B any elliptic
curve without complex multiplication, and chose θ a point of order 2 on B. Let

†For example we can identify A with its dual and ω∗ with ω and take τ = ( 1
2
, 1

2
) + Λ,

where Λ =< 1, i > A ≃ C/Λ.
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A := B/ < θ > and ψ : B → A the quotient map. This is a degree 2 isogeny, so
it is primitive, and hence generating. If τ denotes the only point of order 2 in
Kerψ∗, then we have that the data A, τ , B uniquely identify a type 1 bielliptic
surface which has a non injective Brauer map.

In order to complete our description of the Brauer map for type 1 bielliptic
surfaces, we need to give necessary and sufficient conditions for it to be trivial.
To this aim, we want to provide two distinct non-zero classes in KerNm / Im(1−
σ∗). We can assume that the Brauer map is already non-injective, and so one
of the condition of Theorem 5.8 is satisfied. Suppose first that B does not have
complex multiplication, and consider L in the kernel of the norm map, yielding
a nontrivial class in KerNm / Im(1− σ∗). Then, as before, we have that

L ≃ (1× h · ψ)∗PA ⊗ p∗Aα⊗ p∗Bβ.

Again, by Lemma 5.6, we can assume that h is odd, and the same result also
yields that in KerNm / Im(1−σ∗) the class of L and that of (1×ψ)∗PA⊗p∗Aα
are the same. Since ψ∗Pτ is trivial, (5.3) implies that (1× ψ)∗PA ⊗ p∗Aγ is in
the kernel of the norm map for some γ ∈ Pic0(A). So Nm(p∗A(α⊗ γ−1)) ≃ OS

and as before p∗A(α ⊗ γ−1) lies in the image of (1 − σ∗). We deduce that, in
KerNm / Im(1− σ∗),

[L] = [(1× ψ)∗PA ⊗ p∗Aγ] = [(1× ψ)∗PA ⊗ p∗Aδ],

for every δ ∈ Pic0(A) such that (1×ψ)∗PA ⊗ p∗Aδ is in the kernel of the norm
homomorphism. In particular there is only one non-trivial element in KerπBr.
Thus we can assume that B has complex multiplication and that, as before, we
have fixed ψ1 and ψ2 a system of generators for Hom(A,B). Suppose that only
one among the line bundles (5.1) is trivial, for example L1. As usual, we can
take L in the kernel of the norm map, and we can write L ≃ Mi ⊗ p∗Aα ⊗M ,
with M in the image of (1 − σ∗), and Mi one of the line bundles appearing
in (5.2). We deduce that i = 1, and that the class of L in KerNm / Im(1− σ∗)
is equal to the class of M1⊗p∗Aγ for every γ ∈ Pic0(A) such that Nm(M1⊗p∗Aγ)
is trivial. Thus, there is just one non-zero class, and the Brauer map is again
nontrivial. Finally suppose that two (and so all) line bundles in (5.1) are trivial.
We have that both M1 and M2 are in the kernel of the norm map. In addition,

M1 ⊗M−1
2 ≃ (1× (ψ1 − ψ2))

∗
PA,

which by Lemma 5.6 is not in the image of (1 − σ∗). Therefore, we deduce
that they determine two different classes in KerNm / Im(1 − σ∗), and hence
the Brauer map is trivial. We have thus proven the following statement:

Theorem 5.10. The Brauer map to the canonical cover of a type 1 bielliptic
surface is trivial if, and only if, the elliptic curves A and B are isogenous, B
has complex multiplication, and all the line bundles in (5.1) are trivial.
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Example 5.11. (a) If A ≃ B then the Brauer map is never trivial. Suppose
otherwise that there are ψ1 and ψ2 generators of End(A) such that both ψ∗

1Pτ
and ψ∗

2Pτ are zero. Then we can write 1A = h · ψ1 + k · ψ2 and we would get
that Pτ ≃ 1∗APτ is trivial, reaching an obvious contradiction.

(b) Let now A ≃ C/Z[2i] and let τ the point (0, i) + Z[2i]. The elliptic
curve B := A/ < τ > has j-invariant 1728 and Hom(B,A) is generated by the
isogenies ψ1 := ϕ2 and ψ2 := ϕ2 ◦ λB , where ϕ2 : B → A denotes the isogeny
induced by multiplication by 2 (see Example A.8 in the Appendix). Observe
that

ϕ∗
2(Pτ ) ≃ ϕ∗

2(OA(τ − p0)) ≃ OA(ϕ2(τ)− ϕ(p0)) ≃ OB .

Thus we have that ψ∗
1Pτ ≃ ψ∗

2Pτ ≃ OB and the Brauer map is trivial.

5.3.2 Bielliptic surfaces of type 3

Let now S be a bielliptic surface of type 3. Then the canonical cover of S is
isomorphic to A × B with j(B) = 1728 and multiplication by i induces and
automorphism ω of B of order 4, ω. By the discussion in 2.6, it is possible to
find a generating isogeny ψ such that

Num(X) = 〈l(1, 0, 0), l(0, 1, 0) l(0, 0, ψ), l(0, 0, ψ ◦ ω)〉 ,

We fix, once and for all, such a ψ and prove the following Lemma, which yields
a precise description of (1− σ∗) Pic(X).

Lemma 5.12. Let ϕ : B → A be an isogeny, and let h and k be the two unique
integers such that ϕ = h · ψ + k · ψ ◦ ω. Then the line bundle (1 × ϕ)∗PA ∈
Im(1 − σ∗) if and only if h+k is even.

Proof. Let T : Hom(B,A) → Hom(B,A) be the linear operator obtained by
pre-composing with (1B −ω). Then, using that ω2 = −1B, it is not difficult to
show that an isogeny ϕ as in the statement is in the image of T if, and only if,
h+ k is even. Hence if h+ k is not even, (1× ϕ)∗PA /∈ Im(1 − σ∗).
Suppose now that ϕ = h ·ψ+k ·ψ ◦ω with h+k an even number. Then, by the
above argument, we can find an isogeny γ : B → A such that ϕ = γ ◦ (1B −ω).
Then we have

(1 − σ∗)(1 × γ)∗PA ≃ (1× γ ◦ (1B − ω))∗PA ⊗ p∗Bω
∗γ∗P−1

ǫ

≃ (1× ϕ)∗PA ⊗ p∗Bω
∗γ∗P−1

ǫ .

By Lemma 5.2, elements of the form p∗Bβ with β ∈ Pic0(B) are in the image
of (1− σ∗), so we conclude that (1× ϕ)∗PA ∈ Im(1− σ∗).

Remark 5.13. Observe that this Lemma implies easily that the quotient
Hom(B,A)/ Im(1 − σ∗), where we are identifying Hom(B,A) with the cor-
responding subgroup of Num(A × B), is cyclic generated by the coset (1A ×
ψ)∗PA + Im(1 − σ∗).
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Now we are ready to start studying the kernel for the Brauer map πBr : Br(S) →
Br(X). Our main result is the following

Theorem 5.14. Let S is a bielliptic surface of type 3 with canonical cover
A×B such that A and B are isogenous. Then the Brauer map to the canonical
cover is identically zero if, and only if, (1B + ω)∗ψ∗P2ǫ is trivial

Proof. For any isogeny ϕ : B → A, α ∈ Pic0(A) and β ∈ Pic0(B), using that
the norm of p∗Bβ is trivial by Lemma 5.2, we have that

π∗ Nm((1× ϕ)∗PA ⊗ p∗Aα⊗ p∗Bβ) ≃
(1× ϕ)∗PA ⊗ p∗Aα⊗
(1× ϕ ◦ ω)∗PA ⊗ p∗Bω

∗ϕ∗Pǫ ⊗ p∗Aα⊗
(1×−ϕ)∗PA ⊗ p∗B(−1B)

∗ϕ∗P2ǫ ⊗ p∗Aα⊗
(1×−ϕ ◦ ω)∗PA ⊗ p∗B(−ω)∗ϕ∗P3ǫ ⊗ p∗Aα⊗
≃ p∗Aα

⊗4 ⊗ p∗B(1 + ω)∗ϕ∗P2ǫ.
(5.4)

Suppose that (1B + ω)∗ψ∗P2ǫ ≃ OB. Since P2ǫ is a two torsion point, this is
equivalent to asking that (1B−ω)∗ψ∗P2ǫ is also trivial. Then (5.4) implies that
the norms of (1 × ψ)∗PA and of (1 × ψ ◦ ω)∗PA lie in Pic0(S). Then, using
the Pic0-trick (Remark 2.6) and Lemma 5.12, we can find a non zero class in
KerNm / Im(1− σ∗), and the Brauer map is trivial.
Conversely, let L be a line bundle defining a nontrivial class in KerNm / Im(1−
σ∗). Then as we did in the case of type 1 surfaces, we can write

L ≃ (1 × h · ψ + k · ψ ◦ ω)∗PA ⊗ p∗Aα⊗ p∗Bβ,

with α and β in Pic0(A) and Pic0(B). Lemma 5.12 implies that the integer
h+ k is odd, or we would have that p∗Aα is in the kernel of the norm map, and
consequently, by Proposition 5.1, L ∈ Im(1− σ∗). Thus, we can write

L ≃M ⊗M ′,

where M ′ is in the image of 1 − σ∗, and M is numerically equivalent to (1 ×
ψ)∗PA (this is a consequence of Lemma 5.12 and Remark 5.13). We deduce
that M is in the kernel of the norm map. But then (5.4) implies that (1 +
ω)∗ψ∗P2ǫ is trivial, proving the statement.

Example 5.15. Suppose that A ≃ B, so we can take ψ = 1A. If P2ǫ is a fixed
point of ω, then we have that PA yields a nontrivial element in KerNm / Im(1−
σ∗). Conversely, if P2ǫ is not a fixed point of ω we will have that the Brauer
map is injective.

5.3.3 Bielliptic surfaces of type 5

Let S be a bielliptic surface of type 5. We will solve this case in a similar
fashion as for bielliptic surfaces of type 3. In the type 5 case, the canonical
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cover is isomorphic to an abelian surface A × B with j(B) = 0. As already
seen, B admits an automorphism ρ of order 3 such that ρ2 + ρ+1 = 0. Again,
thanks to Theorem 5.3, we need to study only the case in which A and B are
isogenous. Also in this case, by the results of 2.6, there is generating isogeny
ψ : B → A such that

Num(X) = 〈l(1, 0, 0), l(0, 1, 0) l(0, 0, ψ), l(0, 0, ψ ◦ ρ)〉 .

With this notation, we prove a statement analogous to Lemma 5.12:

Lemma 5.16. Let ϕ : B → A be an isogeny and let h and k be the two uniques
integers such that ϕ = h · ψ + k · ψ ◦ ρ. If h + k is not divisible by 3, then
(1×ϕ)∗PA /∈ Im(1−σ∗). Conversely if 3 divides h+k, then (1×ϕ)∗PA⊗p∗Bβ ∈
Im(1 − σ∗), for every β ∈ Pic0(B).

Proof. The argument is completely analogous to the proof of Lemma 5.12,
after observing that, if T : Hom(B,A) → Hom(B,A) is the operator defined
by pre-composing with 1B − ρ. Then the image of T consits of exactly the
homomorphisms h · ψ + k · ψ ◦ ρ such that 3 divides k + h.

Remark 5.17. This Lemma implies easily that the quotient of the Hom-part
of Num(A ×B) by the action of 1 − σ∗ is isomorphic to Z/3Z with nontrivial
elements (1A × ψ)∗PA + Im(1− σ∗) and (1A ×ψ+ ψ ◦ ρ)∗PA + Im(1− σ∗) =
(1A × 2 · ψ)∗PA + Im(1 − σ∗).

We will also need the following statement:

Lemma 5.18. Let B an elliptic curve with j-invariant 0 and β an element
Pic0(B). Consider the following line bundles

P1 := (2 · ρ+ 1B)
∗β, , Pρ := (2 · ρ+ 1B)

∗ρ∗β,

and P1+ρ := (2 · ρ+ 1B)
∗(1B + ρ)∗β.

If any of them is trivial then they are all trivial.

Proof. Observe first that (2 · ρ + 1B)
∗ρ∗β ≃ ρ∗(2 · ρ + 1B)

∗β. Since ρ is an
automorphism, the triviality of Pρ is equivalent to the triviality of P1. In
addition as P1+ρ ≃ P1 ⊗ Pρ we have that if P1 and Pρ are both trivial, then
also P1+ρ is trivial. It remains to show that if P1+ρ ≃ OB, then also P1 and Pρ
are trivial. We note that P1+ρ ≃ OB if, and only if, ρ∗P1+ρ ≃ OB . On the
other side we have

ρ∗P1+ρ ≃ ρ∗(2 · ρ+ 1B)
∗(1B + ρ)∗β

≃ ρ∗(ρ− 1B)
∗β ≃ (−2 · ρ− 1B)

∗β ≃ P−1
1 .

We conclude that the triviality of P1+ρ is equivalent to the triviality of P1, as
required by the statement.

Now we are ready to prove the main result of this paragraph:
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Theorem 5.19. Let S be an bielliptic surface of type 5 such that the two elliptic
curves A and B are isogenous. Let ψ be a generating isogeny, then we have
that the Brauer map πBr : Br(S) → Br(A×B) is trivial if, and only if, the line
bundle (2 · ρ+ 1B)

∗ψ∗Pη ≃ OB.

Proof. The argument is really similar to what happens for type 3 bielliptic
surfaces. We first note that, for any isogeny ϕ : B → A, and every α and β in
Pic0(A) and Pic0(B) respectively, we have that

π∗ Nm((1× ϕ)∗PA ⊗ p∗Aα⊗ p∗Bβ) ≃ p∗Aα
⊗3 ⊗ p∗B(2 · ρ+ 1B)

∗ϕ∗Pη. (5.5)

Suppose first that (2 ·ρ+1B)
∗ψ∗Pη is trivial. Then (5.5) ensures that the norm

of M1 := (1 × ψ)∗PA is topologically trivial. By Lemma 5.16 we know that
no line bundle numerically equivalent to M1 is in the image of 1 − σ∗. Thus
we use the Remark 2.6 to provide an element in KerNm inducing a nontrivial
class in KerNm / Im(1− σ∗).
Conversely, assume that L is a line bundle in KerNm whose class in
KerNm / Im(1− σ∗) is not trivial. As before we can write

L ≃ (1× h · ψ + k · ψ ◦ ρ)∗PA ⊗ p∗Aα⊗ p∗Bβ.

We apply Lemma 5.16 and write L ≃M ⊗M ′ with M ′ ∈ Im(1− σ∗) and M a
line bundle numerically equivalent to one of the following

M1 := (2 · ρ+ 1B)
∗ψ∗Pη, and M1+ρ := (2 · ρ+ 1B)

∗(1 + ρ)∗ψ∗Pη. (5.6)

Clearly M is in the kernel of the norm map, which, by (5.5) implies that one
among the following is trivial:

P1 := (2 · ρ+ 1B)
∗ψ∗Pη, and P1+ρ := (2 · ρ+ 1B)

∗(1B + ρ)∗ψ∗Pη.

We conclude by applying Lemma 5.18 and deducing that P1 ≃ OB.

Example 5.20. Suppose that A ≃ B. Note that the self-isogeny ϕ := (2·ρ+1B) :
B → B has degree 3, and its kernel is contained in B[3], which has order 9.
If η ∈ B[3] nontrivial is in the kernel of ϕ, then the bielliptic surface obtained
by the action of σ(x, y) = (x+ η, ρ(y)) has trivial Brauer map. Otherwise, the
Brauer map is injective.

5.3.4 Bielliptic surfaces of type 2

We kept last the bielliptic surfaces of type two since for them we need an ad
hoc argument. Let therefore S be a bielliptic surface of type 2 and denote
by X its canonical cover. Then X ≃ A × B/ < t(θ1,θ2) > for two elliptic
curves A and B and θ1 and θ2 points of order 2 in A and B respectively. Let
us fix generators for Hom(B,A): if B does not have complex multiplication
then Hom(B,A) =< ψ > with ψ : B → A an isogeny; otherwise there are two
isogenies ψ1, ψ2 : B → A such that Hom(B,A) =< ψ1, ψ2 > . Our goal is to
prove the following statement.
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Theorem 5.21. In the above notation the Brauer map πBr : Br(S) → Br(X)
is not injective if, and only if, one of the following conditions is satisfied:

1. the elliptic curve B does not have complex multiplication and either ψ(θ2)
is not the identity element of A or ψ∗Pθ1 is not trivial.

2. the elliptic curve B has complex multiplication and at least one of the
following line bundles is nontrivial:

{

Pψ1(θ2), Pψ2(θ2), ψ
∗
1Pθ1 , ψ

∗
2Pθ1 , P(ψ1+ψ2)(θ2), (ψ1 + ψ2)

∗(Pθ1)
}

Before proceeding with the proof we need to set up some notation. Recall that
we have the following diagram

A×B

φ

��

π
S̃ // S̃

π̃

��
X πS

// S,

where S̃ is a bielliptic surface of type 1. We have that S ≃ X/σ, S̃ ≃ A×B/σ̃
and X ≃ A × B/Σ, where Σ denotes the translation t(θ1,θ2). We are going to
deal just with the case in which B hax complex multiplication. The proof in the
other case will be identical, provided that one drops one of the two generators.
We first observe the following fact:

Lemma 5.22. In the notation above suppose that B has complex multiplication
and let Li be the line bundle (1× ψi)

∗PA, for i = 1, 2. Then the conditions of
Theorem 5.21 are satisfied if, and only if, for every γ ∈ Pic0(A×B) one of the
following line bundles is not Σ-invariant:

L1 ⊗ γ, L2 ⊗ γ, L1 ⊗ L2 ⊗ γ. (5.7)

Proof. By see-saw, it is easy to see that

Σ∗[(1 × ψi)
∗
PA ⊗ γ] ≃ (1× ψi)

∗
PA ⊗ γ ⊗ p∗APψi(θ2) ⊗ p∗Bψ

∗
i Pθ1 ,

Σ∗[(1 × (ψ1 + ψ2))
∗
PA ⊗ γ] ≃ (1× (ψ1 + ψ2))

∗
PA ⊗ γ

⊗ p∗APψ1+ψ2(θ2) ⊗ p∗B(ψ1 + ψ2)
∗Pθ1 ;

the statement follows directly.

Proof of the sufficiency of the conditions of the Theorem 5.21. Suppose that
the conditions of the statement are satisfied. Then, by Lemma 5.22, one of
the line bundles (5.7) is not Σ-invariant. Suppose first that L1 ⊗ γ is not
Σ-invariant for every topologically trivial γ. Thus we have that l(0, 0, ψ1) is
not in φ∗ Num(X). We deduce that

2 · ψ1 /∈ (1− σ̃)∗φ∗ Num(X). (5.8)
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Otherwise, we would have, for some ϕ = hψ1 + kψ2 ∈ Hom(A,B),

2 · ψ1 = (1− σ̃)∗φ∗ϕ

= (1− σ̃)∗(h · ψ1 + k · ψ2)

= 2h · ψ1 + 2k · ψ2.

Therefore h = 1, k = 0 and φ∗ϕ = ψ1, contradicting our previous conclusion.
Now consider the line bundle L := Nmφ((1×ψ1)

∗PA). We want to show that
there is β ∈ Pic0(X) such that NmπS

(L⊗β) is trivial. We use the functoriality
of the norm map (Proposition 2.5) and we obtain that

NmπS
(L) ≃ Nmπ̃ ◦Nmπ

S̃
((1 × ψ1)

∗
PA).

Observe that, by (5.3), we have that π∗
S̃
Nmπ

S̃
((1 × ψ1)

∗PA) is numerically
trivial. Therefore we have that Nmπ

S̃
((1×ψ1)

∗PA) is itself numerically trivial.
This implies that

Nmπ̃ ◦Nmπ
S̃
((1 × ψ)∗PA) ∈ Pic0(S).

In fact, if we have that Nmπ
S̃
((1 × ψ1)

∗PA) := α ∈ Pic0(S̃), then we write
α ≃ π̃∗γ and we have that

NmπS
(L) ≃ Nmπ̃ ◦Nmπ

S̃
((1 × ψ1)

∗
PA) ≃ γ⊗2.

On the other side, if Nmπ
S̃
((1 × ψ1)

∗PA) =: T is numerically trivial, but not
algebraically trivial, then as in (4.1) we have that Nmπ̃(T ) is topologically
trivial. Thus, as before, we obtain β such that NmπS

(L⊗β) ≃ OS via the Pic0

trick (Remark 2.6).
In order to determine the non injectivity of the Brauer map, we have to ensure
that L ⊗ β is not in Im(1 − σ∗). Suppose that this were not the case, and
consider the following commutative diagram

A×B
σ̃ //

φ

��

A×B

φ

��
X

σ
// X.

Then c1(φ
∗L) ∈ (1 − σ̃)∗φ∗ Num(X). However, the properties of the norm

(see (2.8)) ensures that c1(φ∗L) = l(0, 0, 2 · ψ1), thus we would have that
l(0, 0, 2 · ψ1) ∈ φ∗ Num(X), contradicting (5.8).
If L2 ⊗ γ is not Σ-invariant for every γ ∈ Pic0(A × B), then we proceed as
before by exchanging the role of ψ1 and ψ2. Thus, it remain only to see what
happen if L1 ⊗ L2 ⊗ γ is not Σ-invariant for every γ. In this case we will have
that l(0, 0, ψ1 + ψ2) /∈ φ∗ Num(A × B), and so either l(0, 0, ψ1) or l(0, 0, ψ2)
are not in the image of φ∗. Without loss of generality we can assume the first.
Then we will still have (5.8) and we can repeat the above argument.
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In order to complete the proof of Theorem 5.21 we need to show that if all
(1× ψ1)

∗PA, (1× ψ2)
∗PA, and (1× (ψ1 + ψ2))

∗PA are Σ-invariant then the
Brauer map to X is injective. Observe that, under these assumptions, we can
write

(1× ψ1)
∗
PA ≃ φ∗L1, (1× ψ2)

∗
PA ≃ φ∗L2,

and (1× (ψ1 + ψ2))
∗
PA ≃ φ∗L3.

for some line bundles L1, L2, and L3 in Pic(X). Observe that we can take
L3 ≃ L1 ⊗ L2. Then, for α ∈ Pic0(X), with φ∗α ≃ p∗Aα1 ⊗ p∗Bα2 we have

φ∗(π∗
S NmπS

(Li ⊗ α)) ≃ φ∗(Li ⊗ α⊗ σ∗(Li ⊗ α)) ≃ p∗Aα
⊗2
1 ⊗ p∗B(ψ

∗
i Pτ ),

for i = 1, 2. Similarly, we get

φ∗(π∗
S NmπS

(L3 ⊗ α)) ≃ φ∗(L1 ⊗ L2 ⊗ α⊗ σ∗(L1 ⊗ L2 ⊗ α))

≃ p∗Aα
⊗2
1 ⊗ p∗B(ψ

∗
1Pτ ⊗ ψ∗

2Pτ ).

In both computations, the last isomorphism is again given by (5.3). Observe
that neither the ψi’s nor ψ1 + ψ2 can factor through the multiplication by 2
isogeny, or we would have that ψ1 and ψ2 cannot generate Hom(B,A). In
particular, we must have that both ψ∗

i Pτ and (ψ1 +ψ2)
∗Pτ are nontrivial. We

deduce that

φ∗(π∗
S NmπS

(Li ⊗ α)) 6≃ OA×B,

for i = 1, 2, and 3. In particular we obtained the following lemma:

Lemma 5.23. In the above notation, if the conditions of Theorem 5.21 are not
satisfied, then line bundles numerically equivalent to the Li’s are not in the
kernel of the norm map NmπS

.

Before going further we need an intermediate step:

Lemma 5.24. For any integer n, and i = 1, 2, and 3, L⊗2n
i are in Im(1− σ∗).

Proof. Obviously it is enough to show that L⊗2
i is in the image of (1− σ∗). To

this aim, we pull Li ⊗ σ∗Li back to A×B and apply (5.3). We see that

φ∗(Li ⊗ σ∗(Li)) ∈ p∗B Pic0(B) ⊆ A×B,

and we deduce that γ := Li ⊗ σ∗(Li) is a line bundle in p∗B Pic0(B/H). By
Lemma 5.2 we know that γ ∈ Im(1− σ∗). Thus we can write

L⊗2
i ≃ γ ⊗ (σ∗Li)

−1 ⊗ Li.
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Conclusion of the Proof of Theorem 5.21. Let M is a line bundle such that
NmπS

(M) ≃ OS , we will show that M is in the image of (1 − σ∗). Using
(2.8), we know that M ⊗ σ∗M ≃ OX . By pulling back via φ we get that
φ∗M ⊗ σ̃∗φ∗M is again trivial and by the proof of Lemma 5.5 we see that
c1(φ

∗M) = l(0, 0, h · ψ1 + k · ψ2) for two integers h and k. Then we can write

φ∗M ≃ (1× h · ψ1)
∗
PA ⊗ (1× k · ψ2)

∗
PA ⊗ γ ≃ φ∗(L⊗h

1 ⊗ L⊗k
2 )⊗ γ,

for some γ in Pic0(A × B). Therefore φ∗(M ⊗ L⊗−h
1 ⊗ L⊗−k

2 ) ≃ γ, and we
deduce that M ≃ L⊗h

1 ⊗ L⊗k
2 ⊗ α for some α ∈ Pic0(X). If h and k are both

even, then by Lemma 5.24 we know that α ∈ KerNmπS
, and the class of M

in KerNmπS
/ Im(1− σ∗) is exactly [α]. We apply Proposition 5.1 and deduce

that [M ] = 0.
We will now show that neither one between h and k can be odd. Suppose
otherwise that h and k are not both even. For example, assume that h is
odd and k is even, the proof in the other cases is very similar. Under this
hypothesis, Lemma 5.24 ensures that L1 ⊗ α is in the kernel of the norm map.
But this contradicts Lemma 5.23, and our proof is complete

Example 5.25. (a) Suppose that A ≃ B, then the isogenies ψ1 and ψ2 are
indeed isomorphisms and thus the Brauer map can never be injective.

(b) Let B be an elliptic curve without complex multiplication and consider
θ2 a point of order 2 in B. Let A be the elliptic curve B/ < θ2 > and ψ : B → A
the quotient map. The dual map ψ∗ has degree 2. Let θ1 ∈ A be the point
such that ψ∗Pθ1 is trivial and let τ be another order 2 element of A. All this
data identify a bielliptic surface of type 2 whose Brauer map to the canonical
cover is injective.
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A The homomorphism lattice of two elliptic curves

Jonas Bergström and Sofia Tirabassi

The main goal of this appendix is to give a structure theorem for the Z-module
Hom(B,A) where A and B are two complex elliptic curves with j(B) = 0, 1728.
This result has been used in 2.6 above in order to make a clever choice of
generators for Num(A×B) which in turn has allowed an accurate description
of the action of the automorphism σ∗ on the Neron–Severi group of the product
A×B when S is a bielliptic surface of type 3 or 5.
If B is an elliptic curve with j-invariant 0 or 1728, then B admits an auto-
morphism λB of order 3 or 4 respectively. The main result of this Appendix is
that the group Hom(B,A) can be completely described in terms of λB and an
isogeny ψ : B → A. More precisely we have the following statement:

Theorem A.1. Let A and B two isogenous complex elliptic curves with j(B)
is either 0 or 1728. Then there exist an isogeny ψ : B → A such that

Hom(B,A) =< ψ,ψ ◦ λB > .

This appendix is organized in three main parts. In the first we outline some
classical results about imaginary quadratic fields and their orders. The sec-
ond is concerned with complex elliptic curves with complex multiplication.
Theorem A.1 is proven in A.3. The key idea of our argument is to describe
Hom(B,A) as a fractional ideal of End(B) homothetic to End(B). This is done
by observing that the class number of End(B) is 1.

A.1 Preliminaries on orders in imaginary quadratic fields

An imaginary quadratic field is a subfield K ⊆ C of the form Q(
√
−d), with d

a positive, square-free integer. The discriminant of K is the integer dk defined
as

dK =

{

−d, if d ≡ 3 mod 4,

−4d, otherwise.

The ring of integers of K, OK is the largest subring of K which is a finitely
generated abelian group. Then we have that OK = Z[δ], where

δ =

{

1+
√
−d

2 , if d ≡ 3 mod 4,√
−d, otherwise.

(A.1)

An order in an imaginary quadratic fieldK is a subring O of OK which properly
contains Z. It turns out that O ≃ Z+ Z · (nδ) for some positive integer n.
Given an order O in an imaginary quadratic field K, a fractional ideal of O is
a non-zero finitely generated sub O-module of K. For every fractional ideal M
of O there is an α ∈ K∗ and an ideal a of O such that M = α · a. We will need
the following notions.
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Definition A.2. (i) Two fractional O-ideals M and M ′ are homothetic if
there is α ∈ K∗ such that M = αM ′.

(ii) A fractional O-ideal is invertible if there is a fractional ideal M ′ such
that M ·M ′ = O. The set of invertible O-ideals is denoted by I(O).

(iii) A fractional O-ideal M is principal if it is of the form α · O for some
α ∈ K∗. So principal ideals are precisely the fractional ideals homothetic to O.
The set of principal O-ideals is denoted by P (O).

Principal ideals are clearly invertible. In general not all fractional ideals are
invertible, but they are so if O = OK (see also [Cox11, Proposition 5.7]). The
quotient

Cl(O) := I(O)/P (O)

describes the homothety classes of invertible O-ideals. It is a group with the
product and it is called the ideal class group of O. Its order is finite and is
called the class number of O. When O = OK , then the class number of O is
exactly the class number of the field K, which is a function of the discriminant
of K (see [Cox11, Theorem 5.30(ii)]). More generally the class number of O is
a general function of dK and [OK : O].

Example A.3. If K is either Q(i) or Q(
√
−3), then all the fractional ideals of

OK are homothetic to OK . In fact the class number of the field K in this cases
is 1, as it was computed by Gauss in his book Disquisitiones arithmeticae .

A.2 Elliptic curves with complex multiplication

The importance of orders in the study of the geometry of elliptic curves is that
they describe the endomorphism rings of a complex elliptic curve:

Theorem A.4. Let A be an elliptic curve over C, then End(A) is either iso-
morphic to Z or to an order in an imaginary quadratic field.

Proof. See [Sil09, Theorem VI.5.5].

We say that a (complex) elliptic curve has complex multiplication if its endo-
morphism ring is larger than Z. Observe that in this case End(A) ⊗ Q is a
quadratic field K and End(A) is an order in K.
Given a complex elliptic curve A there is a canonical way to identify its endo-
morphism ring with a subring of C. More generally let A and B two elliptic
curves, then there are two lattices ΛA and ΛB in C such that A ≃ C/ΛA and
B ≃ C/ΛB. Given a complex number ζ such that ζ · ΛB ⊆ ΛA, the map
Φζ : C → C defined by z 7→ ζ · z descends to an (algebraic) homomorphism
ϕζ : B → A. It is possible to show (see [Sil09, VI.5.3(d)]) that any morphism
of elliptic curves preserving the origin is obtained in this way, and in particular
we get an isomorphism of abelian groups

Hom(B,A) ≃ {ζ ∈ C | ζ · ΛB ⊆ ΛA} ⊆ C. (A.2)
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By setting B = A we get a ring isomorphism

End(A) ≃ O := {ζ ∈ C | ζ · ΛA ⊆ ΛA} ⊆ C.

The isomorphism ζ 7→ ϕζ is characterized as the unique isomorphism f : O →
End(A) such that, for any ζ ∈ O and for every invariant form ω on A we have
that f(ζ)∗ω = ζ · ω ( [Sil13, II.1.1]).

Notation A.5. For an elliptic curve with complex multiplication A such that
End(A) ≃ Z + Z · nδ, we will denote by λA the isogeny ϕnδ : A → A and we
will say that A has complex multiplication by λA.

It is clear that, with this identification, End(A) =< 1A, λA > as a Z-module.

Example A.6. (a) Suppose that B is an elliptic curve with j-invariant 0.
Then we can write B ≃ C/ΛB, with ΛB =< 1, e

2πi

3 >. Then End(B) ⊗ Q ≃
Q(

√
−3) and End(B) ≃ OK = Z[ 1+

√
−3

2 ]. We have that λB is induced by the

multiplication by 1+
√
−3

2 and is an automorphism ofB satisfying λ2B+λB+1B =
0. This is exactly the automorphism which in 2.2 was denoted by ρ and which
was used to construct bielliptic surfaces of type 5.

(b) Suppose now that the j-invariant of B is 1728. Then we can take ΛB =<
1, i > and we have that End(B) ⊗ Q ≃ Q(i). The endomorphism ring of B
is isomorphic to Z[i] and the multiplication by i induces an automorphism λB
such that λ2B = −1B. This is the automorphism ω of B used to construct
bielliptic surfaces of type 3 in 2.2.

A.3 Proof of the main result

We are now ready to provide a proof for Theorem A.1. Our key point will be
the following:

Claim: the Z-module Hom(B,A) is isomorphic to a fractional ideal of OK .

Before proceeding with showing that this Claim is true, let us see how it im-
plies the statement. We do this applying Example A.3 and deducing that all
fractional OK-ideals are homothetic to OK . Therefore there exist α ∈ K∗ such
that

M ≃ α · OK = α· < 1, δ >=< α,α · δ >,
where δ is like in (A.1). But then we have that Hom(B,A) =< ϕα, ϕα ◦ λB >,
and the statement is true.

Proof of the Claim. Let ΛA =< 1, τ > a lattice in C such that A ≃ C/ΛA, and
denote by K ⊆ C the quadratic field End(B) ⊗ Q. Then the ring End(B) is
exactly the ring of integers OK . Observe that this is isomorphic to a lattice
in C, and that B ≃ C/OK (See Example A.6).
By (A.2) we can identify M := Hom(B,A) as a finitely generated subgroup
of C. Composition on the right with endomorphism of B gives to M a structure
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of OK-module. Let α 6= 0 denote an element of a := Hom(A,B), identifyied
with a subgroup of C. Then clearly α ·M ⊆ OK . We deduce that M ⊆ K is a
fractional ideal of OK , and the Claim is proven.

Remark A.7. (a) For any order O in a quadratic extension of Q a repre-
sentative of each homothety class of fractional ideals can be given as I · O′,
where O′ ⊇ O is an extension of orders, and I is an invertible fractional ideal
(see [Mar18]). The over order S can be given a Z-basis of the form {1, δ · f}
where f is a positive integer.

For any pair of isogenous complex elliptic curves with complex multiplication
we have that Hom(B,A) is a fractional End(B) ideal. In addition, if we assume
that End(B) has class number 1, we have that B ≃ C/End(B). In fact, under
this assumption [Cox11, Corollary 10.20] yields that, there is just one elliptic
curve up to isomorphism with endomorphism ring End(B).

In conclusion, demanding that End(B) has class number 1 (instead of j(B)
being either 0 or 1728) is sufficient for Theorem A.1 to hold.

So Theorem A.1 will hold for the 13 isomorphism classes of complex elliptic
curves B for which End(B) has discriminant -3, -4,-7, -8, -11, -12, -16, -19, -27,
-28, -43, -67, -164 (see [Sil13, Example 11.3.2]).

(b) It is clear from the proof that the role of A and B can be exchanged, so
we have proven a structure theorem for Hom(A,B) when the endomorphism
ring of one of the two curves has class number 1.

Theorem A.1 is not constructive, in the sense that it does not provide a way
to determine the isogeny ψ such that ψ and ψ ◦ λB generate Hom(B,A). We
conclude this appendix by constructing ψ in an easy example.

Example A.8. Let Λ be the lattice < 1, 2i >⊆ C, and consider A := C/Λ.
Consider the 2-torsion point τ := (0, i)+Λ of A and let B be the quotient A/ <
τ >. It is clear that B has j-invariant 1728. We claim that Hom(B,A) =<
ϕ2, ϕ2 ◦ λB >.
We use first (A.2) and identify Hom(B,A) with a lattice in C. Given α =
(a + bi) ∈ Hom(B,A), we have that both α and α · i must be elements of Λ.
We deduce that both a and b must be even integers and so Hom(B,A) =<
2, 2 · i >. We conclude by observing that λB is the automorphism of B induced
by multiplication by i.
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