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Abstract

The experimental discovery of correlated insulators and superconductivity in
highly tunable Van der Waals heterostructures, such as twisted bilayer graphene,
has highlighted the role of moiré patterns, resulting from tiny relative twists or lat-
tice constant mismatches, in realizing strongly correlated physics. A key ingredient
is the existence of very narrow flat bands where interaction effects are dominant.

In this thesis and the accompanying papers, we theoretically study a number of
experimentally relevant moiré systems. We generally show that strong interactions
combined with the geometry and the topology of the underlying flat bands can result
in a plethora of distinct quantum many-body phases ranging from topological order
to multiferroicity. Of particular importance are lattice analogues of the fractional
quantum Hall effect known as fractional Chern insulators. They harbour peculiar
phenomena such as fractional charge and statistics and provide a route towards
realizing topologically ordered states at high temperature. A ubiquitous feature of
the many-body physics is the emergence of unique particle-hole dualities driven by
the geometry of band-projected interactions.
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Sammanfattning på svenska

I denna avhandling och de fem bifogade artiklarna studerar vi en ny klass av
kvantmaterial som kallas moiré material. De utgörs av två eller flera atomlager
som tillsammans visar moiré interferensmönster på grund av en lite relativ rota-
tion. Ibland händer det att bandstrukturen hos dessa material har energiband som
är nästan platta. Vi är särskilt intresserade av att förstå vilka kvantmekaniska faser
dessa material har när elektroner fyller en del av de platta banden vid låg tem-
peratur. Med användning av numeriska och analytiska verktyg förutser vi många
faser som är möjligt i dessa material. Dessa faser inkluderar Fermi flytande faser
och exotiska topologiska fraktionella Chern isolatorer.

Efter en kort introduktion i det första kapitlet diskuterar vi teorin av kvanthal-
leffekten och fraktionerad Chern isolatorer i det andra och tredje kapitlet. Vi be-
skriver även några tekniker som användas till upptäckt av topologiska faser. Det
fjärde kapitlet handlar om teorin av moiré material och deras bandstrukturer. Vi
avslutar avhandlingen med en kort sammanfattning av de bifogade artiklarna.

xi





Chapter 1

Introduction

1.1 Van der Waals Heterostructures

The experimental discovery of graphene with all its unique properties has ignited
a huge interest into two dimensional materials research [1]. Research on graphene
and other atomically-thin materials has developed rapidly in the latest years. This
is manifested in numerous experiments being done and many theoretical works on
the subject. Advances in fabrication techniques have made it possible not only to
fabricate monolayers but also to stack many of them in a single heterostructure in a
manner that is quite similar to assembling Lego pieces (Figure 1.1). The resulting
heterostructures are commonly referred to as Van der Waals heterostructures [2].
Relatively weak Van der Waals forces between the layers are sufficient to keep them
in place.

Immediately, this has expanded the possible prospects that can be investigated.
On one hand, the heterostructures show unusual properties that need to be ex-
plained while on the other hand, gaining control over designing artificial van der
Waals materials can be used to target interesting phases of matter.

The tunability of Van der Waals heterostructures shows up in different ways.
When the heterostructures are placed between top and bottom metallic gates, the
carrier density can be completely controlled. The top and bottom gates can be
thought of as parallel plate capacitors implying that the carrier density n is simply
given by the relation n = (CTGVTG+CBGVBG)/e where CTG (CBG) and VTG (VBG)
are the capacitance and the voltage of the top (bottom) gates respectively and e is
the elementary charge.

Many of these heterostructures admit very peculiar band structures as we shall
encounter later in this thesis. Theoretically, controlling the carrier density amounts
to controlling the filling of the bands which allows accessing different regimes of
interest. The potential difference between the top and bottom gates, V = VTG −

1



CHAPTER 1. INTRODUCTION

Figure 1.1: A schematic illustration of the Lego-like property of Van der Waals het-
erostructures. Atomic layers can be stacked on top of each other in stable configurations.
The figure is adapted from Ref. [2] with permission from Springer Nature.

VBG, is an additional control knob in the form an applied electric field that can be
tuned independently of the carrier density. The response of the heterostructure to
an external electric field and its effect on the underlying phases is of interest on its
own.

Much earlier, before graphene was manufactured, the quantum Hall effect was
discovered in two dimensional electron gases subject to a magnetic field [3,4]. The
discovery of the quantum Hall effect, both integer and fractional, has revolutionized
the entire field of condensed matter physics and has reshaped our understanding
of classifying different quantum phases of matter.

For instance, fractional quantum Hall states represent a new kind of order, topo-
logical order, with peculiar properties that include topological degeneracies, exci-
tations with fractional charge and statistics and patterns of long-range entangle-
ment [5,6]. A key ingredient to the formation of these phases is strong interactions.
The electronic structure consists of Landau levels that are completely flat and as
a consequence, interactions dominate the relevant physics.

The fractional quantum Hall effect is one example of a strongly correlated phase
of matter that is central to this thesis but it is not the only one. Strongly corre-
lated physics encompasses a significant portion of research on quantum many-body
systems. It’s concerned with phases of matter that can only be understood when
strong electron-electron interactions are taken into account. Going away from
ideal limits where electron-electron interactions are neglected greatly complexify
the problem on one hand but on another hand opens the door towards exotic and

2



1.2. THE RISE OF THE TWIST

(a) (b)

Figure 1.2: (a) An example of a moiré pattern obtained by twisting two hexagonal layers
(purple and blue). (b) A compilation plot of phase diagrams of a number of experiments
done on twisted bilayer graphene at different twist angles. The main feature is the emer-
gence of superconducting domes (the coloured domes) around insulating states at integer
band fillings. The figure is adapted from Ref. [7] with permission from Springer Nature.

unconventional phases of matter. Flat bands are one way to make interactions
pronounced and hence more likelihood to stabilize an interaction-induced phase.

1.2 The Rise of the Twist

One way of flattening the bands of Van der Waals heterostructures would be by
applying an external magnetic field to create Landau levels. It turns out there
is another intricate way of achieving this. That is through the application of a
superlattice potential, a periodic potential with a periodicity that is much larger
than the underlying lattice structure. A Van der Waals heterostructure is a natural
platform for superlattice potentials due to the possible formation of moiré patterns.

Moiré patterns are long distance modulations that result from a slight lattice
mismatch or a tiny relative twist between adjacent layers. In Figure 1.2(a), we
show an example of a moiré pattern from twisting two hexagonal layers. Quite
remarkably, a superlattice potential from moiré patterns is sometimes enough to
create flat bands. A famous example of this is twisted bilayer graphene [8,9], made
out of two layers of graphene with a relative twist (same moiré pattern as Figure
1.2(a)). For tiny twist angles, the system acquires a periodicity on a much larger
scale. At a set of magic twist angles, the system has extremely flat bands around

3



CHAPTER 1. INTRODUCTION

the charge neutrality point 1.
We will recap here some early experimental results to give the reader a flavor of

the current status of the field. However, it should be noted that this is rapidly de-
veloping and new experiments with intriguing outcomes have been (and still being)
performed and we are far from a complete understanding of all the experimental
results.

A series of seminal experiments [10–14] done on twisted bilayer graphene have
shown that, upon doping the bands around charge neutrality so that there are
integer number of electrons or holes per moiré unit cell, a series of correlated
insulators appear. The insulating states are correlated in the sense that they are
formed solely by interactions and cannot be understood from the single particle
picture which predicts semimetallic states instead.

In addition, moving a bit away from the fillings which corresponds to the corre-
lated insulators, superconducting states appear. Superconductivity is an interest-
ing subject on its own and is arguably what brought so much interest to this field.
That being said, superconductivity is outside the general scope of this thesis. The
phase diagram as function of band filling for a number of devices shows a common
structure of superconducting domes around insulating states as indicated in Figure
1.2(b). However, we stress that superconductivity has been also observed in the
absence of nearby insulating states [15,16].

The experimental findings were found to depend, to an certain extent, on the
device details. In devices where boron nitride (a substrate layer) is aligned to
one of the graphene layers, a quantized Hall response was detected [17] at filling
νT = +3 corresponding to completely filling 3 out of the 4 conduction bands above
charge neutrality. These Chern insulator states are also ferromagnetic. Similar
experimental findings were obtained in [18] but later experiments [19] demonstrated
an unconventional series of Chern insulator states that are believed to break time
reversal symmetry spontaneously as a consequence of strong interactions without
the need to align one of the layers with boron nitride. All of this demonstrates the
versatility of twisted bilayer graphene as a platform for strongly correlated physics
that is still yet to be fully explored. It is one of the systems that we study in this
thesis and the accompanying papers.

Moreover, we investigate two other graphene-based moiré systems. The first is
ABC stacked trilayer graphene aligned with boron nitride [20–22]. It enjoys an
extra degree of tunability in the form of an external electric field that controls the
bandwidth and the topology of its valence band. Gate-tunable Mott insulators,
superconducting states and correlated ferromagnetic Chern insulators have been

1The charge neutrality point is where the Fermi level should be so that the material is charge
neutral. For instance, this corresponds to the Dirac points in monolayer graphene.

4



1.3. WHAT IS THIS THESIS ABOUT?

reported in this system at integer fillings [23–25]. In addition, a recent experiment
has shown signs of ferromagnetism at non-integer fillings [26]. The second is twisted
double bilayer graphene [21,27–31]. Similar to trilayer graphene aligned with boron
nitride, an applied external electric field changes the bandwidth and the topology
of the bands which provides extra control in addition to tuning the twist angle.
Ferromagnetic correlated insulator states have been reported in such a system
[32–35].

Moiré patterns are not exclusive to graphene-based structures but they also can
form in other Van der Waals heterostructures. In addition to graphene with its
remarkable properties, a large and distinct class of two dimensional materials in-
cludes semiconductors made from transition metal dichalcogenides (TMDs) [36,37].
Experiments on both heterobilayers made of two different TMDs and homobilay-
ers made of the same TMD material have shown evidence of remarkably wide
range of phenomena such as Hubbard-like physics [38–40], generalized Wigner
crystals [41–43], continuous quantum phase transitions [44, 45] and the quantum
anomalous Hall effect [46,47].

1.3 What Is This Thesis About?

The goal of this thesis and the accompanying papers is to study interactions in the
flat bands of the aforementioned moiré systems with the aim of mapping out the
interacting phase diagram.

The thesis chapters provide a brief introduction to most of the background ma-
terial relevant the accompanying papers, namely quantum Hall physics and moiré
physics.

In Papers I [48], II [49], III [50] and IV [51], we are concerned with fractional
band fillings corresponding to non-integer fillings per moiré unit cell. While al-
most all experiments done on moiré systems focused on integer fillings, little in
comparison has been done at fractional fillings.

Of particular importance when the band filling is fractional are lattice analogues
of the fractional quantum Hall states, known as fractional Chern insulators [52,53].
They have been observed [54] for the first time experimentally in a Van der Waals
heterostructure, albeit with a very strong magnetic field that creates the underlying
Landau levels.

Fractional Chern insulator states are of great experimental interest because they
offer the possibility of realizing fractional quantum Hall physics at high temper-
ature and without the need of strong magnetic field overcoming two of the main
drawbacks of the conventional quantum Hall setup.

We seek to figure out if fractional Chern insulator states are possible in moiré

5



CHAPTER 1. INTRODUCTION

systems. We find an affirmative answer as shown in the Paper I [48] and Paper
II [49]. Later experimental evidence for fractional Chern insulator states have been
found in twisted bilayer graphene [55] confirming one of our theoretical predictions.

In Paper V [56], we focus on integer band fillings of twisted TMD homobilayers
and construct the phase diagram of the interacting problem when the band filling
is odd. Our main finding is robust multiferroicity [57] manifested in coexisting
magnetic and electric order. Multiferroics are of great practical interest because
of the prospects of controlling magnetism with electric fields and vice-versa which
could be used to create energy efficient electronic devices.

6



Chapter 2

The Quantum Hall Effect and
Beyond

In this chapter, we introduce basic notions of the quantum Hall effect focusing on
the integer quantum Hall effect and its lattice analogue, the Chern insulator. This
is not an attempt at a comprehensive discussion of the vast field of the quantum
Hall effect. Instead, we focus only on the necessary concepts. Quantum Hall
physics is deeply linked to ideas from geometry and topology which we also discuss
alongside their applications to Bloch Hamiltonians.

2.1 The Quantum Hall Effect

The discovery of the quantum Hall effect was a major breakthrough in the field of
condensed matter physics that paved the way for new and exotic phases of matter.
Classically, in two dimensions, electrons in a magnetic field experience cyclotron
motion. When an electric field is introduced, it induces a current J that is related
to the electric field through Ohm’s law,

J = σE, (2.1)

where σ is the conductivity matrix with the elements

σ =

(
σxx σxy
−σxy σyy

)
. (2.2)

The inverse of this matrix is referred to as the resistivity matrix ρ = σ−1. The
off-diagonal elements of the conductivity matrix measure the Hall effect [58], that is
the current induced in one direction due to an applied electric field in the transverse
direction. When electrons are confined into a two dimensional plane with a strong

7



CHAPTER 2. THE QUANTUM HALL EFFECT AND BEYOND

Figure 2.1: Experimental data of the quantum Hall effect: The transverse resistance Rxy

and the longitudinal resistance Rxx are plotted against the applied magnetic field. The
figure is adapted from Ref. [59] with permission from Elsevier.

applied magnetic field, the Hall resistivity ρxy was found [3, 4] to take quantized
values given by

ρxy =
2πℏ
e2

1

ν
(2.3)

where ν is either an integer (the integer quantum Hall effect) or a rational number
(the fractional quantum Hall effect) measured with extreme accuracy. As a function
of the applied magnetic field, the Hall resistivity exhibits a number of plateaus.
Within each plateau, the Hall resistivity is fixed to its quantized value while the
longitudinal resistivity ρxx drops to zero as evident from Figure 2.1. Since the
conductivity is the inverse of the resistivity, this implies that the Hall conductivity
on the plateaus is also quantized σxy = −ρ−1

xy and the longitudinal conductivity
also vanishes σxx = 0.

2.1.1 Landau Levels

The starting point of any microscopic analysis is to consider the Schrödinger
equation for non-interacting electrons with mass me in a magnetic field B, a prob-
lem solved by Landau [60]. The Hamiltonian is given by

H =
Π2

2me
=

(p+ eA)2

2me
. (2.4)

8



2.1. THE QUANTUM HALL EFFECT

For the purpose of introducing Laughlin wavefunctions later in section 3.1.1, it
is helpful to work in the symmetric gauge where the vector potential A is given by
A = −yB

2 x̂ + xB
2 ŷ. Diagonalizing the Hamiltonian above is done by defining two

sets of creation and annihilation operators that are functions of Π = p + eA and
Π̃ = p− eA,

a =
Πx − iΠy√

2eℏB
, a† =

Πx + iΠy√
2eℏB

with [a, a†] = 1 (2.5)

b =
Π̃x − iΠ̃y√

2eℏB
, b† =

Π̃x + iΠ̃y√
2eℏB

with [b, b†] = 1. (2.6)

In the symmetric gauge, [Πi, Π̃j ] = 0 but the Hamiltonian (2.4) is a function of
Π only so it commutes with Π̃. The Hamiltonian written in terms of the creation
and annihilation operators a and a† reads

H = ℏωB(a†a+
1

2
). (2.7)

with energies of the form

En = ℏωB(n+
1

2
) n ∈ N (2.8)

where ωB is the cyclotron frequency defined as ωB = eB/me. The energy levels are
called Landau levels. It is easy to see that Landau levels are degenerate because any
state obtained by acting m times with the b† creation operator, b†m |n⟩ ∼ b†ma†n |0⟩
has the same energy En as |n⟩ because [H, b†] = 0. The generic form of the
wavefunctions corresponding to the Landau levels is then given by

|n,m⟩ = a†nb†m√
n!m!

|0, 0⟩ (2.9)

where |0, 0⟩ is the vacuum state. The exact form of the wavefunctions can be
obtained by first restricting ourselves to the lowest Landau level |0,m⟩ and then
solving the differential equation a |0,m⟩ = 0. Before doing this, let’s write the
creation and annihilation operators in complex coordinates z = x−iy and z̄ = x+iy
with the holomorphic and anti-holomorphic derivatives defined as ∂ = (∂x+ i∂y)/2
and ∂̄ = (∂x − i∂y)/2. This leads to

a = −i
√
2(lB ∂̄ +

z

4lB
) , a† = −i

√
2(lB∂ − z̄

4lB
) (2.10)

b = −i
√
2(lB∂ +

z̄

4lB
) , b† = −i

√
2(lB ∂̄ − z

4lB
) (2.11)

9



CHAPTER 2. THE QUANTUM HALL EFFECT AND BEYOND

where lB =
√

ℏ/eB is called the magnetic length scale. It is the effective length
scale of the quantum Hall problem. We have then,

a |0,m⟩ = −i
√
2(lB ∂̄ +

z

4lB
) |0,m⟩ = 0. (2.12)

The solution to the above equation reads

|0,m⟩ ≡ ψLLL,m(z, z̄) = fm(z)e
−|z|2/4lB (2.13)

with any holomorphic function fm(z). The lowest state in the lowest Landau level
ψLLL,0(z, z̄) is annihilated also by b, this fixes f0(z) to be a constant so we have
ψLLL,0(z, z̄) ∼ e−|z|2/4lB and we can get the rest of the states in the lowest Landau
level by acting successively with b† so we end with, up to a normalization constant,

ψLLL,m(z, z̄) ∼
(
z

lB

)m
e−|z|2/4l2B . (2.14)

The higher Landau levels wavefunctions can be obtained by acting successively
with a† on (2.14). Since the Hamiltonian (2.4) is rotationally invariant in the
symmetric gauge, angular momentum is a good quantum number. This can be
readily seen by noticing that the wavefunctions (2.14) are eigenfunctions of the
angular momentum operator J = ℏ(z∂ − z̄∂̄),

JψLLL,m(z, z̄) = ℏmψLLL,m(z, z̄). (2.15)

The degeneracy of each Landau level can be calculated explicitly from the exact
form of the wavefunctions. We will state the final result here. The degeneracy of
each Landau level is given by D = AB

Φ0
with A is the area of the sample and Φ0 is

the flux quantum Φ0 = 2πℏ/e. One could furthermore define a filling factor ν that
tells us about the total filling of the Landau levels. It is given by ν = Ne

D = nΦ0
B

with Ne is the number of electrons in the sample and n = Ne/A is the density of
electrons.

Finally, we note that in order to draw useful connections with the classical de-
scription of particles in a magnetic field experiencing cyclotron motions, it is pos-
sible to decompose the position operator r̂ into two parts,

r̂ = (
1

2
r̂+ ẑ× p) + (

1

2
r̂− ẑ× p) ≡ η +R. (2.16)

The operator η describes the cyclotron motion of an orbit while the operator
R describes the guiding center of the orbit. In fact, the operators η and R are

10
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nothing but the operators Π and Π̃ defined above multiplied by the square of the
magnetic length l2B. In addition, they obey the following commutation relations

[ηx, ηy] = il2B , [Rx, Ry] = −il2B , [ηi, Rj ] = 0 (2.17)

The Hamiltonian (2.4) depends solely on η therefore the degeneracy of a single
Landau level can be understood by realizing that the Hamiltonian (2.4) commutes
with the guiding center operator R.

2.2 The Integer Quantum Hall Effect

The integer quantum Hall effect can be well-understood without needing to con-
sider interactions between electrons. With an integer ν Landau levels completely
filled, a simple calculation shows that the Hall resistivity is given by (2.3) and
there is a gap of the order ℏωB to the next Landau level. At very low temperatures
kBT ≪ ℏωB, electrons have no where to go when a small electric field is applied,
hence the vanishing longitudinal conductivity σxx. However, this is not the full
story. This argument needs to be modified a bit in order to explain the plateau
structure by taking into account disorder effects. It also does not explain why the
Hall conductivity should be quantized to an integer.

2.2.1 Laughlin Pumping Argument

Figure 2.2: The annulus
geometry used in Laugh-
lin’s argument for the
quantization of the Hall
conductivity.

Laughlin came up with an argument [61] that explains
the quantization of the Hall conductivity which relies
on the idea of gauge invariance. The argument makes
use of the fact that the eigenspectrum of an annulus
is insensitive to the enclosing of an integer number of
flux quanta Φ0. A statement first proven by Byers and
Yang in the context of superconducting rings [62]. Let’s
consider a quantum Hall system defined on an annulus
that encloses an extra flux Φ(t) as shown in Figure 2.2.
We then adiabatically switch on the enclosed flux from
zero to one flux quantum Φ0 in time ∆T . As a result, an
electromotive force (EMF) is generated in the annulus,

ε(t) = −dΦ(t)
dt

=

∮
E · dl. (2.18)

The radial current in the annulus Ir is related to the EMF induced around the
annulus through the Hall conductance GH ,

Ir(t) = GHε(t). (2.19)

11
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The total charge pumped in ∆T time is related to the flux change ∆Φ = Φ(T )−
Φ(0) = Φ0. After inserting one flux quantum Φ0, the system is physically the same.
If we start in the ground state, we have to stay in the exact same ground state
after one flux is adiabatically inserted assuming no ground state degeneracy 1 but
during this process, an integer number of charges ∆Q = pe is pumped from one
end to the other end in the annulus. The Hall conductance has to be quantized by
the virtue of (2.18). This provides a way of thinking of quantum Hall systems as
charge pumps.

2.3 Geometry of Quantum States

In this technical section, we introduce in a non-rigorous way (the physicist’s
way) the notion of quantum state geometry. We shall see how this gives rise to
the familiar physical quantities such as the Berry curvature and the Fubini-Study
metric which are a corner stone in the modern understanding of condensed matter
systems at the level of the wavefunctions i.e, beyond energetics.

We consider a quantum-mechanical system described by a Hamiltonian H(x)
that is a function of generic parameters x = (x1, x2, . . . ) living in a manifold
x ∈ M. The Hamiltonian acts on a N dimensional Hilbert space H and has
energies and eigenstates En(x), |un(x)⟩ respectively with n = 1, 2, . . . , N

The Hilbert space H contains all possible quantum states |ψ(x)⟩ =∑n cn |un(x)⟩,
however, we know from standard quantum mechanics that quantum states related
by gauge transformations |ψ(x)⟩ and |ψ̃(x)⟩ = eiϕ(x) |ψ(x)⟩ are physically equiva-
lent so the physical Hilbert space is in fact not H but it is H/U(1) ≡ CPN−1 or
what is known as the complex projective space 2. Given the parameter dependence
x, the gauge invariant projector P = |ψ(x)⟩ ⟨ψ(x)| implements the following map,

f : M → CPN−1. (2.20)

Therefore, quantum states can be generally understood as maps from a param-
eter space to a complex projective space. Let us denote the coordinates of the
complex projective space as y such that ya = fa(xα). The complex projective
space is an example of a Riemannian manifold [63] equipped with a metric gab(y)
and a locally defined connection Aa(y). Intuitively, the metric gives a notion of

1If the ground state in degenerate, we are guaranteed to stay in a ground state, not necessarily
the ground state we started with. That is indeed the case for the fractional quantum Hall
effect.

2A complex projective space CPN is defined as the set of equivalence classes on the complex
space CN+1 with complex coordinates zi such that (z1, z2, . . . zN+1) ∼ λ(z1, z2, . . . zN+1) where
λ is any non-zero complex number.

12



2.3. GEOMETRY OF QUANTUM STATES

distance and the connection implements parallel transport. From the connection it
is possible to define a curvature Ωab(y) = ∂aAb(y)− ∂bAa(y). The map f induces
a metric gαβ(x) and a connection Aα(x) back on the manifold M given by

gαβ =
∂fa

∂xα
∂f b

∂xβ
gab, Aα =

∂fa

∂xα
Aa. (2.21)

This is usually termed as the "pullback" of a given map f . From the induced
connection Aα(x), a curvature Ωαβ(x) can be constructed. gαβ(x) and Ωαβ(x) are
the Fubini-Study metric (also referred to as the quantum metric) and the Berry
curvature respectively. They are given explicitly by

gαβ(x) = Re[⟨∂αψ(x)|∂βψ(x)⟩ − ⟨∂αψ(x)|ψ(x)⟩ ⟨ψ(x)|∂βψ(x)⟩]. (2.22)

Ωαβ(x) = −2 Im[⟨∂αψ(x)|∂βψ(x)⟩] (2.23)

From the definition, the Berry curvature Ωαβ(x) is an antisymmetric tensor,
Ωαβ(x) ≡ ϵαβΩ(x). The metric gαβ(x) measures infinitesimal distances between
quantum states

| ⟨ψ(x)|ψ(x+ dx)⟩ | ≈ 1− 1

2
gαβ(x)dx

αdxβ (2.24)

and the Berry curvature Ωαβ(x) contains information about the geometrical Berry
phases [64] obtained for closed loop γ in the parameter space M

ϕ(γ) =

∫
γ
A(x) =

∫
S
dSαβ Ωαβ(x) (2.25)

where S is the surface enclosed by the loop γ.

2.3.1 Applications to Bloch Hamiltonians

Having introduced briefly the Berry curvature and the quantum metric from a
mathematical point of view, let’s apply this to two dimensional non-interacting lat-
tice systems. In this context, the parameters x = (kx, ky) are the two dimensional
crystal momentum. Assuming we have a non-interacting lattice system with N
bands, a generic Hamiltonian that describes this is given by

H =
∑
k,a,b

c†k,aha,b(k)ck,b (2.26)

where c†k,a(ck,a) are creation (annihilation) operators for particles with crystal mo-
mentum k and a = 1, 2, . . . , N combined orbital/spin indices. The periodic struc-
ture of the problem allows the usage of Bloch’s theorem and defines a Brillouin
zone for the crystal momentum k = (kx, ky) that is a torus T2.
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Diagonalizing the Hamiltonian (2.26) by solving the N ×N eigenvalue problem∑
b hab(k)u

b
n(k) = En(k)u

a
n(k), we obtain

H =
∑
k,n

En(k)γ
†
k,nγk,n (2.27)

where En(k) describes the dispersion of n = 1, . . . , N bands with eigenstates
|k, n⟩ = γ†k,n |0⟩ =

∑
a u

a
n(k)c

†
k,a |0⟩. Following the definitions introduced in the

previous section, a Berry curvature and quantum metric in the Brillouin zone can
be constructed for single band n with a wavefunction |k, n⟩ by using equations
(2.22) and (2.23) with |ψ(x)⟩ ≡ |k, n⟩ and α, β ≡ kx, ky

3.
It is possible to combine the Fubini-Study metric and the Berry curvature into

one single quantity known as the quantum geometric tensor Rnαβ(k) defined as

Rnαβ(k) = ⟨∂αk, n|Qn(k) |∂βk, n⟩ ≡ gnαβ(k) +
i

2
ϵαβΩ

n(k) (2.28)

withQn(k) = 1−|k, n⟩ ⟨k, n| is the orthogonal projector to the band n. The Fubini-
Study metric gnαβ(k) and the Berry curvature Ωn(k) are the symmetric (real) and
the antisymmetric (imaginary) parts of Rnαβ(k)

gnαβ(k) =
1

2
(Rnαβ(k) +Rnβα(k)) (2.29)

Ωn(k) = i
∑
α,β

ϵαβRnαβ(k) (2.30)

where ϵαβ is the Levi-Civita tensor.
The quantum geometric tensor Rnαβ(k) is a positive semi-definite matrix which

means trRn(k) ≥ 0. From this, one obtains the following important inequality

trgn(k) ≥ |Ωn(k)| (2.31)

that relates the Fubini-Study metric and the Berry curvature. The trace of the
Fubini-Study metric at a certain momentum point k is always bounded by the
absolute value of the Berry curvature at the same point. This places constraints
on the form of the Fubini-Study metric in the Brillouin zone.

The role of the Berry curvature in understanding the properties of condensed
matter systems is extensive. Semi-classically, the Berry curvature resembles a
magnetic field in momentum space therefore the dynamics of electrons in bands

3The definition of both the Berry curavture and Fubini-Study metric can be generalized to more
than a single band.
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with non-trivial Berry curvature can be quite unusual [65, 66]. We will focus here
on the connection to the quantum Hall effect and later to ideal Chern bands in
section 3.3 but we refer the reader to Ref. [67] for a comprehensive review.

The Berry curvature is a local geometrical quantity, however using the Berry
curvature, it is possible to build global topological quantities. For example, a core
concept that is used in characterizing the topology of a band is the Chern number
defined as,

Cn =
1

2π

∫
T2

d2k Ωn(k) (2.32)

where the integral is carried over the first Brillouin zone. The Chern number is
always an integer [68]. For a Chern number to be well-defined for a band, it has
to be gapped from the other bands. The Chern number does not change under
continuous deformations that keep the band gap open therefore it is an example of
one topological invariant (in two spatial dimensions) that can be used to classify
different phases of matter.

The Fubini-Study metric is a much less explored quantity in the context of
condensed matter systems. A whole lot of useful information can be gained from
characterizing distances between Bloch states, for instance, in making a connection
between Chern bands and Landau levels as we will encounter in section 3.3. The
uniformity and relative degree of fluctuations of both the Berry curvature and the
Fubini-Study metric have direct impact on the stability of a novel class of phases
called fractional Chern insulators which we introduce in section 3.2. One interesting
application of the Fubini-Study metric that is worth mentioning is in the context
of superconductivity and Bose-Einstein condensation in flat bands [69,70].

2.4 Chern Insulators

Starting from a two dimensional lattice model, consider the case where the chem-
ical potential is located in a gap somewhere in the band structure such that the
system is at total integer filling. It was shown [71], using the Kubo formula, that
the Hall conductivity can be written as a sum of the Chern numbers of occupied
bands.

σxy =
e2

2πℏ
∑
α

Cα (2.33)

where α runs over the occupied bands, i.e. below the chemical potential. The
quantization and robustness of the Hall conductivity can then be seen as a result
of it being a topological quantity.

The formula (2.33), generally referred to as the TKNN invariant, was first derived
in the context of models with periodic potentials and external magnetic fields.
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Figure 2.3: (a) The honeycomb lattice with the two sublattices A and B. The bases of the
lattice are given by the vectors a1 and a2. Nearest neighbor hoppings are implemented
by the vectors {δi}. The orange arrows denote the directions for which the complex
next nearest hopping phase is positive. (b) Band structure of the Haldane model with
parameters (t1, t2, ϕ,M) = (1, 0.2, π/3, 0.5). The lowest band carries a Chern number
C = 1

Later, Haldane [72] introduced a model on a honeycomb lattice that shows a non-
zero quantized Hall conductance without an external magnetic field. A non-zero
Chern number, or equivalently a non-zero Hall conductance, is linked to breaking of
time reversal symmetry. An external magnetic field breaks time-reversal invariance
by default but such a symmetry can be also broken through complex hopping
processes on the lattice with a total of zero flux through each unit cell. Lattice
models that possess Chern bands showing non-zero quantized Hall response are
referred to as Chern Insulators. We reserve the name here for models with zero
external magnetic field although the terminology is sometimes used for both.

2.4.1 Example: The Haldane Model

Let’s introduce the Haldane model as an explicit example of a Chern insula-
tor. We will also use the same model supplied with interactions as a prototype
of a fractional Chern insulator in section 3.2. The Haldane model is defined on a
honeycomb lattice. A famous material with such a lattice structure is graphene
discussed later in section 4.1. The honeycomb lattice is not a Bravais lattice but
this can be overcome by taking a unit cell of two atoms, referred to as A and B
sublattices.

On the honeycomb lattice shown in Figure 2.3, there is a real nearest hopping
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t1, a complex next-nearest hopping t2eiϕ and a sublattice potential implemented
by a mass term M with opposite signs on the A and B sublattices. A positive
complex hopping is determined by the direction of the orange arrows in Figure
2.3(a). A tight binding Hamiltonian that takes into account nearest neighbor and
next neighbor hopping is then given by

H = −
∑
⟨i,j⟩

t1c
†
i,Acj,B −

∑
⟨⟨i,j⟩⟩

t2e
±iϕ(c†i,Acj,A + c†i,Bcj,B) + h.c (2.34)

where c†i,α(ci,α) creates(annhilates) an electron on site Ri and sublattice α = A,B.

There are 3 nearest neighbors given by the vectors δ1 = a(
√
3
2 ,

1
2), δ2 = a(−

√
3
2 ,

1
2)

and δ3 = a(0,−1) shown in Figure 2.3(a) with a the distance between sublattices.
Moreover, there are 6 next nearest neighbors given by the primitive lattice vectors
±a1 = ±

√
3a(1, 0), ±a2 =

√
3a(±1

2 ,∓
√
3
2 ) and ±a3 = ±a1∓a2. Solving this tight-

biding problem yields a Bloch Hamiltonian in the bases of A and B sublattices
H =

∑
k(c

†
A(k), c

†
B(k))H(k)(cA(k), cB(k))

T with

H(k) = d0I+
∑
i

diσi

d0 = 2t2 cosϕ
∑

i=1,2,3

cos(k · ai)

dx = t1
∑

i=1,2,3

cos(k · δi)

dy = t1
∑

i=1,2,3

sin(k · δi)

dz =M − 2t2 sinϕ
∑

i=1,2,3

sin(k · ai)

(2.35)

where σi are the Pauli matrices and I is the identity matrix. The energies of the two
bands of the Hamiltonian are given by E(k) = d0 ±

√
d2x + d2y + d2z. For spinless

particles, time-reversal symmetry acts on the Bloch Hamiltonian as T H(k)T −1 =
H∗(−k). We see that time-reversal symmetry is broken for ϕ ̸= 0. If, in addition
to the broken time-reversal symmetry, the two bands are gapped, they acquire a
non-zero Chern number C = ±1. When the Fermi level lies in the band gap, the
system is a Chern insulator. An example of such a scenario is shown in Figure
2.3(b) where the lowest band has a Chern number C = 1.
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Chapter 3

Life in a Flat Chern Band

We have seen in the previous chapter that the integer quantum Hall effect is
linked to a non-zero Chern number. One implies the other and vice-versa. The
purpose of this chapter is to focus on the physics of bands that have non-zero
Chern numbers. We refer to those as Chern bands. The situation becomes more
interesting when the Chern band is flat. The canonical example of this is, again,
the Landau level. Apart from showing quantized integer Hall response when they
are completely filled, partial filling of flat Chern bands can give rise to exotic states
with fractional Hall response.

In this chapter, we discuss the physics of the fractional quantum Hall effect
(FQHE) in the lowest Landau level and then move on to introduce its lattice real-
izations known as fractional Chern insulators (FCI). Characterization of a generic
Chern band with respect to how close or far it is to a Landau level is discussed at
the end of the chapter.

3.1 The Fractional Quantum Hall Effect

The story is different when the filling factor ν (equation (2.3)) takes fractional
values. Interactions are essential in order to explain the fractional quantum Hall
effect since fractionally filling Landau levels while ignoring interactions would result
in a compressible gapless state because of the Landau level degeneracy, but we know
that fractional quantum Hall states are gapped and incompressible. Looking back
at the experimental data of the fractional quantum Hall effect (Figure 2.1), one
notices that most of the prominent plateaus and peaks occur at values ν < 1 which
corresponds to fractional filling of the lowest Landau level. We shall focus on the
fractional quantum Hall effect in the lowest Landau level. The fractional quantum
Hall effect still occurs in higher Landau levels, for example at filling ν = 5/2
with arguably more interesting and exotic properties (for example see Ref [73] and
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references therein).
The problem of electrons interacting in the lowest Landau level is extremely hard

to tackle using standard perturbative techniques due to the massive degeneracy
of the lowest Landau level in addition to its complete flatness. This leaves us
with a purely interacting problem. A common and quite distinctive approach to
the quantum Hall problem is to write trial many-body wavefunctions. The trial
wavefunctions are not the exact many-body wavefunctions but they manage to
capture the universal properties of the system, namely the topological properties
such as the fractionally charged excitations and their fractional statistics. We
discuss next one such seminal trial wavefunction.

3.1.1 Laughlin Wavefunction

The trial wavefunctions approach was first proposed by Laughlin [74] in an
attempt to explain the quantized Hall conductivity at fillings ν = 1/m. The
Laughlin wavefunction reads,

ψLaughlin(zi) =
∏
i<j

(zi − zj)
me−

∑n
i=1 |zi|2/4l2B (3.1)

where m is odd for fermions and even for bosons. When m = 1 corresponding to
an integer filling ν = 1, the Laughlin wavefunction is just a Slater determinant of
the lowest Landau level wavefunctions in the symmetric gauge (2.14). It turns out
that the Laughlin wavefunction gives a very accurate description for the fractional
quantum Hall effect at fillings ν = 1/m.

There exist many ways to justify this. Numerically, it has a very high overlap
with the exact ground state obtained by solving the problem for few interacting
particles in a Coulomb potential [75]. Another way to look at it is by taking a step
backward and asking what interaction Hamiltonian the Laughlin state is a ground
state for. In other words, finding a parent Hamiltonian for the Laughlin state
and comparing it to the Coulomb interaction Hamiltonian projected to the lowest
Landau level. This can be done through the language of Haldane pseudopotentials
[76].

3.1.2 Haldane Pseudopontetials

Haldane pseudopontetials are a way to parameterize any two-body interaction
given that it depends only on the distance between the two particles. The two-
particle wavefunction obtained from the lowest Landau level wavefunctions (2.14)
reads

ψm1,m2(z1, z2) ∼ (zm1
1 zm2

2 ± zm2
1 zm1

2 )e−(|z1|2+|z2|2)/4l2B . (3.2)
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m 0 1 2 3 4 5 6
Vm 0.88623 0.44311 0.33234 0.27695 0.24233 0.21809 0.19992

Table 3.1: Haldane Pseudopotentials of the Coulomb interaction in the lowest Lan-
dau level.

z1 and z2 are the complex coordinates for particle 1 and particle 2 respectively
while m1 and m2 are the angular momentum values of particle 1 and particle 2
respectively. It is possible to decompose it in terms of relative and center of mass
coordinates, z = (z1 − z2)/

√
2 and Z = (z1 + z2)/

√
2,

ψM,m(Z, z) = ⟨z, Z|M,m⟩ ∼ ZMzme−(|Z|2+|z|2)/4l2B ∼ ψM (Z)ψm(z) (3.3)

where M is the center of mass angular momentum and m is the relative angular
momentum. It is easy to see that the relative coordinate part of the two-body
wavefunction ψm(z) is the same as the Laughlin wavefunction for two particles.
In fact, the Laughlin wavefunction is the exact ground state for two particles in-
teracting with any pairwise isotropic interaction V (|ri − rj|) as long as we neglect
mixing between Landau levels.

We can now expand any two-body pairwise interaction in the bases of the two-
particle wavefunctions. The matrix elements of the interaction in these bases
⟨M ′,m′|V |M,m⟩ will depend only on the relative angular momentum values since
the interaction is pairwise. Moreover if the interaction is isotropic — which is the
case for the Coulomb potential, then it is diagonal in the relative angular momen-
tum bases. ⟨M ′,m′|V |M,m⟩ = δM ′,Mδm′,m⟨m|V |m⟩ = δM ′,Mδm′,mVm with Vm
referred to as the Haldane pseudopotentials. We end up with,

V =
∑
M,m

Vm |M,m⟩ ⟨M,m| . (3.4)

An interesting property of the Laughlin state (3.1) is that the lowest relative
angular momentum carried by any two particles is m. This means that it is a zero
energy state for any Hamiltonian that penalizes any two particles having relative
angular momentum smaller than m. One such Hamiltonian in terms of the Haldane
pseudopotentials would be

V ′
m = 1 ifm′ < m and V ′

m = 0 ifm′ ≥ m. (3.5)

This is a very short-ranged interaction in real space in contrast to the Coulomb
interaction which is long-ranged. However looking at the Haldane pseudopotentials
of the projected Coulomb interaction to the lowest Landau level as shown in Table
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3.1 reveals that there is a big gap between successive Haldane pseudopotentials
Vm+2 and Vm

1. This gap gets smaller as m increases. For sufficiently low m, a
parent Hamiltonian of the form (3.5) with the Laughlin state as a zero energy
state is a good description of Coulomb interactions in the lowest Landau level. For
example, if m = 3, V1 ≫ V3 so keeping only V1 is indeed a good approximation.

3.1.3 Laughlin State Excitations

Laughlin wavefunctions can be thought of as describing a uniform density fluid.
Density perturbations to this fluid are therefore excitations of the Laughlin state.
There are two types of charged excitations, quasi-hole excitations corresponding
to a lower density and quasi-particle exciations corresponding to a higher density.
Let’s focus first on the quasi-hole excitations. The wavefunction describing one
quasi-hole at position η at filling ν = 1/m is given by

ψqh(z; η) =

N∏
i=1

(zi − η)
∏
k<l

(zk − zl)
me−

∑n
i=1 |zi|2/4l2B . (3.6)

It can be seen as an extra zero introduced to the wavefunction. The quasi-hole
carries a fractional charge qqh = e/m since adding m quasi-holes at the same point
describes a deficit of one electron charge at this point. In addition to the fractional
charge, quasi-holes are an example of anyons, particles that exhibit fractional ex-
change statistics [77, 78]. The existence of anyons is exclusive to systems in two
spatial dimensions. In the lowest Landau level, the quasi-holes are abelian anyons.
Unlike fermions and bosons, exchanging two quasi-holes results in a complex phase,

ψqh(z; η1, η2) = eiπαψqh(z; η2, η1) (3.7)

where α < 1 is the fractional statistics parameter. For a Laughlin state, α =
1/m [79]. The story is similar for quasi-particles, albeit with a more complicated
wavefunction. They carry an opposite charge qqe = −e/m and have the same
fractional statistics as quasi-holes.

The existence of excitations with fractional charge and statistics is indeed a
remarkable property of the fractional quantum Hall effect. Direct evidence of frac-
tional charge has been found in shot-noise experiments [80] and recently, evidence
for fractional statistics has been observed in interferometry experiments [81].

1m has to be odd for fermions and even for bosons.
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Figure 3.1: An illustration of the operations implemented by the two different operators
T1 and T2 on the torus. The red and blue dots represent the quasi-hole and the quasi-
particle.

3.1.4 Ground State Degeneracy

Another unique property of fractional quantum Hall states that only shows up
when they are wrapped on a manifold with non-trivial topology is the many-body
ground state degeneracy. It has been shown that such a degeneracy depends on the
genus of the manifold [6]. The ground state degeneracy was first derived in quantum
Hall systems with periodic boundary conditions (equivalent to a torus) by making
use of the magnetic translation algebra [82]. Here, we provide a non-rigorous argu-
ment why the ground state has to be degenerate for fractional quantum Hall states
at fillings ν = p/q. The argument assumes the existence of a ground state with
quasi-hole and quasi-particle excitations which have fractional statistics parameter
α = 1/q at fillings ν = p/q.

Let’s consider a process on the torus where we create a pair of quasi-hole and
quasi-particle, move the quasi-particle around the two different cycles of the torus
then annihilate it with the quasi-hole again as illustrated in Figure 3.1. If T1 is
an operator that implements this process along the first cycle and T2 is another
operator that implements it along the second cycle, these two operators will not
commute as a consequence of the fractional statistics of the quasi-hole and quasi-
particle. They are related by

T1T2 = e2πi/qT2T1. (3.8)

This could be deduced by realizing that the product T1T2T−1
1 T−1

2 is equivalent
to taking the quasi-electron around the quasi-hole (see Figs. 4 and 5 in Ref. [6])
hence, the resulting phase. The operators T1 and T2 in the algebra (3.8) map
a ground state to a different ground state therefore, the algebra (3.8) cannot be
realized on a single ground state. The ground state has to be degenerate with at
least q-fold degeneracy. The argument can be generalized to higher-genus surfaces.
The degeneracy of the ground state has to be at least qg where g is the genus of
the surface.
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Back to the Laughlin Argument.

The Laughlin argument discussed in section 2.2.1 can be modified to take into
account the ground state degeneracy of fractional quantum Hall states. This is
done by realizing that after inserting one unit of flux quantum, the spectrum of
the system does not change but instead of returning to the same ground state we
started with, the system is at a different ground state. One needs to insert q units
of flux quantum to return to the same exact ground state given q-fold degeneracy.
After q units of flux, a unit charge is pumped from one-side to the other therefore,
a fractional charge e/q is pumped after inserting one unit of flux quantum.

3.1.5 Beyond Fillings ν = 1/m

The Laughlin state is a good description of fractional quantum Hall states at
fillings ν = 1/m due to the short-range nature of the effective interaction in the
lowest Landau level. However, there are many fractional quantum Hall states that
show at other fillings.

One way to explain the emergence of other quantum Hall states is through the
hierarchy approach given in [76,83]. The idea is that the quasi-particles and quasi-
hole themselves could form a quantum Hall liquid built over the initial quantum
Hall state. This will change the density of the liquid, i.e. the effective filling
fraction. For example, starting from ν = 1/m state, the quasi-particles and quasi-
holes of this state could form a quantum Hall liquid that would contribute to the
total filling fraction as

ν =
1

m
∓ 1

2pm2 ±m
=

1

m± 1

2p

(3.9)

where p is a positive integer. The minus sign is for quasi-holes and the plus sign
is for quasi-particles. The second term could be deduced by figuring out what
the filling fraction of a Laughlin-like state made of quasi-holes or quasi-particles
would look like. For example, for m = 3 and p = 1, the quasi-particle contribution
results in ν = 2/5 Jain state that has been observed experimentally (Figure 2.1).
Furthermore, the quasi-holes and quasi-particles of the new state could themselves
form a quantum Hall liquid thus modifying again the total filling fraction leading
to a hierarchy given by

ν =
1

m± 1

2p1 ±
1

2p2 ± . . .

(3.10)
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The hierarchy approach explains a wide range of the observed filling fractions
with odd denominator in the lowest Landau level. In addition to the hierarchy
picture, the sequence of the experimentally observed fractional quantum Hall states
can be also explained through the language of composite fermions [84] which we
briefly comment on.

A composite fermion is defined as an electron bound to m− 1 flux quanta where
m is odd. When placed in a magnetic field B, composite fermions therefore ex-
perience an effectively different magnetic field B∗. This implies that they also
have a different filling factor ν∗ than bare electrons with filling factor ν. It can be
shown [85] if B∗ > 0 that

ν =
ν∗

1 + (m− 1)ν∗
(3.11)

If composite fermions fill their lowest Landau level (ν∗ = 1) then this corresponds
to electron filling ν = 1/m. So the fractional quantum Hall effect at electron fillings
ν = 1/m corresponds to an integer quantum hall effect of composite fermions. By
integer filling more than one Landau level (ν∗ > 1), equation (3.11) gives the
sequence ν = 2/5, 3/7, 4/9, . . . for m = 3 which are the observed states to the left
of ν = 1/3 in Figure 2.1. Additional fractional quantum Hall states can also be
built from composite fermions with B∗ < 0. We refer the interested reader to the
comprehensive book [86] for more details about the theory of composite fermions.

3.1.6 Halperin States

The Laughlin wavefunctions introduced in section 3.1.1 are spin-polarized. They
do not take into account the spin degree of freedom of the underlying particles.
This is usually motivated by the large Zeeman splitting between spin up and spin
down particles in the presence of a strong magnetic field therefore at low energies,
it suffices to consider only one type of spin. However, in a weak magnetic field or
even in the absence of an external magnetic field, there is a need to generalize the
Laughlin wavefunctions to take into account the spin of the particles. The Halperin
states labeled (m1,m2, n) [87] read

ψm1,m2,n(z, w) =

N↑∏
i<j

(zi − zj)
m1

N↓∏
k<l

(wk − wl)
m2

∏
i,k

(zi − wk)
ne−

∑N↑
i=1 |zi|2/4l2B−

∑N↓
i=1 |wi|2/4l2B (3.12)

The set {zi} ({wi}) are the positions of the spin up (down) particles. In fact,
the construction above is not limited to spin only. It can be adopted for generic

25



CHAPTER 3. LIFE IN A FLAT CHERN BAND

multi-component quantum Hall systems, i.e. quantum Hall systems with additional
quantum numbers. The extra degree of freedom can be for example the valley de-
gree of freedom in graphene-like systems or the layer degree of freedom in quantum
Hall bilayers.

3.2 Fractional Chern Insulators

We have seen that it is possible to realize the integer quantum Hall effect in non-
interacting lattice models in the absence of external magnetic fields. The key was
that integer filling of topologically non-trivial bands with non-zero Chern numbers
results in a quantized Hall response.

A natural follow-up is to wonder if this analogy can be extended to the fractional
quantum Hall effect. Can we have interacting lattice models that realize a fractional
quantum Hall effect in the absence of external magnetic fields? The answer to such
question is not straightforward as there is a variety of different possible interacting
many-body states in lattice models. However, there have been lots of theoretical
and numerical studies suggesting that Fractional Chern Insulators (FCIs) can be
realized in a number of lattice models. (For a detailed review, we refer the reader
to Refs. [52,53] and references therein).

3.2.1 Motivation

As rich as quantum Hall physics can be, the conventional setup for realizing
this kind of physics is accompanied by challenges that severely hinder the possible
prospects for real life applications. These challenges include the need to cool down
the electron gases to very low temperatures and the need for very strong magnetic
fields B ∼ 10 Tesla.

FCIs offer a route around this. Analogues of Landau levels (flat Chern bands) can
exist without external magnetic fields as a consequence of the underlying topology
of the band structure. In addition, the lattice provides a natural length scale set by
the lattice constant that is typically smaller than the magnetic length scale. To give
some numbers, a rough estimation of the magnetic length is lB ≈ 26 nm

√
B while

a typical lattice constant of a material would be of the order O(Å). This further
implies that interactions on the lattice scale are greater than the magnetic length
scale which means that FCI states could in principle have higher energy gaps thus
surviving higher temperatures, a necessity towards any practical implementations.

In addition, as we shall discuss briefly later, the existence of flat bands with
Chern numbers C > 1 opens the door towards new states that generally do not
have a continuum analogue in terms of decoupled Landau levels.
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3.2.2 FCI Phenomenology

We will first adopt a phenomenological approach in identifying suitable models
for FCI phases. As a common guideline, we want to target lattice modes with bands
that have properties close to Landau levels. Let’s first demonstrate this using the
lower band of the Haldane model (2.35). The Haldane model is far from being the
ideal lattice model for realizing FCI states, but it is a good starting point. We need
a number of ingredients.

A Nearly Flat Topological Band

Landau levels are perfectly flat so in targeting FCI states, it is indeed useful to
minimize the dispersion of the lattice bands as much as possible so that interactions
dominate. For the Haldane model, it is possible to minimize the bandwidth of the
lower band by certain choices of the model parameters. Needless to say, the band
has to carry a non-zero Chern number in analogy to Landau levels. When the
Haldane model breaks time reversal symmetry and a gap opens, the lower band
carries a Chern number C = ±1.

A Considerable Band Gap

In addition to a flat Chern band, it is useful to have a large band gap. A larger
band gap means a larger window of interaction strength values V that keeps the
relevant interacting physics restricted to the flat band. Schematically, we want a
hierarchy of scales as follow,

W (Bandwidth) ≪ V (Interaction) ≪ ∆(Band gap). (3.13)

In diagnosing FCI states, we do not need to worry that much about satisfying
this hierarchy as we are going to project all the physics to our band of interest
anyway but such a hierarchy is indeed required in order to justify the projection
procedure in the first place.

Minimal Berry Curvature Fluctuations

Landau levels are unique in the sense that they have perfectly uniform Berry
curvature while generic lattice models show Berry curvature fluctuations. It is
then desirable to have lattice models with minimized Berry curvature fluctuations.
There is indeed a correlation between the stability of FCI states and Berry cur-
vature fluctuations [88]. However, it is crucial to mention that the story is more
complicated than this and the connection between minimizing Berry curvature
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fluctuations and stabilizing FCI states is not straightforward. This should only
be seen from a phenomenological point of view when dealing with generic lattice
models. Flattening the Berry curvature does not always improve the prospects of
FCI states. Indeed, this was the subject of Paper III [50]. It turns out there is a
vital role to quantum geometry of the Chern band in defining what is a good or
bad Chern band for realizing FCI. We will elaborate more on this in section 3.3.

The ingredients above are not strict requirements but they serve as general guide-
lines for targeting lattice models with the potential to host FCI states.

The Choice of Interaction.

The type of interaction needed to stabilize FCI states is highly model dependent.
It also depends on what kind of FCI states are targeted. Abelian FCI states tend to
be stabilized when the interaction is short-ranged since model fractional quantum
Hall states are ground states of short-ranged interactions as discussed in section
3.1.2. We shall target Laughlin states in the Haldane model so it makes sense
to consider a very short-ranged interaction in real space. A fermionic interaction
consisting only of the V1 term (also known as the hollow-core interaction) (3.4)
is not possible on the lattice since the lattice does not have the full rotational
symmetry of the continuum needed for the pseudopotentials expansion. However
a nearest neighbor density-density interaction is a good approximation.

Hint = U
∑
⟨ij⟩

: ρiρj : (3.14)

where ρi = c†ici is the density operator at site i. The full Hamiltonian then reads
H = H0 +Hint with H0 is the non-interacting Hamiltonian (2.34).

Once a good Chern band is identified, it is advantageous numerically to project
all the physics onto this band. As discussed before, the projection is justified when
the relevant energy scales are related like (3.13). Let’s define a projector that
projects onto the lowest band in the Haldane model, P = |u0(k)⟩ ⟨u0(k)| with
u0(k) is the Bloch eigenfunction of the lowest band. The projected Hamiltonian
Hproj = PHP is given by

Hproj =
∑
k

E0(k)d
†
kdk +

∑
k1k2k3k4

V proj
k1k2k3k4

d†k1
d†k2

dk3dk4 (3.15)

E0(k) is the dispersion of the lowest band, d†k and dk are creation and annihilation
operators of electron in the lowest band respectively. V proj

k1k2k3k4
is the projected

interaction matrix elements. For the interaction (3.14) projected onto the lowest
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band, they are given explicitly by

V proj
k1k2k3k4

=

Uδk1k2=k3+k4

(
u∗0A(k1)u

∗
0B(k2)u0B(k3)u0A(k4) +A↔ B

) ∑
j=1,2,3

ei(k2−k3)·δj

(3.16)

where u0A and u0B are the components of the lowest band Bloch eigenfunction
corresponding to the A and B sublattices respectively.

3.2.3 FCI Identification: Ground State Degeneracy and Spectral
Flow

The projected Hamiltonian (3.15) is our starting point. We want to study it
at fractional band fillings ν = p/q. We do this through exact diagonalization, a
standard technique that has proven very useful in diagnosing the quantum Hall
problem. We know that fractional quantum Hall systems exhibit a ground state
degeneracy once wrapped on a higher genus surface as argued in section 3.1.4.
Therefore we expect FCI states to show similar behavior on higher genus surfaces.
Numerically, wrapping our system on the torus T2 is done by imposing periodic
boundary conditions. For a finite size system consisting of Nx × Ny unit cells,
periodic boundary conditions restrict the momentum values to take

k =
n

Nx
G1 +

m

Ny
G2 , n = [0, . . . , Nx − 1] , m = [0, . . . , Ny − 1] (3.17)

where G1 and G2 are two reciprocal lattice vectors.
In Figure 3.2(a), we show the many-body spectrum of the band-projected inter-

acting Hamiltonian (3.15) of the Haldane model at filling ν = 1/3. The interacting
problem is also translationally invariant so the spectrum is labeled by total mo-
mentum K which we map it to take single values K → Kx +NxKy. We observe a
3-fold degeneracy with a gap much larger than the ground states splitting similar
to what is expected from fractional quantum Hall states. In addition to the 3-fold
degeneracy, the momentum label of each ground state can be predicted by applying
an exclusion rule on the folded momentum Kx + NxKy that gives the admissible
FQH configurations in accordance to Haldane generalized statistics of FQH states
derived by a number of different approaches [89–92]. For ν = 1/q, the allowed
momentum configurations of FQH ground states are those which have only one
particle in q consecutive orbitals2. The momenta of the ground states in Figure

2For most cases, this simple counting based on folding the two dimensional momentum K works
but a more involved counting was described in [93].
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Figure 3.2: Identification of the FCI phase in the Haldane model: (a) The many-body
spectrum at filling of 1/3 for 8 particles on of lattice of 4× 6 sites with periodic boundary
conditions. (b) The spectral flow of the low-lying energy states as a function of the inserted
flux Φ/Φ0. The green, orange and blue colors correspond to the 3 degenerate ground states
in different momentum sectors while the red states are higher energy states. (c) A close-
up look of the spectral flow of the 3 degenerate ground states corresponding to different
momentum sectors. (d) The particle entanglement spectrum for NA = 3 particles after
tracing out NB = 5 particles. There are 1088 states below the black line.

3.2(a) indeed corresponds to the predicted momenta from the exclusion statistics.
In addition to the 3-fold degeneracy, it is possible to check the spectral flow

of the ground states upon insertion of varying fluxes through the cycles of the
torus. For instance, inserting a flux through the y-cycle of the torus Φy = lΦ0

will modify the single particle momenta ky → ky +
l
Ny

G2. In Figure 3.2(b) , we
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vary l from 0 to 3 and observe how the spectrum evolves. The 3 ground states
remain gapped from the rest of the spectrum confirming the incompressibility of
the system. The ground states flow among each other separated from the other
states suggesting robust topological degeneracy. Since each ground state carries a
different total momentum quantum number on the geometry used in this example,
it is possible to track each one by assigning a different color to each. We show
a close-up of this in Figure 2.3(c). After insertion of 3 units of flux quanta, the
ground states are exactly the same. The energies are the same after 1 and 2 units
of flux quantum as expected but the ground states are different. Based on the
Laughlin argument discussed in section 2.2.1, this indicates that the system shows
quantized Hall conductivity.

The ground state degeneracy in addition to the spectral flow hint that the under-
lying phase is a FCI state belonging to the Laughlin universality class. Moreover,
to completely rule out competing states such as charge density waves (CDWs),
one could look at the momentum space occupation. FQH are uniform density
states thus we equivalently expect that FCI states have nearly uniform densities
in momentum space. It is also possible to look at quasi-hole excitations of the
ground state by slightly modifying the filling factor away from 1/3. The counting
of quasi-hole exciations is also a signature of Laughlin states.

We describe next another technique used to identify FCI states based on the
entanglement spectrum of the many-body ground states.

3.2.4 FCI Identification: Particle Entanglement Spectrum

Entanglement spectrum is another probe that can be used to identify different
topological phases of matter. Assume we have a generic d× d dimensional many-
body density matrix ρ written in some orthonormal bases {µ}. Let’s also assume
that the system can be partitioned into two parts A and B so that the orthonormal
basis can be decomposed into a tensor product of basis within each part {µ} =
{µA⊗µB} with d = dimA×dimB where dimA(B) are the dimensions of the Hilbert
spaces of subsystem A (B). We then have

ρ =

d∑
i,j=1

Mij |µi⟩ ⟨µj | =
∑
ijkl

Mij;kl |µAi ⊗ µBj ⟩ ⟨µAk ⊗ µBl | (3.18)

By tracing out one of part of the system, say part B, we obtain the reduced
density matrix ρA defined on subsystem A,

ρA = TrBρ ≡ e−HA . (3.19)

31



CHAPTER 3. LIFE IN A FLAT CHERN BAND

The entanglement spectrum is defined as the spectrum {ξi} of the Hamiltonian
HA. Furthermore, if we have a symmetry, implemented by a operator that com-
mutes with the density matrix [ρ,O] = 0 , that can be decomposed into two parts
O = OA +OB, it follows that [ρA,OA] = 0 so it is possible to label the spectrum
with the quantum numbers of OA.

The entanglement spectrum was initially studied by Li and Haldane [94] to char-
acterize topological order in quantum Hall states. There are many ways to partition
a system into two parts. In the initial study, the orbital entanglement spectrum
was used which amounts to partitioning the system in angular momentum space.
It was then hypothesized that low energy structure of the entanglement spectrum
is universal to all states within the same universality class or with the same topo-
logical order. For example, the low energy part of the entanglement spectrum
of model fractional quantum Hall states (e.g Laughlin states) is identical to the
one obtained by exact diagonlization of Coulomb interactions in the lowest Lan-
dau levels at fillings where the model fractional quantum Hall state is expected to
be a good description. This hypothesis was tested numerically on many fractional
quantum Hall states and was extended to fractional Chern insulator states as a way
to confirm that these states are in the same universality class as their analogous
fractional quantum Hall states [95].

Moreover, different kinds of cuts contain different information about the system.
When the system is cut in real space or equivalently orbital space, the low energy
part of the entanglement spectrum contains information about the allowed edge
excitations of the system. Here, we are going to discuss particle entanglement
spectrum (PES) [96] which is obtained by doing a cut in particle space by tracing
out a number of particles. If we have a generic many-body wavefunction |Ψ⟩ for N
particles that is written in the occupation bases of a number of orbitals

|Ψ⟩ =
∑
i

ci |αi;n1n2 . . . nNo⟩ (3.20)

with αi labeling Fock basis i that has a configuration n1n2 . . . nNo with ni the oc-
cupation of each orbital. For instance, the orbitals can be the different momentum
points corresponding to a finite number of unit cells. The basis above have a fixed
number of particles N̂ |αi⟩ = N with N̂ =

∑No
i=1 n̂i. They can be decomposed into

basis of NA and NB particles N = NA+NB, |αi⟩ = |αAi ⟩⊗|αBi ⟩ with N̂ |αAi ⟩ = NA

and N̂ |αBi ⟩ = NB,

|Ψ⟩ =
∑
ij

cij |αAi ⟩ ⊗ |αBj ⟩ . (3.21)

The reduced density matrix is obtained by tracing out NB particles of the density
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matrix ρ = |Ψ⟩ ⟨Ψ|,
ρNA

= TrNA
ρ ≡ e−HNA . (3.22)

The eigenvalues of HNA
form the particle entanglement spectrum. For d degen-

erate ground states |Ψi⟩, the density matrix is modified to be ρ = 1
d

∑d
i=1 |Ψi⟩ ⟨Ψi|.

The particle entanglement spectrum carries information about the number of al-
lowed quasi-hole states. It was conjectured and numerically checked for many
models that the number of states in the low-energy part of the particle entangle-
ment spectrum matches the number of quasi-hole states for NA particles in NO

orbitals. This number is identical to the number of allowed configurations that
respect the Haldane generalized exclusion principle [89].

In Figure 3.2(d), we calculate the particle entanglement spectrum for the 3-
degenerate ground states obtained on a geometry of N = 8 particles in a Nx×Ny =
4 × 6 lattice. We trace out NB = 5 particles and keep NA = 3. The spectrum
is labeled by the total momentum KA

x + NxK
A
y since it is still a good quantum

number after partitioning the system. We observe a clear gap which is essential in
defining the low-energy part of the entanglement spectrum. There are 1088 states
below this gap. For a Laughlin state on the torus at filling ν = 1/3, the admissible
configuration are those which have one particle at most in each 3 consecutive
orbitals. For a system with NA = 3 particles in a 4 × 6 lattice, the number of
configurations with at most one particle in each 3 consecutive orbitals is exactly
1088 which is the same number of states below the gap in the particle entanglement
spectrum. This therefore provides a smoking gun evidence that the FCI state
obtained here is in the same universality class as the Laughlin state.

3.2.5 Higher Chern Number FCIs

It is possible to demonstrate adiabatic continuity between the FCI states in
bands with Chern number |C| = 1 and the corresponding FQH states. The FCI
states are obtained in lattice systems while the FQH states are obtained in the
continuum. However, it is possible to construct Wannier wavefunctions on the
lattice that mimics Landau levels in the Landau gauge [97] thus allowing a direct
comparison between the two.

On the other hand, FCI states have been shown to occur in bands with higher
Chern number |C| > 1 [98]. The ground state degeneracies and entanglement
spectrum properties reveal that those higher Chern number FCI states share lots
of similarities with usual FQH states. By formulating a lattice composite fermions
theory [99], it is possible to predict a series of filling fractions at which FCI states
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are possible. For fermions, they are given by

ν =
r

r|kC|+ 1
(3.23)

with r is a non-zero integer and k is an even positive integer. An important
distinction compared to the |C| = 1 case is that a generic |C| > 1 band cannot
be mapped into C decoupled Landau levels. So the FCI states in higher Chern
number bands do not have a straightforward continuum Landau levels counterpart
in that sense. Nevertheless, it is possible to construct a Bloch-like basis in C
component Landau levels that allows direct comparison between FCI states and
FQH states [100]. Although those bases entangle the real space degrees of freedom
with internal degrees of freedom that comes from the higher Chern number, their
presence allows us to determine all the model FQH states and pseudopotentials
that have generic FCI counterparts.

3.3 Ideal Chern Bands

In the previous sections, we have provided evidence that it is generally desirable
to have Chern bands that mimic the properties of the lowest Landau level (LLL)
such that fractional filling of these Chern bands could give rise to FCIs. The
purpose of this section is to phrase these observations in a more concrete way. In
order to do that, we need to study the properties of the lowest Landau level and
identify conditions under which a generic Chern band is similar.

3.3.1 The GMP Algebra

We are interested in studying the algebra of density operators in the lowest Lan-
dau level. The density operator in momentum space is defined as ρq = eiq·r̂. Recall
in section 2.1.1, the position operator r̂ can be decomposed into two operators cor-
responding to the relative and guiding center coordinates η and R respectively as
shown in equation (2.16).

Since, we are only interested in the lowest Landau level (LLL), we project our
density operator to this level, ρ̄q ≡ PLLLρqPLLL where PLLL is a projector to LLL.
This gives us ρ̄q = e−q

2l2B/4eiq·R. To see this, recall that the Hamiltonian (2.4)
commutes with the operator R and is only a function of η. The operator η is the
same operator as Π in equation (2.4) (multiplied by the square of the magnetic
length) which can be decomposed into the annihilation and creation operators a and
a† defined in equation (2.5) so that ηx ∼ a†+a and ηy ∼ a†−a. The calculation is
quite similar to evaluating expectation values of position and momentum operators
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in the standard problem of the Harmonic oscillator. After some lengthy algebra
and using that the lowest Landau level |ψ⟩LLL is annihilated by the operator a, one
gets the stated result above.

The operator eiq·R can be understood as the generator of center of mass (guiding
center) translations which generates the massively degenerate states in a single
Landau level. The projected densities ρ̄q obey the following algebra,

[ρ̄q1 , ρ̄q2 ] = 2i sin(
q1 ∧ q2l

2
B

2
)eq1·q2l2B/2ρ̄q1+q2 (3.24)

where q1 ∧ q2 = ẑ · (q1 × q2). This algebra is known as the Girvin-MacDonald-
Platzman (GMP) algebra [101] or theW∞ algebra. It shows up in different contexts
in the quantum Hall problem, most notably in calculating magneto-roton excita-
tions of the quantum Hall liquid. It is easily derived by using the commutation
relations [Rx, Ry] = −il2B.

Next, for a Chern band, we would like to derive the corresponding expression for
the projected density operator. Assuming we have an N band model of the form
(2.26), the projector to the Chern band of interest is given by Pn =

∑
k |k, n⟩ ⟨k, n|.

Therefore, the projected density operator is defined as PnρqPn ≡ ρ̄q. To first order
in q , the commutator [ρ̄q1 , ρ̄q2 ] gives

[ρ̄q1 , ρ̄q2 ] = iq1 ∧ q2

∑
k

Ωn(k) |k, n⟩ ⟨k, n|+O(q2) (3.25)

where Ωn(k) is the Berry curvature (2.30) of the band n. The expression (3.25)
agrees with the GMP algebra (3.24) to first order in q if the Berry curvature Ωn(k)
is constant in momentum space Ωn(k) = Ω̄n which supports the expectation that
minimal Berry curvature fluctuations are preferred.

However, this agreement is only in the long wavelength limit where the algebra
closes. Assuming, the Berry curvature is constant and moving on to higher orders
in q, one finds [102] to third order,

[ρ̄q1 , ρ̄q2 ] = iq1 ∧ q2Ω̄
n(Pn − iPn(q1 + q2) · r̂Pn)

− i

2

∑
a,b,c

(
q1aq2bq2c

2
[Pnr̂aPn, Pn(r̂bQnr̂c + r̂cQnr̂b)]

−q1aq1bq2c
2

[Pnr̂cPn, Pn(r̂aQnr̂b + r̂bQnr̂a)]

)
+O(q4)

(3.26)

With Qn = 1 − Pn. We see that the expression (3.26) agrees with (3.24) to third
order if the last two terms vanish. This will happen if the Fubini-Study metric
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gnab(k) of the band is constant. To see this, recall the definition of the Fubini-
Study metric in equation (2.29) and notice that the operator r̂ is a derivative in
momentum space.

So in addition to the constancy of the Berry curvature, we require the Fubini-
Study metric of the Chern band also to be constant so that the GMP algebra is
satisfied up to third order. This analysis introduces the fluctuations of the Fubini-
Study metric in momentum space as another ingredient for identifying suitable
bands for FCIs. Indeed, the Fubini-Study metric in a Landau level is constant [103].
The last ingredient we need for the density operators to satisfy the GMP algebra
(or more precisely a metric-dependent generalization) at all orders is the saturation
of the inequality (2.31) which means that trRnab(k) = 0 or trgn(k) = |Ωn(k)| at all
momentum points. Writing this condition explicitly gives us

⟨k, n| (x̂+ iŷ)Qn(x̂− iŷ) |k, n⟩ = 0 (3.27)

which is equivalent to the condition,

Qn(x̂− iŷ)Pn = Pn(x̂+ iŷ)Qn = 0. (3.28)

Writing the density operators as ρq = e
i
2
(qx−iqy)(x+iy)+ i

2
(qx+iqy)(x−iy) and us-

ing the condition (3.28) while still assuming that both the Berry curvature and
the Fubini-Study metric are constants in the Brillouin zone, the projected density
operators are found to satisfy the following algebra

[ρ̄q1 , ρ̄q2 ] = 2i sin(
q1 ∧ q2l

2
B

2
)eq1ag

n
abq2b ρ̄q1+q2 (3.29)

which is a metric-dependent generalization of the algebra (3.24).
To summarize, in order for a Chern band to resemble the lowest Landau level

from an algebraic point of view, the Berry curvature and the Fubini-Study metric
have to be constant in the Brillouin zone in addition to the saturation of the
inequality (2.31), also known as the trace condition. The algebra (3.29) is quite
special and in fact cannot be satisfied in any lattice model described by a tight-
binding Hamiltonian as we proved in Paper III [50].

3.3.2 Remarks Regarding the Trace Condition

We have seen that FQH model wavefunctions are quite special. For instance, we
have shown in section 3.1.2 that the Laughlin state is an exact zero energy state for
a specific short ranged interaction defined by a set of Haldane psuedopotentials.
Many FQH states are zero modes for toy Hamiltonians describing short-ranged
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interactions. This property does not necessarily rely on the Berry curvature or
the Fubini-Study metric to be constant but it does rely on satisfying the trace
condition (2.31) (in another words, trgn(k) = |Ωn(k)| ∀k).

We will not discuss the details of this but it is worth mentioning that starting
from a Chern band that satisfies the trace condition, it is possible to derive to an
exact lowest Landau level description [104, 105]. This description utilises contin-
uum descriptions of lattice models instead of tight-binding descriptions. We shall
see in the next chapter examples of continuum descriptions of lattice systems in
the context of moiré superlattices. The band geometry fluctuations are generally
reflected on the effective interaction in the lowest Landau level description that
becomes no longer fully rotationally invariant or independent of the center of mass
coordinates but certain properties are preserved such as the existence of zero modes
for special short-ranged interactions.
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Chapter 4

A Survey of Moiré Systems

In this chapter, we discuss the physics of a new class of Van der Waals heterostruc-
tures that has been shown to be a versatile platform for strongly correlated physics.
We follow the recent literature and refer to them as moiré systems since they show
moiré patterns, that is the emergence of a large unit cell structure due to a relative
twist or a slight mismatch in the lattice constants between two adjacent materials.

First we briefly review the physics of graphene that serves as a building block
for many of the moiré systems we are interested in. After, we discuss a number
of graphene-based moiré systems. We conclude the chapter by a brief introduc-
tion to semiconductor transition metal dichalcogenides (TMDs) and their moiré
heterostructures.

4.1 Graphene

Graphene is a two dimensional material made of carbon atoms with a hexagonal
lattice structure. It shows a unique set of properties that distinguish it from other
two dimensional materials in terms of thickness, strength, electron mobility and
thermal and electrical conductivity making it promising for numerous applications
(For a comprehensive review, see Ref. [1]).

The electronic properties of graphene are mainly governed by electrons in the π
bonds that are made out of the pz orbitals on the hexagonal lattice while the other
s, px and py orbitals combine in a sp2 hybridized orbital resulting in the so-called σ
bond. The overlap between the pz orbitals and the other orbitals is zero so they can
be treated separately. The problem of electrons hopping on a hexagonal lattice has
been studied theoretically long before graphene was made in the lab [106]. Such
a problem shows many interesting aspects in relation to relativistic high energy
physics. The electrons around the Fermi level have a linear dispersion analogous
to relativistic massless Dirac fermions.
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4.1.1 Tight Binding Model

We encountered a similar problem for the Haldane model discussed in section 2.4.
The difference here is that we consider only real next nearest hoppping (ϕ = 0 in
equation (2.34)). For completeness, we will re-derive again the result here. A tight
binding Hamiltonian that takes into account nearest neighbor and next neighbor
hopping is then given by

H = −
∑
⟨i,j⟩

t0c
†
i,Acj,B −

∑
⟨⟨i,j⟩⟩

γ0(c
†
i,Acj,A + c†i,Bcj,B) + h.c (4.1)

where c†i,α(ci,α) creates (annhilates) an electron on site Ri and sublattice α = A,B.

There are 3 nearest neighbors given by the vectors δ1 = a(
√
3
2 ,

1
2), δ2 = a(−

√
3
2 ,

1
2)

and δ3 = a(0,−1) shown in Figure 4.1(a) with a the carbon-carbon atomic distance.
In addition, there are 6 next-nearest neighbors given by the primitive lattice

vectors a1 =
√
3a(1, 0), a2 =

√
3a(12 ,−

√
3
2 ), −a1, −a2, a1 − a2, and a2 − a1. The

reciprocal lattice is also a triangular lattice spanned by the vectors Gi, defined
through ai · Gj = 2πδij , and given by G1 = 4π

3a (
√
3
2 ,

1
2) and G2 = 4π

3a (0, 1). The
resulting first Brillouin zone is a hexagon as shown in Figure 4.1(b). To obtain
the dispersion, we Fourier transform the Hamiltonian (4.1) to momentum space by
defining ck,α = 1√

N

∑
i ci,αe

−ik·Ri for N unit cells and making use of the orthogo-
nality relations. We end up with,

H =
∑
k

(c†k,A c†k,B)

(
−γ0f2(k) −t0f∗1 (k)
−t0f1(k) −γ0f2(k)

)(
ck,A
ck,B

)
(4.2)

with

f1(k) = (2e−iky
a
2 cos(

√
3

2
kxa) + eikya)

f2(k) = (2 cos(
√
3kxa) + 4 cos(

3

2
kya) cos(

√
3

2
kxa).

(4.3)

The energy eigenvalues are then given by

E(k) = ±t0
√
3 + f2(k)− γ0f2(k). (4.4)

The resulting band structure is shown in Figure 4.1(c). We notice that the
valence and conduction bands touch at the Brillouin zone corners, K+ and K−.

4.1.2 Low Energy Model

Many of the peculiar properties of graphene come from the behavior in the low
energy limit, i.e. around the band touching points. The momentum points that
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Figure 4.1: (a) Graphene real space lattice with the relevant nearest and next nearest
hopping vectors. (b) Graphene Brillouin zone with the two Dirac points K+ and K−. (c)
Band structure of graphene with t0 = 2.7eV and γ0 = 0.2t0 along a symmetry cut in the
Brillouin zone.

contribute to this limit lie around the Brillouin zone corners. Out of the six corners,
only two corners are inequivalent. Let us denote them by K+ = 4π

3
√
3a
(1, 0) and

K− = 4π
3
√
3a
(−1, 0). The rest of the corners are related to these two points by

appropriate translations by reciprocal lattice vectors. Expanding the dispersion
relation (4.4) around the points K+ and K−, up to first order in momentum,
yields

E(K+ + k) = E(K− + k) = 3γ0 ± v|k| (4.5)

with v = 3t0a/2. The dispersion is linear in momentum and hence reminiscent of
massless Dirac fermions but with a Dirac velocity v. For this reason, the points K+

and K− are commonly referred to as Dirac points. It is not only the dispersion that
is analogous to the dispersion of massless Dirac fermions but also the Hamiltonian
around the Dirac points takes the form of a massless Dirac Hamiltonian. To see
this, one expands (4.2) around the Dirac points. Defining Ψ±(k) = (ψ±,A(k) ≡
cK±+k,A, ψ±,B(k) ≡ cK±+k,B)

T , we get up to first order dropping all constant
energy shift terms,

H+ =
∑
k

Ψ†
+(k)(−vk · σ)Ψ+(k)

H− =
∑
k

Ψ†
−(k)(vk · σ∗)Ψ−(k)

(4.6)

with σ = (σx, σy) a vector of Pauli matrices. The momentum k is measured relative
to the Dirac points. We see that up to first order in momentum, the Hamiltonian
is decoupled into two massless Dirac Hamiltonians around each Dirac point.

The low energy physics comes from the two Dirac points at which the energy
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Figure 4.2: A side view of (a) AB stacked bilayer graphene and (b) ABC stacked trilayer
graphene. The set of parameters {ti} denote various interlayer and intralayer hopping
processes.

dispersion is maximum (minimum) for the valence (conduction) band. Each of
these are commonly referred to as a valley. The valley is an emergent quantum
number that the electrons acquire in the low energy limit. The Hamiltonian around
one valley (equivalently one Dirac point) is related to the other by a spinless time
reversal symmetry T that acts on the first quantized Hamiltonians as h±(k) as
T h±(k)T −1 = h±(−k)∗ = h∓(−k).

4.2 Multilayer Graphene

In this section, we study generalizations of monolayer graphene to multiple layers.
Similar to the previous sections, we are particularly interested in writing down a
tight-binding model for a multilayer graphene system and study it in the low-energy
limit retaining only the relevant degrees of freedom.

4.2.1 Bilayer Graphene

We begin by studying bilayer graphene formed by stacking two layers of graphene.
Of particular importance is the type of stacking. Bilayer graphene exists in two
stacking arrangements. AA stacking which means that the A(B) sublattices of
the first layer are exactly aligned with the A(B) sublattices of the second layer
and AB (Bernel) stacking where A sublattices of the first layer are aligned with
B sublattices of the second layer. We will focus on AB stacked bilayer graphene
since it is more stable than AA stacked bilayer graphene [107]. A schematic of the
stacking of the layers is shown in Figure 4.2(a).
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Figure 4.3: (a) Band structure of AB stacked bilayer graphene along a symmetry cut
in the Brillouin zone (Figure 4.1(b)). (b) AB stacked bilayer graphene shows a quadratic
dispersion around the Dirac points.

Working directly in momentum space, a tight-binding Hamiltonian for bilayer
graphene is

HBLG =
∑
k

(
c†k,A1

c†k,B1
c†k,A2

c†k,B2

)


0 −t0f1(k) −t4f∗1 (k) −t1
−t0f∗1 (k) 0 −t3f1(k) −t4f∗1 (k)
−t4f1(k) −t3f∗1 (k) 0 −t0f1(k)

−t1 −t4f1(k) −t0f∗1 (k) 0



ck,A1

ck,B1

ck,A2

ck,B2

 (4.7)

where we took into account only nearest neighbor hopping. f1(k) is the nearest
neighbor hopping function given in (4.3). In the low energy limit around the Dirac
points, f1(K± + k) ≈ 3

2a(∓kx+ iky). The band structure along a symmetry cut is
shown in Figure 4.3(a).

Due to the strong interlayer coupling t1, the A1 and B2 degrees of freedom will
dimerize meaning that they form bonding and anti-bonding states. This energy
scale is captured by the top-most conduction band and the bottom-most valence
band whereas the lower energy bands around the Dirac points arise mainly from
hopping between the non-dimer B1 and A2 sites. In this case, it is possible to
derive an effective Hamiltonian that keeps only B1 and A2. This Hamiltonian is
valid in the low energy limit |E| ≪ t0, t1 and well captures the physics around the
Dirac point. To this end, we briefly outline a general recipe for integrating out
higher energy degrees of freedom following [108].

We begin by arranging the basis of a generic Hamiltonian as Ψ = (Θ, χ)T where
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Θ is a vector containing the low energy degrees of freedom which corresponds to the
non-dimer lattice sites in our case and χ is a vector containing the remaining higher
energy degrees of freedom corresponding to the dimer sites. In bilayer graphene,
this means that Θ = (ψB1(k), ψA2(k))

T and χ = (ψA1(k), ψB2(k))
T . with ψα(k)

is the wavefunction component on a sublattice α. The eigenvalue equation of the
Hamiltonian then reads (

hΘ u
u† hχ

)(
Θ
χ

)
= E

(
Θ
χ

)
. (4.8)

By using the second row of the above Hamiltonian, we can express χ as χ =
(E − hχ)

−1u†Θ then substituting back into the equation obtained from the first
row which gives us, [

hΘ + u(E − hχ)
−1u†

]
Θ = EΘ. (4.9)

Now we expand the above expression up to first order in E, yielding[
hΘ − uh−1

χ u†
]
Θ = E(1 + uh−2

χ u†)Θ. (4.10)

Defining Φ = (1 + uh−2
χ u†)1/2 Θ such that Φ†Φ ≈ 1 to first order in E, we have

HeffΦ = EΦ with the effective first quantized Hamiltonian,

Heff = (1 + uh−2
χ u†)−1/2

[
hΘ − uh−1

χ u†
]
(1 + uh−2

χ u†)−1/2. (4.11)

Expanding the Hamiltonian (4.7) around the Dirac points through f1(K±+k) ≈
3
2a(∓kx + iky) and then eliminating the dimer degrees of freedom A1 and B2 by
using (4.11) gives us an a two-band effective Hamiltonian valid in the low energy
limit |E| ≪ t0, t1 around the Dirac points. The dominant contribution to the
effective Hamiltonian around both valleys ± is given by

Heff
BLG,± ≈ −v2

t1

(
0 (∓kx − iky)

2

(∓kx + iky)
2 0

)
. (4.12)

We notice that the effective low energy Hamiltonian for bilayer graphene is
quadratic in momentum hence it describes chiral quasiparticles with non-zero ef-
fective mass 1

meff
= 1

ℏ2
∂2E
∂k2

, in contrast to the mono-layer case. Indeed this is the
case if we zoom in around one of the Dirac points as indicated in Figure 4.3(b).

4.2.2 Trilayer Graphene

Adding one more layer of graphene enriches the stacking possibilities. We will
focus on ABC stacked trilayer graphene [22] schematically shown in Figure 4.2(b).
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A full tight binding Hamiltonian can be written in the basis of the two sublattices
in each layer, however, we are only concerned here with the low energy limit near
the Dirac points. Similar to bilayer graphene, the stronger coupling t1 between
aligned sublattices A1 — B2 and A2 — B3 will lead to dimerization accounting for
four higher energy bands leaving two bands around the Dirac points. Integrating
out the high energy degrees of freedom corresponding to dimer sites, using the
same recipe described above for bilayer graphene, gives us a low-energy effective
Hamiltonian in the basis of the non-dimer sites (ck,A1 , ck,B3)

T with a dominant
contribution,

Heff
TLG,± ≈ v3

t21

(
0 (∓kx − iky)

3

(∓kx + iky)
3 0

)
. (4.13)

The low energy Hamiltonian is cubic in momentum and describes also chiral
electrons but with a higher degree of chirality.

Extending this analysis to N multilayers of graphene with Bernel stacking
(ABCDE . . . ), the relevant low energy degrees of freedom are the two non-dimer
sites, A1 of the first layer and BN of the N -th layer [109]. The low energy Hamil-
tonian around the Dirac points is then given by

Heff
N layers,± ≈ vN

(−t1)N−1

(
0 (∓kx − iky)

N

(∓kx + iky)
N 0

)
. (4.14)

This defines a family of chiral electron Hamiltonians with degree of chirality N .
When N = 1, corresponding to the monolayer graphene cases, the effective mass
of the quasi-particles is zero while it is non-zero for N > 1.

4.3 Twisted Bilayer Graphene

We now turn to introduce twisted bilayer graphene (TBG) formed by taking
two layers of monolayer graphene and twisting them relative to each other (Figure
1.2(a)). For tiny relative twists, the system acquires a new periodicity on a much
bigger scale. The new moiré superlattice constant aM scales roughly like aM ∝ a/θ
for small twist angles θ where a is the lattice constant of monolayer graphene.
Consequently, the new Brillouin zone, dubbed the moiré Brillouin zone (mBZ) is
much smaller than the original monolayer graphene Brillouin zone.

The moiré superlattice is a triangular lattice with three important regions, AA,
AB and BA as highlighted in Figure 4.4(a). The AA regions denote configurations
where the A and B sublattices of one layer are locally aligned with the A and B
sublattices of the other layer respectively where AB and BA denotes, as usual,
alignment of different sublattices of the two layers.
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Figure 4.4: (a) The moiré superlattice of twisted bilayer graphene. (b) A schematic of
two twisted hexagons that is used for figuring out the crystallographic symmetries. (c)
The rotated Brillouin zone of both layers results in a smaller moiré Brillouin zone shown
in red. (d) The moiré Brillouin zone along with the relevant hopping vectors {qi}, the
moiré Dirac points and the moiré reciprocal lattice vectors.

The moiré supercell is exactly periodic only at specific values of twist angles.
The set of twist angles that gives rise to a commensurate structure are given by

cos θ(m, r) =
3m2 + 3mr + r2/2

3m2 + 3mr + r2
(4.15)

where m and r are two positive coprime integers [110]. That being said, our goal
here is to derive a continuum low energy model that captures all the low energy
aspects at small twist angles regardless of if the actual system is commensurate or
not. This has been done by Bistritzer and MacDonald [9] building on an earlier
model [8].

4.3.1 The Continuum Model (CM)

Schematically the Hamiltonian of twisted bilayer graphene, denoted HTBG can
be decomposed to HTBG = H0 +HT where H0 describes the physics within each
individual layer and HT describes tunneling between the two layers. H0 is already
known, it is the monolayer graphene Hamiltonian in the rotated coordinates. Our
goal is to derive an expression for HT .

In each layer of graphene, we expand the original Bloch wavefunctions at mo-
mentum k in terms of Wannier orbitals |R+ τα⟩ at each lattice site R+ τα in the
layer where τA = 0 for sublattice A and τB = δ3 ≡ τ0 for sublattice B (Figure

46



4.3. TWISTED BILAYER GRAPHENE

4.1(a)). This gives us

|ψtkα⟩ =
1√
N

∑
R

eik̃·(R̃+τ̃α) |R̃+ τ̃α⟩ (4.16)

|ψbpβ⟩ =
1√
N

∑
R′

eip̃·(R̃
′+τ̃β)eip̃·∆ |R̃′ + τ̃β⟩ . (4.17)

The tilde over the coordinates implies that the coordinates have been rotated in
each layer with the respective twist angle. This implies that in the top layer, k̃ =
Rθ/2k and R̃ = Rθ/2R while in the bottom layer, p̃ = R−θ/2p and R̃′ = R−θ/2R

′.
Rθ is the rotation matrix with angle θ counterclockwise. Keeping that in mind
and for convenience, we will drop the tilde.

The vector ∆ in the expression of the bottom layer Bloch function takes into
account any relative displacement between the two layers. The tunneling matrix
elements between sublattice α in the top latter and sublattice β in the bottom
layer, denoted as Tαβkp , are given by

Tαβkp = ⟨ψbpβ|HT |ψtkα⟩ =
1

N

∑
R,R′

e−ip·(R
′+τβ+∆)eik·(R+τα) ⟨R′ + τβ|HT |R+ τα⟩.

(4.18)
So far, no approximations have been made but it is difficult to proceed without

knowing the exact form of ⟨R′ + τβ|HT |R+ τα⟩. We assume that the tunneling
is a smooth function t(r) of the spatial separation between the Wannier orbitals
projected onto the graphene planes so that ⟨R′ + τβ|HT |R+ τα⟩ = t(R′ + τβ −
R+ τα). We then Fourier expand it, t(r) = 1

A

∫
d2q tqe

iq·r where A is the area of
the unit cell, giving us

Tαβkp =
1

NA

∫
d2q

∑
R,R′

e−i(p−q)·(R′+τβ+∆)ei(k−q)·(R+τα)tq. (4.19)

Using orthonormality properties, the above expression is non-zero only if p−q =
Gb
i and k − q = Gt

j for reciprocal lattice vectors of the top and bottom layers,
Gt
i and Gb

j respectively. Substituting with the allowed values of q in the above
expression, we end up with

Tαβkp =
∑

Gb
j ,G

t
i

tk−Gt
i
e−iG

b
j ·(τβ+∆) eiG

t
i·τα δk−Gt

i,p−Gb
i
. (4.20)

We see that momentum is conserved up to a difference of reciprocal lattice vectors
of both layers, k− p = Gt

i −Gb
j . This further allows us to define moiré reciprocal
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lattice vectors {GM
ij } = {Gt

i − Gb
j}. In this formulation, the moiré superlattice

periodicity is obtained by a linear combination of reciprocal lattice vectors of both
layers. The basis vectors of the moiré reciprocal space GM

1 and GM
2 — such that

any moiré reciprocal vector can be written as GM
mn = mGM

1 +nGM
2 for integer m

and n, are then given by the smallest possible vectors obtained from taking linear
combination of the set {Rθ/2G1,Rθ/2G2,R−θ/2G1,R−θ/2G2} where G1 and G2

are the two reciprocal lattice basis vectors of monolayer graphene. This gives us

GM
1 = Rθ/2G1 −R−θ/2G1 & GM

2 = Rθ/2G2 −R−θ/2G2. (4.21)

Till now, the momentum k of the top layer and p of the bottom layer are mea-
sured with respect to the origin of the Brillouin zone of the monolayer graphene.
With respect to a single valley (say valley K+), the momentum conservation con-
dition is given by

(k−Kt
+)− (p−Kb

+) = Rθ/2Gi −R−θ/2Gj + q1

k̄− q̄ = Rθ/2Gi −R−θ/2Gj + q1

(4.22)

where k̄ and q̄ are momenta relative to valley K+ in the top and bottom layer
respectively and q1 = Kb

+−Kt
+ = R−θ/2K+−Rθ/2K+. An important observation

from ab-initio calculations [8] is that tq decays quickly with q . We want to keep
only the terms that minimizes k − Gt

i in equation (4.20) where k now is in the
vicinity of one valley. There are 3 such terms that contribute the most to tk−Gt

i

and give rise to three distinct tunneling processes:

1. Gt
i = 0 then k̄− q̄ = q1

2. Gt
i = Rθ/2G3 then k̄− q̄ = Rθ/2G3 −R−θ/2G3 + q1 ≡ q2

3. Gt
i = −Rθ/2G1 then k̄− q̄ = R−θ/2G1 −Rθ/2G1 + q1 ≡ q3.

The second and third terms come from the fact that G1 and −G3 would take the
valley K+ to the other two equivalent points in the monolayer graphene Brillouin
zone. Keeping only these terms, we write the interlayer hopping (4.20) around one
valley in a compact form in terms of a matrix where the diagonal terms represent
hopping between the same sublattices (AA or BB) and the off diagonal terms
represent hopping between different sublattices (AB or BA)

T (q1) =

(
w0 w1

w1 w0

)
,

T (q2) = e−i(R−θ/2G3)·∆
(
w0 w1z
w1z

∗ w0

)
,

T (q2) = ei(R−θ/2G1)·∆
(
w0 w1z

∗

w1z w0

) (4.23)
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where z = e−iG3·τB . We notice that G3 · τB = G1 · τB = −2π/3. w0 and w1

describe the strength of same sublattice hopping and different sublattice hopping
respectively and in principle can differ. In fact, the so-called relaxation effects,
w0 ̸= w1, play an important role for twisted bilayer graphene [111] and other moiré
systems. By proper redefinition of the Bloch wavefunctions (4.16), the phases in
front of T (qn) (4.23) can be gauged away and we arrive at a general form of the
interlayer hopping,

T (qn) = w0I + w1 cos(2π(n− 1)/3)σx + w1 sin(2π(n− 1)/3)σy (4.24)

with n = 1, 2, 3. A similar calculation can be repeated for the other valley K− to
obtain a similar expression.

It is instructive to write the Hamiltonian we derived around one valley in the
second quantized form,

H+
TBG =

∑
k

(Ψ†
t,+(k)h

+
θ/2(k)Ψt,+(k) + Ψ†

b,+(k)h
+
−θ/2(k)Ψb,+(k))

+
∑

k,i=1,2,3

Ψ†
b,+(k+ qi)T (qi)Ψt,+(k) + h.c (4.25)

where Ψ†
l,+(k) = (ψ†A

l,+(k), ψ
†B
l,+(k))

T with ψ†α
l,+(k) an operator that creates an elec-

tron with momentum k around valley K+ in layer l = t, b and sublattice α = A,B.
h+θ (k) is the monolayer graphene low energy Hamiltonian around valley K+ rotated
with angle θ, h+θ (k) = h+(Rθk) with h+ = −vk ·σ is the low energy Dirac Hamil-
tonian we derived in equation (4.6). The Hamiltonian around the other valley K−
could be obtained by applying a time reversal transformation to (4.25).

4.3.2 Band Structure

A remarkable feature of twisted bilayer graphene, arguably the most prominent
one, is the existence of flat bands with very narrow bandwidth around charge
neutrality when the twist angle takes certain values referred to as magic angles.
The first of these angles, and the most relevant to recent experiments, occurs around
θ = 1.0◦ − 1.2◦. Around the first magic angle, the dispersion of the valence and
conduction band is very small and the band velocity approaches zero. In Figure
4.5, the band structure of TBG near valley K+ is plotted around charge neutrality
for different values of twist angles. One notices that the valence and conduction
bands around the zero energy always cross at the new Dirac points Kt

+ and Kb
+

of the moiré Brillouin zone (Figure 4.4(d)). This can be attributed to a symmetry
constraint that will be discussed later. The Dirac velocity around these points is
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Figure 4.5: Band structure of twisted bilayer graphene along a symmetry cut in the moiré
Brillouin zone (Figure 4.4(d)) for a number of twist angles. The valence and conduction
bands are colored in red.

strongly renormalized compared to the original Dirac velocity of the single layer
graphene and it almost vanishes near the magic angles (Figure 4.5(b)).

To gain some insights about the renormalization of the velocity near the Dirac
points of the moiré Brillouin zone, we derive an effective Hamiltonian around these
points. To do so, we examine the Hamiltonian (4.25) perturbatively in the limit
k → 0 which corresponds to momenta near the Dirac point Kt

+. We will consider
a momentum cutoff corresponding to an 8 band Hamiltonian given by

H =


h+θ/2(k) T (q1) T (q2) T (q3)

T †(q1) h+−θ/2(k+ q1) 0 0

T †(q2) 0 h+−θ/2(k+ q2) 0

T †(q3) 0 0 h+−θ/2(k+ q3)

 (4.26)

written in the basis Ψ = (Ψt,+(k),Ψb,+(k+ q1),Ψb,+(k+ q2),Ψb,+(k+ q3)). The
8 band Hamiltonian serves as a good first approximation to the band structure of
TBG. In addition, the parameter dependence of the low energy monolayer graphene
Hamiltonian h+θ (k) on the angle θ is negligible for small twist angles, and therefore
we will assume h+θ (k) ≈ −vk · σ.

The Hamiltonian (4.26) can be further decomposed to a k independent part H(0)

and a k dependent part H(1) given by,

H(0) =


h0 T (q1) T (q2) T (q3)

T †(q1) h1 0 0
T †(q2) 0 h2 0
T †(q3) 0 0 h3

 (4.27)
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H(1) =


−vk · σ 0 0 0

0 −vk · σ 0 0
0 0 −vk · σ 0
0 0 0 −vk · σ

 (4.28)

where h0 = limk→0 h
+
0 (k) and hi = −vqi · σ for i = 1, 2, 3. Our goal is to find the

zero modes of H(0) and derive around them an approximate perturbative Hamil-
tonian. Let Ψ0 = (ψ0, ψ1, ψ2, ψ3)

T is the spinor corresponding to the zero modes
of H(0). Being a zero mode implies the following constraints on the components,

h0ψ0 +
∑

i=1,2,3

T (qi)ψi = 0 (4.29)

ψi = −h−1
i T †(qi)ψ0 for i = 1, 2, 3. (4.30)

After a series of algebraic manipulations, one can show that
∑

i T (qi)h
−1
i T †(qi)

= 0. So the first constraint (4.29) simplifies to h0ψ0 = 0 which further implies
there are two zero modes (denote them by Ψ1

0 and Ψ2
0) of the 8 band model that

are completely determined by the two zero modes ψ0 = |1⟩ , |2⟩ of the isolated mono-
layer graphene Hamiltonian h0. The two zero modes |1⟩ and |2⟩ are orthonormal
⟨i|j⟩ = δij and span a two dimensional subspace. Knowing ψ0, one can determine
the rest of the components of Ψ0 through the relation (4.30) but we need first to
normalize the spinors of the two zero modes Ψi

0. We have

|Ψi
0|2 = ⟨i| (I +

∑
j=1,2,3

T (qj)(h
−
j )

†h−1
j T †(qj)) |i⟩ (4.31)

with I is the identity matrix. We notice that

h−1
j = − hj

v2|qj |2
h2j = v2|qj |2∑

j=1,2,3

T (qj)T
†(qj) = 3(w2

0 + w2
1)I

. (4.32)

Substituting this above, we get

|Ψ1
0|2 = |Ψ2

0|2 ≡ |Ψ0|2 = 1 + 3
w2
0 + w2

1

v2|q1|2
≡ 1 + 6α̃2 (4.33)

where we defined α̃ =

√
w2

0+w
2
1√

2v|q| and used that |q1|2 = |q2|2 = |q3|2. Now, to first
order in k, the effective Hamiltonian matrix elements Hij in the zero mode bases,
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Hij = ⟨Ψi
0|H(1)|Ψj

0⟩ /|Ψ0|2, are given by

Hij =
−v

1 + 6α̃2
⟨i| (k · σ +

∑
n=1,2,3

T (qn)(h
−1
n )†k · σh−1

n T †(qn) |j⟩ . (4.34)

To evaluate the above expression, we notice that k · σh−1
n = −h−1

n k · σ + {k ·
σ, h−1

n } = −h−1
n k · σ + −4

v|q|2qn · k I. Explicit evaluation of the summation gives

us
∑

n=1,2,3 T (qn)(h
−
n )

†h−1
n k ·σT †(qn) = 3

w2
0

v2|q|2k ·σ and
∑

n=1,2,3 T (qn)(h
−
n )

†qn ·
kT †(qn) =

3(w2
0−w2

1)
4v k · σ where we made use also of the identities (4.32). Putting

everything together and defining α = w1
v|q1| , we get

Hij = −v1− 3α2

1 + 6α̃2
⟨i|k · σ|j⟩ . (4.35)

We see that up to first order, the effective Hamiltonian around the moiré Dirac
point (4.35) has the same form as the low energy Dirac Hamiltonian of monolayer
graphene except that moiré Dirac velocity v∗ is renormalized through 1

v∗ = v
1− 3α2

1 + 6α̃2
. (4.36)

Furthermore, we have that |q1| = 2KD sin(θ/2) where KD is the length of one
corner of the monolayer graphene Brillouin zone, i.e KD = |K+| = |K−| . The
velocity (4.36) vanishes in the limit α = w1

2vKD sin(θ/2) → 1/
√
3 which corresponds

to twist angle θ = 1.09◦ or the first magic angle in our case.

4.3.3 Symmetries of the Continuum Model

After presenting the band structure of the continuum model, we now turn to
discuss its symmetries. We start by focusing on the whole system with the two val-
leys. We first investigate the point group symmetries of real space twisted hexagons
(Figure 4.4(b)) where we take our twist origin to be at the hexagon center.. In gen-
eral, the crystallographic symmetries depend on any initial displacement between
the two layers before twisting. However it can be shown [9] that the continuum
model is insensitive to any relative displacement between the two layers as those
can be gauged away so one can safely take the twist origin to at the center of the
hexagon.

Immediately, one sees that there is a C6 rotational symmetry. In addition, there
is a mirror symmetry that consists of a two-fold inversion. The first one is around

1In the limit w0 = w1 and α̃ = α, the formula reduces to the one derived in the original paper [9].
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a plane perpendicular to the twisted hexagons plane such that (x, y) → (x,−y)
and the second one is around a plane parallel to the twisted hexagons plane where
the top and bottom layers are swapped. Effectively, it acts as a mirror My when
restricted to two dimensions. On top of the point group symmetries, there is a
lattice translation symmetry by the moiré lattice vectors taM and a time reversal
symmetry T . Explicitly, these symmetries act on the Dirac spinors Ψl,±(k) in the
following way

• Moiré translation symmetry :

trΨl,±(k)t
−1
r = eik·rΨl,±(k) (4.37)

where r = maM1 +naM2 with m,n ∈ Z and aM1 , aM2 are the two bases for the
moiré superlattice.

• C6 rotational symmetry :

C6Ψl,±(k)C
−1
6 = σxe

∓i(2π/3)σzΨl,∓(C6k) (4.38)

• Mirror symmetry :

MyΨl,±(k)M
−1
y = σxΨMy [l],±(Myk) (4.39)

withMyk =My(kx, ky) = (kx,−ky) andMy[l] swaps the layer index, My[t] =
b and vise versa.

• Time reversal symmetry T :

T Ψl,±(k)T −1 = Ψl,∓(−k). (4.40)

One can readily check that the above transformations keep the total Hamiltonian
HTBG = H+

TBG +H−
TBG invariant.

The Single-Valley Problem

The moiré Brillouin Zone is much smaller than the original Brillouin zone at small
twist angles (Figure 4.4(c)). This allows us to treat both valleys separately as the
momentum difference between the two valleys is much greater than the size of the
moiré Brillouin zone therefore we will focus on the single-valley problem. We notice
that the moiré translation symmetry tr and the mirror symmetry My preserves
the valley index while both C6 and T flips it. However, the product C6T still
preserves the valley index. So the point group symmetries of the single valley are

53



CHAPTER 4. A SURVEY OF MOIRÉ SYSTEMS

now generated by C6T and the mirror My. We also notice that (C6T )2 = C3 and
(C6T )3 = C2T . Explicitly, the action of those single-valley preserving symmetries
is obtained using the actions of the C6 (4.38) and T (4.40) symmetry operators of
the two-valley problem. We then have,

C6T Ψl,±(k)(C6T )−1 = σxe
±i(2π/3)σzΨl,±(−C6k) (4.41)

C3Ψl,±(k)C
−1
3 = e∓i(2π/3)σzΨl,±(C3k) (4.42)

C2T Ψl,±(k)(C2T )−1 = σxΨl,±(k). (4.43)

The transformations generated by C6T (equations (4.41),(4.42) and (4.43)) in
addition to the moiré translation symmetry (4.37) and the mirror symmetry (4.39)
will keep the single valley Hamiltonian H±

TBG invariant.
The symmetry transformations have lots of implications on the single-valley spec-

trum of the continuum model. Apart from the moiré lattice translation symmetry
that is crucial in order to define the moiré Brillouin zone, the C3 symmetry (4.42)
allows us to label the energy bands at the C3 invariant momenta, Kt

+ and Kb
+ by

their C3 eigenvalues ei 2nπ/3 with n = 0, 1, 2.
Moreover, the C2T symmetry (4.43) takes a C3 eigenstate to another C3 eigen-

state at the same point. To see this, let |Kt
+⟩ be a Bloch state at momentum Kt

+

and let eiϕ be its eigenvalue under C3 such that C3 |Kt
+⟩ = eiϕ |Kt

+⟩. We want to
evaluate C3C2T |Kt

+⟩. We notice that C3 and C2T commute since they are both
products of the same C6T operator. We have then C3C2T |Kt

+⟩ = C2T C3 |Kt
+⟩ =

C2T eiϕ |Kt
+⟩ = e−iϕC2T |Kt

+⟩ where the last step is obtained by noticing that the
representation of C2T when acting on single particle states is given by C2T = σxK
where K denotes complex conjugation.

So if we have a state at the point Kt
+ with C3 eigenvalue w = eiϕ ̸= 1, there has

to exist another state at the same point with the same energy and C3 eigenvalue w∗.
Indeed the valence and conduction bands that always cross at this point (Figure
4.5) correspond exactly to this case. These two bands form a two dimensional
representation of the combined C3 and C2T symmetry group which has been also
confirmed in numerics [112]. These band crossings are therefore locally stable as
long as the C2T symmetry is preserved.

Finally, it is sufficient to focus only on one moiré Dirac point as we are guaranteed
to have exactly the same physics at the other point by the mirror symmetry My

(4.39) that maps the two moiré Dirac points to each other. Such a symmetry
ensures that the bands at the two points have the same energy.
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4.4 Graphene-Based Models Without C2 Symmetry

We have argued that the C2T symmetry in the single-valley problem of twisted
bilayer graphene protects the crossings of the valence and conduction bands at the
Kt

+ and Kb
+ points. However, this combined symmetry is not always present in

graphene moiré materials. The C2 symmetry depends on the atomic configuration
of the monolayers that form the moiré superlattice. We discuss next some moiré
materials that do not possess this symmetry.

4.4.1 Graphene Aligned With Boron Nitride

Two dimensional hexagonal boron nitride (hBN) has the same honeycomb lattice
structure as graphene, however, the two sublattices correspond to two different
atoms (boron and nitrogen) so it is not C2 invariant. In addition, the lattice
constant of hBN is about 1.7 % greater than graphene’s therefore when graphene
is aligned with hBN, this tiny lattice mismatch results in a moiré pattern in the
combined heterostructure.

hBN is a strong electrical insulator so at low energies, it is possible to inte-
grate out its degrees of freedom restricting the dynamics only to graphene re-
sulting in an effective superlattice potential VhBN(r) that the electrons in the
graphene layer aligned with hBN experience [113]. The potential VhBN(r) is peri-
odic VhBN(r+Rn) = VhBN(r) with {Rn} the lattice vectors of the hBN-graphene
superlattice. The periodic potential VhBN(r) admits a Fourier expansion VhBN(r) =∑

Gi
VhBN(Gi)e

iGi·r in terms of the reciprocal lattice vectors of the hBN-graphene
superlattice.

Figure 4.6: Band structure of graphene aligned with
boron nitride along a cut in the moiré Brillouin zone
shown in the inset.

The role of the superlat-
tice potential is to fold the
graphene hexagonal Brillouin
zone into a smaller one, i.e.
the moiré Brillouin zone which
has the same orientation. The
folding is done by identify-
ing momentum k and k + Gi.
In addition to the superlat-
tice potential, the alignment
with hBN will introduce a stag-
gered sublattice potential in
the graphene layers. This leads
to the following Hamiltonian
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around one valley,

H+
G/hBN =

∑
k

Ψ†
+(k)(−vk ·σ+Mσz)Ψ+(k)+

∑
Gi

∑
k

Ψ†
+(k+Gi)VhBN(Gi)Ψ+(k)

(4.44)
where Ψ+(K) = (Ψ+,A(k),Ψ+,B(k))

T is the usual two component graphene spinor
andM is a mass term induced by the alignment of hBN. The second term represents
the moiré superlattice potential. The moiré potential components {VhBN(Gi)} can
be obtained from ab-initio calculations [113].

A very accurate description is obtained by keeping only six moiré reciprocal
vectors Gi=1,...,6 = R(i−1)π/3G1 with G1 = (0, 4π/

√
3aM ) with aM the lattice

constant of the moiré superlattice. Rθ is a counter-clockwise rotation with an
angle θ. Furthermore, the potential can be expanded as VhBN(Gi) = V0(Gi) +
Vz(Gi)σz + Re(VAB(Gi))σx + Im(VAB(Gi))σy

For completeness, we list here the moiré potential components,

Va(G1) = Va(G3) = Va(G5) = Cae
iϕa

Va(G2) = Va(G4) = Va(G6) = Cae
−iϕa

(4.45)

for a = 0, z, C0 = −10.13meV, ϕ0 = 86.53◦ , Cz = −9.01meV and ϕz = 8.43◦. The
remaining components are given by

VAB(G1) = VAB(G4)
∗ = CABe

i( 2π
3
−ϕAB)

VAB(G3) = VAB(G2)
∗ = CABe

−i(ϕAB)

VAB(G5) = VAB(G6)
∗ = CABe

i(− 2π
3
−ϕAB)

(4.46)

with CAB = 11.34meV and ϕAB = 19.60◦. In Figure 4.6, we show the band
structure around the charge neutrality. The sublattice potential opens a gap at the
Dirac points as it breaks the C2 symmetry of graphene.

4.4.2 Twisted Bilayer Graphene Aligned With Boron Nitride

In a conventional Van der Waals heterostructure, twisted bilayer graphene is
often accompanied with hexagonal boron nitride (hBN) that acts as a substrate.
Aligning boron nitride with one of the graphene layers affect the underlying physics
as this breaks the C2 symmetry of twisted bilayer graphene, hence the single valley
problem is no longer C2T symmetric which means that the valence and conduction
bands crossings can be gapped out as they are no longer protected by any symmetry.

As discussed in the previous section, the effect of aligning boron nitride with a
graphene layer is two-fold. The alignment induces a staggered sublattice potential
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Figure 4.7: (a) A schematic of ABC stacked trilayer graphene aligned with Boron Nitride
with an applied gate potential U . (b) A schematic of twisted double bilayer graphene made
of two layers of AB stacked bilayer graphene.

within the graphene layer in the vicinity of hBN and it generates an additional
moiré pattern because of the lattice constant mismatch.

The hBN-graphene superlattice is not commensurate with the twisted bilayer
graphene superlattice so it is not possible to construct a unified unit cell. However,
ab-initio calculations [113] estimates VhBN ∼ 10meV. This is much smaller than
TBG interlayer tunneling strength w0 ∼ 110meV and still smaller than the strength
of the staggered potential M estimated to be M ∼ 15meV so as an approximation,
we neglect the hBN-graphene moiré pattern and the Hamiltonian becomes the
original Hamiltonian of TBG in addition to a sublattice mass term in the top
layer.

H+
TBG/hBN ≈ H+

TBG +
∑
k

Mψ†
t,+(k)σzψt,+(k). (4.47)

The band structure of the system around valley K+ is shown in Figure 4.8(a).
There is a gap between the valence and conduction band as expected. Moreover,
the two bands carry a non-zero Chern number, C = 1 and C = −1 respectively.
The overall time reversal symmetry enforces opposite Chern numbers in the other
valley. The flatness of the valence and conductions bands combined with the non
trivial topology in terms of the non-zero Chern numbers render them as possible
candidates for fractional Chern insulator (FCI) states which is the subject of Paper
I [48].

4.4.3 Trilayer Graphene Aligned With Boron Nitride

Another moiré system that been shown to host flat bands with non-trivial corre-
lated states is ABC stacked trilayer graphene aligned with boron nitride (TLG/hBN)
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Figure 4.8: (a) Band structure of twisted bilayer graphene aligned with Boron Nitride.
The alignment opens a gap between the valence and conduction bands rendering them
topological. (b) and (c): Band structure of ABC stacked trilayer graphene aligned with
Boron Nitride at positive and negative gate potential. The sign of the gate potentials
controls the topology of the valence band shown in red. In generating these plots, we took
into account remote hopping-term corrections as modeled in [20].

[20–25]. The setup of this system is shown schematically in Figure 4.7(a). A boron
nitride layer is brought near the top layer of the trilayer graphene. In addition,
a gate potential U is applied along the graphene layers. As discussed in section
4.2.2, the low energy degrees of freedom of trilayer graphene are mainly governed
by electrons hopping in the top layer A and bottom layer B sublattices.

Focusing near one valley (valley K+ for example), the Hamiltonian of the system
is given by

HTLG/hBN =
∑
k

Ψ†
+(k)

(
0 v3

t21
(−kx − iky)

3

v3

t21
(−kx + iky)

3 0

)
Ψ+(k)

+
∑
k

Ψ†
+(k)UσzΨ+(k) +

∑
Gi

∑
k

ψ†
A1,+

(k+Gi)(V0(Gi) + Vz(Gi))ψA1,+(k)

(4.48)

where Ψ+ = (ψA1,+, ψB3,+)
T describes the low energy degrees of freedom. U is a

gate potential applied across the trilayer graphene. The third term describes the
moiré potential VhBN(r) generated in the graphene layer that is in proximity of
boron nitride which we take to be the top layer. Since we are keeping only the A1

sublattice in the top layer, only the diagonal components of the moiré potential
(4.45) are taken into account.

In the band structure plotted in Figures 4.8(b,c), we notice the appearance of a
narrow valence flat band around charge neutrality. It is topologically non-trivial
with a Chern number C = 3 for a range of applied gate potentials. Upon switching
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(a) (b) (c)

Figure 4.9: Band structure of twisted double bilayer graphene at a number of twists
angles θ and gate potentials U . The first conduction band above charge neutrality is
shown in red.

the sign of the potential, the band becomes topologically trivial with C = 0. We
investigate the interaction physics in this band in Paper I [48] and Paper IV [51] ,
where we demonstrate the emergence of weakly interacting phases from a purely
interacting problem.

4.4.4 Twisted Double Bilayer Graphene

A graphene-based moiré system that attracted recent interest due to the experi-
mental realization of correlated phases is twisted double bilayer graphene [21, 27–
35], made out of two bilayers of graphene with a relative twist as schematically
shown in Figure 4.7(b). This configuration does not have C2 symmetry by de-
fault. Also, unlike twisted bilayer graphene, the band gap and bandwidth can be
controlled with an external electric field. In twisted bilayer graphene, an exter-
nal electric field would result in breaking the mirror symmetry My. This would
change the energy levels around the moiré Dirac points but cannot gap out the
crossings [8, 114].

Moroever, the topology of the bands of twisted double bilayer graphene around
charge neutrality can be controlled by tuning the twist angle and the strength of
the applied electric field resulting in a rich phase diagram [31,49].

We assume that the interlayer tunneling resulting from the relative twist is re-
stricted to occur between the two middle layers, the bottom layer of the top bilayer
and the top layer of the bottom bilayer. We can then use the continuum model we
derived for twisted bilayer graphene in section 4.3.1 to also model the interlayer
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tunneling between the two twisted bilayers. Around valley K+, this gives us

H+
TDBG =

∑
k

(Ψ†
t,+(k)H+

θ/2(k)Ψt,+(k) + Ψ†
b,+(k)H+

−θ/2(k)Ψb,+(k))

+
∑

k,i=1,2,3

Ψ†
b,+(k+ qi)T̃ (qi)Ψt,+(k) + h.c (4.49)

where Ψ†
l,+(k) = (ψ†A1

l,+ (k), ψ†B1

l,+ (k), ψ†A2

l,+ (k), ψ†B2

l,+ (k))T , ψ†α
l,+(k) is an operator that

creates an electron with momentum k around valley K+ in layer l = t, b and sub-
lattice α = A1, B1, A2, B2. H+

θ (k) = H+(Rθk) where H+ is the bilayer graphene
Hamiltonian (4.7) around valley K+. The moiré tunnelling matrices T̃ (qi) are given
by the following outer product between the layer and sublattice degrees of freedom
so that it acts only between sublattices A2, B2 in the top layer and sublattices A1

and B1 in the bottom layer,

T̃ (qi) =

(
0 1
0 0

)
layer

⊗ T (qi), (4.50)

where T (qi) is given in (4.23). In addition, we add a gate potential U across the
two bilayers.

In Figure 4.9, we show band structure at selected parameters corresponding to
3 different Chern numbers. We notice that the conduction band is relatively flat
and also the topology of the band manifested in its Chern number can be tuned by
changing the twist angle θ and the gate potential U to take values C = 0, 1, 2. We
find (Paper II [49]) an abundance of gate-tunable fractional Chern insulator states
in these flat bands.

4.5 Transition Metal Dichalcogenides

So far, we have been focusing on models where graphene is the basic building
block. Transition metal dichalcogenides (TMDs) are another class of two dimen-
sional materials that have long history in the last century dating before the discov-
ery of graphene. TMDs as the name suggests are made of transition metal atoms.
These are elements in groups (IV, V, VI, VII, IX or X) in the periodic table. That
is in addition to chalcogens (S, Se or Te) atoms.

Technically, TMDs exist as bulk materials but very thin monolayers can be
extracted the same way graphene is extracted from graphite. TMDs were known
first as a platform for harbouring charge density waves [115]. In addition, TMDs
are semiconductors which means they have significant band gaps. This is in a stark
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Figure 4.10: Schematic band structure for TMDs. Energy valleys exist around the corners
of the Brillouin zone The strong spin-orbit coupling of the valence band near the corners
of the Brillouin zone causes it to split in energy for up (red) and down (blue) spins.

contrast to pristine graphene that is semi-metallic. While graphene is promising
for many applications, the lack of band gaps hinders its usage for electronics. The
interest in TMDs has exploded after the first transistor was made from MoS2.
[116,117].

A generic feature of the band structure of common TMDs is the existence of
energy valleys around the corners of the Brillouin zone (K+ and K− points) in
addition to the Γ point. The exact energetics and which bands lie at which level is
material dependent. Unlike graphene which has weak spin-orbit coupling, TMDs on
the other hand show very strong spin-orbit coupling, specially for the valence bands
that has spin splitting of the order O(eV) from the strong spin-orbit coupling [118].

The origin of the spin-orbit coupling can be traced back to the lack of inversion
symmetry in these materials [119]. The conduction band also has significant spin
splitting but it is negligible compared to the valence band. Because of spinfull time-
reversal symmetry that swaps the spins and the K+ and K− points, the splitting
is opposite around each valley. This leads to an effective spin-valley locking where
the spin degree of freedom is tied to the valley. This is a peculiar feature of TMDs
that are absent in graphene and offers a way to control magnetism by controlling
the valley degree of freedom.

In Figure 4.10, we show a schematic of how the band structure of a given TMD
can look like. In the vicinity of the valleys, effective Hamiltonians can be derived
the same way it works for graphene layers. However this is a vast subject and we
will not discuss this here.
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Figure 4.11: (a) Band structure of WSe2/MoSe2 at twist angle θ = 2.0◦ around one valley.
The top band is topologically trivial and can be used to simulate a Hubbard model. (b)
Band structure of twisted MoTe2 at twist angle θ = 1.2◦ and no applied electric field
Vz = 0. The top-most pair of bands carry opposite Chern numbers C = ±1. There is
another pair related by time-reversal symmetry at the other valley.

4.6 TMD Moiré Systems

In heterostructures made of TMDs, moiré patterns can arise in two different
classes. TMD heterobilayers and TMD homobilayers. The heterobilayers are made
of two different TMDs. In such a case, the moiré pattern comes from lattice
constant mismatches similar to what discussed earlier for graphene aligned with
boron nitride in addition to possible relative twists. For homobilayers, the moiré
pattern only comes from twisting similar to twisted bilayer graphene. We will give
here one example of each based on the proposals [120, 121]. In both examples,
we consider only the valence band around the corners of the Brillouin zone where
spin-orbit coupling is the strongest.

4.6.1 Heterobilayers

We start from two TMDs that have very similar lattice constants. For example,
WSe2 and MoSe2. The valence band maxima of WSe2 around the K± points lie
inside the band gap of MoSe2 so the low energy physics comes mainly from the
valence band of WSe2. The moiré pattern can be then modelled as a superlattice
potential acting on the states of the valence band of WSe2. The moiré Hamiltonian
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around one valley is simply,

H+
WSe2/MoSe2

=
∑
k

Ψ†
+(k)

(k−Kθ
+)

2

2m∗ Ψ+(k) +
∑

k,i=1,2,...,6

Ψ†
+(k+Gi)V (Gi)Ψ+(k)

(4.51)
where Ψ†

+(k) is an operator that creates an electron in the rotated valley Kθ
+

with twist angle θ and spin ↑ because of the spin-valley locking. The valence
band maxima is modelled as quadratic dispersion with an effective mass m∗ =
0.35me. {V (Gi)} are the first six Fourier components of the moiré potential,
Gi = R(i−1)π/3G1 with G1 = (4π/

√
3aM , 0) and aM is the lattice constant of the

moiré superlattice. V (G1) = V eiψ with (V, ψ) = (6.6 meV,−94◦) from ab-initio
calculations. The C3 symmetry of the model imposes V (R2π/3Gi) = V (Gi) and
V (Gi) = V ∗(−Gi) which can be used to generate the other 5 components.

The band structure at twist angle θ = 2◦ is shown in Figure 4.11(a). The top
band is flat and topologically trivial C = 0. A priori, this does not look interest-
ing. However, it turns out that the real space structure of the Wannier orbitals
constructed from the this band reveals that it is localized at a single moiré site
in the unit cell that corresponds to the moiré potential maxima. (see Fig. 2(c)
in Ref. [120]). This means that the top band could realize the classic Hubbard
model. This is something that was not possible with graphene moiré systems
such as twisted bilayer graphene due to the topological character of the bands
that provides constraints against constructing localized lattice models [122–124].
Remarkably, the Hubbard model physics was indeed simulated in a TMD hetero-
bilayer [38].

4.6.2 Homobilayers

Next, we discuss a model of TMD homobilayers. This is the model we use in
Paper V [56] and was first presented in Ref. [121]. We consider twisted MoTe2
focusing on the valence band maxima near the K± points. Constructing a moiré
Hamiltonian in this case follows a similar procedure as outlined earlier for twisted
bilayer graphene. Because of the twist, we have a moiré Brillouin zone that has the
same structure as shown in Figure 4.4(d). For one valley (equivalently one spin),
we have

H+
T-MoTe2 =

∑
k

(Ψ†
t,+(k)h

+
θ/2(k)Ψt,+(k) + Ψ†

b,+(k)h
+
−θ/2(k)Ψb,+(k))

+
∑
k

Ψ†
+(k)VzσzΨ+(k) +

∑
k,l1,l2,i=1,2,...,6

Ψ†
l1,+

(k+Gi)Tl1l2(Gi)Ψl2,+(k) + h.c

(4.52)
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where Ψ†
l,+(k) is an operator that creates an electron with momentum k around

valley K+ in layer l = t, b. h+θ (k) is the monolayer MoTe2 low energy Hamiltonian
around valley K+ rotated with angle θ. It is modelled as a free quadratic dispersion
by h+θ (k) = −ℏ2(k − Kθ

+)
2/2m∗ with the effective mass m∗ = 0.51me. Vz is an

applied electric field between the top and bottom layers. The matrix Tl1l2(Gi)
describes the moiré potential with Gi = R(i−1)π/3G1 with G1 = (4π/

√
3aM , 0)

and aM is the lattice constant of the moiré superlattice. It’s given by

Tl1l2(G1) =

(
V eiψ w
w V e−iψ.

)
(4.53)

Also here the C3 symmetry constrains Tl1l2(R2π/3Gi) = Tl1l2(Gi) and Tl1l2(Gi) =
T ∗
l1l2

(−Gi). For twisted MoTe2, we have (V,w, ψ) = (8 meV,−8.5 meV,−89.6◦).
The diagonal terms of Tl1l2 represent moiré potential in the same layer (top or

bottom) while the off-diagonal terms represent interlayer hopping. In addition to
the usual C3 symmetry, the Hamiltonian (4.52) has a combined C2yT when Vz = 0.
This symmetry is a product of in-plane reflection C2y that swaps the two layers
and time-reversal symmetry T that swaps the valleys. It enforces a degeneracy at
the moiré Brillouin zone corners Kt

+ and Kb
+.

In Figure 4.11(b), we show the band structure for θ = 1.2◦ in the absence of
applied electric fields Vz = 0. We notice the emergence of a top-most pair of flat
bands that carry Chern numbers C = ±1, separated by a gap to the rest of the
spectrum.

The layer-projected wavefunctions of the topmost pair of bands are found [121]
to be nearly localized on two atomic sites, RMX for the top layer and RXM for the
bottom layer where Rαβ denotes atomic positions in the moiré unit cell where atom
α = M,X of the top layer is locally aligned with atom β = M,X in the bottom
layer with M and X denoting metal and chalcogen atoms respectively. M = Mo
and X = Te in our case. The atomic sites RMX and RXM form a honeycomb lattice
which. Each site in this honeycomb lattice is accompanied with spin-valley degrees
of freedom therefore the topmost pair of bands provides a realization of the Kane-
Mele physics [125] at the non-interacting level.

However, in Paper V [56], we generally show that the non-interacting picture,
manifested in possible Chern insulators at odd integer fillings of the flat bands, is
quite fragile to interactions which give rise instead to layer-polarized states with fer-
roelectric order in addition to spin-valley ferromagnetism from strong interactions.
The combined ferroelectricity and ferromagnetism is an example of multiferroic-
ity [57].
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Chapter 5

Discussion and Outlook

We have introduced in the previous chapters the theory of the quantum Hall
effect, both integer and fractional and their lattice realizations, the Chern insulator.
Then we moved on to discuss the tantalizing physics of moiré systems. A common
theme between what is discussed so far is the existence of flat bands. The flat bands
are the starting point for the microscopic analysis we carry out in the accompanying
papers, of which we give below a brief summary of the main results.

5.1 Summary of Accompanying Papers

Paper I

In Paper I [48], we study two moiré systems. The first is ABC stacked trilayer
graphene aligned with boron nitride discussed in section 4.4.3. As shown in Figure
4.8(b), the valence band is relatively flat and carries a Chern number C = 3. This
led us to the initial conjecture that an FCI state is possible. However, we could
not find signs of any FCI states upon fractionally filling this band.

Looking back at the problem of projected interactions in a single band, one
notices that it is not particle-hole symmetric. Upon a particle hole transformation,
there is an extra single-hole dispersion term that appears (see equations (3) and
(4) in Paper I [48]). In the usual Landau level problem, such a term is constant so
the problem within one Landau level is particle-hole symmetric and it suffices to
study only filling fractions ν ≤ 1/2 1.

On the other hand, the single-hole dispersion is usually non-constant in generic
lattice models. For example, we plot it for trilayer graphene aligned with boron

1While particle-hole symmetry is present in a single Landau level, it’s generally broken by Landau
level mixing which could be important, for instance, in determining the nature of the ν = 5/2
fractional quantum Hall state [126].
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nitride and twisted bilayer graphene in Fig. 1 in Paper I [48] and it is quite clear
that it is dispersive. At high fillings of electrons, corresponding to low fillings of
holes, the single-hole dispersion is expected to dominate over the hole-hole interac-
tions resulting in gapless Fermi liquid states [127]. This is due to the low density
of holes in this case so interactions between the holes are generally weak.

Quite remarkably, we found that such a behavior continues down to very low
fillings of electrons ν ∼ 1/3. When looking at the electron occupation in the
ground state (see Fig. 2(a) and Fig. 2(b) in Paper I [48]), obtained by exactly
diagonalizing the system, we find that it correlates with the single-hole dispersion
at all fillings. Electrons tend to occupy states with the highest hole energy. Down to
ν ∼ 1/3, there is a a well-defined Fermi surface, i.e. a clear jump in the occupation
that starts to disappear at lower fillings marking a transition to possibly non-Fermi
liquid behavior. We conclude that a key parameter has been identified, that is the
single-hole dispersion. The strongly interacting problem turns out to be weakly
interacting in terms of holes, up to very low electron filling fractions.

The second system investigated in the paper is twisted bilayer graphene aligned
with boron nitride discussed in section 4.4.2. We focused on the valence band
(similar results for the conduction band) with Chern number C = 1 as shown in
Figure 4.8(a). We sought if FCI states are possible upon fractional doping of this
band. To that end, we employed exact diagonalization and found evidence of a
Laughlin-like FCI state at ν = 1/3 as shown in Fig. 3 in Paper I [48]. The theory
behind the numerical evidence that includes ground state degeneracies, spectral
flow and particle entanglement spectrum are discussed in detail in section 3.2.

A possible reason why such a state is stabilized is the less fluctuating single-hole
dispersion (see Fig.1 in Paper I [48]). A highly dispersive single-hole dispersion is
very likely to destroy FCI phases. Looking also at the occupation at ν = 1/3 reveals
that it is more uniform as expected from a uniform density fractional quantum Hall
state. A finite-size calculation shows that the gap above the ground state is of order
10 K which suggests that this state could definitely survive higher temperatures
than usual quantum Hall systems. This provided a strong evidence that twisted
bilayer graphene is a promising candidate for realizing high temperature FCI states
down to zero magnetic field.

Our findings of FCIs in twisted bilayer graphene were subsequently corroborated
by two related studies. In Ref. [128], the role of spin was taken into account and
in Ref. [129], analytical arguments based on the chiral limit [130] have shown that
FCI states might be favoured. This is due to the fact that the wavefunctions of
twisted bilayer graphene in such limit can be obtained analytically and they turn
out to be reminiscent of Landau level wavefunctions on the torus [131].

Our theoretical prediction was confirmed later in a recent local compressibility
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experiment [55] where evidence of a series of FCI states were found, albeit at non-
zero magnetic field. The most prominent of these, the FCI states at fillings 3 +
1/3 and 3 + 2/3 (Fig. 1(b) in Ref. [55]) correspond to the case we studied in
Paper I [48]. They survive down to magnetic field B ∼ 5T. While this is still a
considerable magnetic field, this represents a major improvement compared to the
earlier realization of FCI states [54] that required a magnetic field B ∼ 30T to
create Landau levels in the graphene heterostructure. In our paper, we reported
the existence of the FCI state at a slightly different value of the AA interlayer
tunneling parameter w0 (see equation (4.23)) which physically puts the system in
a qualitatively similar regime as the actual experiment with a non-zero magnetic
field.

The reason behind the destabilization of the FCI state below B ∼ 5T is the
existence of a competing charge density wave (CDW) that survives down to zero
magnetic field. The competition between the FCI and CDW [132] is sensitive to
the band geometry of the flat bands (section 3.3) that depends on the ratio of AA
to AB interlayer tunnelling w0/w1 (equation (4.23)). FCIs are favoured towards
lower values of w0/w1 ≤ 0.6. It is believed that w0/w1 ∼ 0.7 − 0.8 in twisted
bilayer graphene which explains the existence of a CDW state and the need for a
it of magnetic field to stabilize the FCI state instead. In Paper IV [51], we provide
an alternative explanation of the competition from a momentum space occupation
point of view.

Paper II

In Paper II [49], we study twisted double bilayer graphene introduced in section
4.4.4. As discussed before, the bandwidth and topology of the conduction band
can be tuned by varying the twist angle and the applied gate potential. We focus
on two regions where the conduction band has Chern numbers C = 1 and C = 2
respectively. In the C = 1 region, we find signatures of a Laughlin FCI state at
ν = 1/3, its particle-hole conjugate ν = 2/3. In addition, we find that the spin-
singlet Halperin (332) state (section 3.1.6) is more favourable than the Jain state
(section 3.1.5) at ν = 2/5.

In the C = 2 region, we identify a novel spin-polarized FCI phase at ν = 1/3 that
has not been reported before in higher Chern number lattice models. The three-
fold ground state degeneracy and spectral flow suggest that the system carries a
quantized Hall response. Moreover, preliminary entanglement spectrum calcula-
tions rule out charge density wave states. However, the counting of the particle
entanglement spectrum (section 3.2.4) is different from the expected counting of a
Laughlin state which is the natural fractional quantum hall state at this filling.

By the virtue of the logic introduced in [99], a ν = 1/3 filling fraction in a C = 2
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band corresponds to negative flux attachment when the system is viewed through
composite fermion theory. A more recent explanation [133] suggests that this state
is adiabatically connected to a Halperin (112) state into two decoupled C = 1 basis.
Filling ν = 1/3 in this case corresponds to filling 2/3 of each C = 1 band, hence the
hypothesized Halperin (112) state. The particle entanglement spectrum counting
we did (similar counting for a similar state was done in [134]) is in agreement with
this hypothesis.

It’s quite surprising that such a unique state can be theoretically predicted in
an already-manufactured material such as twisted double bilayer graphene beyond
toy models. All these results establish twisted double bilayer graphene as an-
other promising candidate for the experimental realization of multi-component and
higher Chern number FCI states.

Paper III

In Paper III [50], we take a detour from moiré systems and study the possibility of
having generic lattice models with constant Berry curvature. This is motivated by
research on optimal lattice models for realizing fractional Chern insulators where
Berry curvature uniformity is usually considered as a good indicator. We construct
a general algorithm to flatten the Berry curvature for generic lattice models with
three or more bands. In addition, we prove that there is a lower bound to Berry
curvature fluctuations in two band models implying it is impossible to flatten the
Berry curvature in this case.

Having established the possibility of constant Berry curvature, we turn to study
the implications of this on the properties of FCIs. For this, we study bosonic FCIs
in the flat bands of two lattice models, the Kapit-Mueller (KM) model [135] and the
Hofstadter model [136], with on-site interactions. Similar to the fermionic case (sec-
tion 3.1.2), bosonic Laughlin states are exact zero modes for a Haldane pseudopo-
tential Hamiltonian with only non-zero V0 component or equivalently only on-site
interactions. This case can be realized exactly with interacting lattice Hamiltonians
of bosons.

We find that flattening the curvature does not always improve the properties of
FCIs, namely the energy gap and the degeneracy splitting of the many-body ground
states. The KM model realizes a discretized version of the lowest Landau level so
it has exact zero energy modes at half filling ν = 1/2 for on-site interactions. We
find that the ground state exact degeneracy is split and they are no-longer zero
modes when the curvature is made constant resulting in a less ideal model for FCI
in this sense. Finally, we prove that the GMP algebra discussed in section 3.3.1
cannot be realized in any strictly tight-binding model on a lattice.
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Paper IV

In Paper IV [51], we carefully investigate the particle-hole asymmetry of band-
projected interactions highlighted in Paper I [48]. We relate the interaction-induced
hole dispersion to the Fubini-Study metric (section 2.3) of the flat band. This is
always true in the limit of small momentum exchange but we argue that this limit is
natural in many moiré systems since the form factors decay quickly. The existence
of many bands in these models allows the Bloch eigenfunctions to spread out in
the complex projective space leading to a fast decay of the form factors.

Having related the interaction-induced hole dispersion to the Fubini-Study met-
ric, we study how the electron occupation in the many-body ground state correlates
with the Fubini-Study metric and we find that electrons tend to occupy states with
lower values of the Fubini-Study metric trace. This allows us to explain the ori-
gin of the observed (Paper I [48]) emergent Fermi liquids in ABC stacked trilayer
graphene aligned with boron nitride and to give an alternative explanation of the
FCI vs CDW competition in twisted bilayer graphene aligned with boron nitride.

Our findings provide new insights about the significance of the Fubini-Study
metric, a single-body quantity, when it comes to the many-body physics of a large
class of materials. The Fubini-Study metric has been less explored in condensed
matter systems compared to the Berry curvature. But as evident from our results,
it appears very naturally in band-projected interactions with fast-decaying form
factors.

Paper V

In Paper V [56], we study another class of moiré systems where the basic build-
ing block is TMDs (section 4.6) instead of graphene. We focus on twisted TMD
homobilayers (section 4.6.2) at odd integer fillings and study the competing phases
as a function of the interaction range and strength.

Our main finding is the abundance of multiferroicity [57] through the phase dia-
gram (Fig. 1 in Paper V [56]). The multiferroicity consists of co-existing magnetic
and electric orders. The magnetic order corresponds to spin-valley ferromagnetism
and the electric order corresponds to layer polarization where there is an unbal-
anced number of charge carriers in the two twisted layers.

Upon decreasing the interaction range, we observe a transition from the multi-
ferroic to a Chern insulator phase (section 2.4) obtained by filling one of the flat
Chern bands. We find that the structure of the phase diagram can be intuitively
understood from a simple real space picture consisting of a honeycomb lattice with
two sublattices representing the two layers.

Multiferroics hold a great promise for future technological applications due to
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the tantalizing idea of controlling magnetism with electric fields through a possi-
ble magneto-electric coupling in these materials which could give rise to far more
energy-efficient electronic devices that do not rely on running electric currents
to generate magnetic fields thereby avoiding heating problems. Multiferroics are
rare [137] therefore their possible existence in a moiré heterostructure could guide
the search towards experimental setups where this phenomenon is more prevalent.

5.2 Outlook

Having established the existence of wide range of distinct quantum phases in
moiré systems including fractional Chern insulators, Fermi liquids and multifer-
roics, a number of future directions are worth looking at.

In connection to the predicted and observed abelian FCIs in moiré systems, it is
of ultimate interest to research into the possibility of stabilizing non-abelian FCIs
in these systems. The existence of many tuning knobs in Van der Waals moiré
heterostructures offers a playground for designing different flat band systems with
controllable topology. We have seen already that the flat bands of these systems
are very promising for abelian FCIs such as the Laughlin state but so far, no
numerical evidence of non-abelian states could be found. It is therefore necessary
to understand the reason behind the absence of these states. A possible explanation
is most likely due to the nature of the projected Coulomb interactions onto these
flat bands which could be similar to projected Coulomb interaction onto the lowest
Landau level that admits a highly-peaked psuedopotential expansion as discussed
in section 3.1.2.

Non-abelian fractional quantum Hall states are observed in the first excited Lan-
dau level (n = 1 in equation (2.8)) which admits in contrast a less peaked psue-
dopotential expansion [138]. It is therefore interesting to understand this interplay
and how to realize this physics in moiré systems. Another route towards non-
abelian states could possibly be by utilizing the multi-component nature of the
moiré flat bands. Interaction could drive the existence of tunneling-driven non-
abelian phases [139,140] or even exotic non-abelian defects from the higher Chern
nature of the flat bands [141,142].

Moiré systems have been shown to be a platform for the intricate interplay be-
tween the quantum geometry of the flat bands and strongly correlated phases.
This is evident, for instance, in the context of FCIs and is also relevant to the
superconductivity observed in these systems [143]. A future interesting direction
is to investigate in more detail the effects of the quantum geometry distribution
in favoring or ruling out possible quantum phases of matter. We have seen al-
ready in Paper IV [51] an example of geometry-induced Fermi liquids in trilayer
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graphene aligned with boron nitride that are favoured over other phases in a purely
interacting problem.

It would be interesting to develop a general framework for addressing this inter-
play. For example, in the context discussed in Paper IV [51], the emergent weakly
interacting nature of the problem allows the possible use of standard techniques
from perturbation theory that could address possible charge or spin order instabil-
ities in addition to the expected non-Fermi liquid behaviour at the onset of these
instabilities.

Finally, apart from general aspects of correlation physics in TMDs moiré systems
that are worth investigating, we note that the predicted multiferroicity in twisted
TMDs (Paper V [56]) opens avenues for numerous future directions. A very natural
follow-up in this regard is to investigate possible ways of achieving the long-sought-
after electric field control of magnetism. This requires studying the magneto-
electric coupling in the multiferroic phase with the aim of identifying and proposing
exact mechanisms under which the two orders are intertwined, not only co-existing.
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