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Freshwater resources in the form of lakes and deltas provide diverse ecosystem services to human and
support biodiversity. However, our understanding of these resources is limited, particularly regarding the
changes in water availability in these systems and how they are impacted by climate change and human
water usage. The lack of information is mainly due to challenges in setting up and maintaining monitoring
systems in these areas. In this context, satellite-based Earth Observations offer a promising solution for
gathering data on water resources.
   By utilizing optical satellite images from 1987 to 2020, the thesis demonstrates a concerning decline in
surface water occurrence in about half of the Selenga River Delta. Furthermore, it shows the trends in
water levels in Swedish lakes by radar altimetry. Between 1995 and 2022, there has been a rise in water
levels in northern lakes, while southern lakes have experienced a decline. These findings align with an
earlier snowmelt in the northern regions and drier conditions in the south, confirming the global paradigm
that wet areas are becoming wetter while dry regions are becoming even drier. A distinctive spatial pattern
emerges when comparing water level changes in lakes impacted by human activities versus those left
untouched.
   Recognizing the limitation of altimetry's low temporal resolution for smaller lakes, my research urged the
development of a new method using Differential Interferometric Synthetic Aperture Radar (D-InSAR) for
water level estimation. The results show the potential of the D-InSAR to estimate the magnitude of the
small and the direction of the large water level changes.
   This research highlights the role of satellite data in understanding the state of our water resources, which
is important for sustainable water management in the face of ongoing challenges.
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Abstract
River deltas and lakes support biodiversity and offer crucial ecosystem services such as freshwater provision, flood control,
and fishing. However, climate change and human activities have affected deltas and lakes globally, altering the services
they provide. Since delta and lake surface water occurrence and water levels respond to climate change and anthropogenic
activities, we need to monitor their variations to understand the potential drivers for effective water management strategies.
However, important deltas like the Selenga River Delta (SRD) in Russia lack a detailed analysis of water occurrence.
Regarding lake water level, there has been a decline in the number of gauging stations globally, due to installation and
maintenance costs. For example, Sweden has ~100,000 lakes which are sources of freshwater and hydro-power, but only
38 lakes have long and continuous in-situ records of water level.

As satellite data are reliable alternatives for conventional methods to monitor deltas and lakes, I employed Earth
Observations (EO) to quantify changes in surface water occurrence in the SRD and water levels in Swedish lakes and
identify their main drivers. I also developed and explored a novel methodology for lake water level estimation based
on Differential Interferometric Synthetic Aperture Radar (D-InSAR) by calculating the six-day phase differences in 30
Swedish lakes.

To achieve these objectives, I trained and applied a Maximum Likelihood classification to Landsat images from 1987 to
2020 and quantified surface water occurrence and its changes in the SRD. I found that surface water occurrence in 51% of
the delta experienced a decrease. As the Selenga River is the only river flowing into the SRD, the change in surface water
occurrence in the SRD correlated with river discharge, but not with the river suspended sediment concentration, the lake
water level in the outlet of the SRD, or evapotranspiration over the delta.

In Sweden, I used satellite altimetry data from ERS-2, ENVISAT, JASON-1,2,3, SARAL, and Sentinel-3A/B to quantify
water levels in 144 lakes from 1995-2022. I found that 52% of the lakes showed increasing trends (mostly in the north)
and 43% decreasing trends (mostly in the south). Water level trends and variabilities did not correlate strongly with
hydroclimatic changes (precipitation and temperature) but differed in regulated lakes compared to unregulated ones, both
in the north and in the south of Sweden.

The results of the D-InSAR method for water level estimation in two Swedish lakes (Hjälmaren and Solnen) showed that
with water level changes smaller than a complete SAR phase, the phase changes correlate with in-situ water level changes
with a minimum Root Mean Square Error of 0.43 cm in some pixels. In all 30 lakes, I accumulated the phase changes of
each pixel throughout the whole number of interferograms to construct water levels. This method replicated the direction
of water level changes shown by high Pearson’s correlations in at least one pixel in each lake.

This thesis highlights the importance of EO for estimating surface water occurrence and lake water levels and brings
focus to the future of EO through advanced space missions such as Surface Water and Ocean Topography (SWOT) and
NASA-ISRO Synthetic Aperture Radar (NISAR). The findings underscore the need to continuously monitor lake water
level and occurrence to adapt to climate change and understand the effects of water-regulatory schemes.
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Abstract

River deltas and lakes support biodiversity and offer crucial ecosystem services such as freshwater
provision, flood control, and fishing. However, climate change and human activities have affected
deltas and lakes globally, altering the services they provide. Since delta and lake surface water
occurrence and water levels respond to climate change and anthropogenic activities, we need
to monitor their variations to understand the potential drivers for effective water management
strategies. However, important deltas like the Selenga River Delta (SRD) in Russia lack a detailed
analysis of water occurrence. Regarding lake water level, there has been a decline in the number
of gauging stations globally, due to installation and maintenance costs. For example, Sweden has
≈100,000 lakes which are sources of freshwater and hydro-power, but only 38 lakes have long
and continuous in-situ records of water level.

As satellite data are reliable alternatives for conventional methods to monitor deltas and lakes,
I employed Earth Observations (EO) to quantify changes in surface water occurrence in the SRD
and water levels in Swedish lakes and identify their main drivers. I also developed and explored a
novel methodology for lake water level estimation based on Differential Interferometric Synthetic
Aperture Radar (D-InSAR) by calculating the six-day phase differences in 30 Swedish lakes.

To achieve these objectives, I trained and applied a Maximum Likelihood classification to
Landsat images from 1987 to 2020 and quantified surface water occurrence and its changes in the
SRD. I found that surface water occurrence in 51% of the delta experienced a decrease. As the
Selenga River is the only river flowing into the SRD, the change in surface water occurrence in
the SRD correlated with river discharge, but not with the river suspended sediment concentration,
the lake water level in the outlet of the SRD, or evapotranspiration over the delta.

In Sweden, I used satellite altimetry data from ERS-2, ENVISAT, JASON-1,2,3, SARAL,
and Sentinel-3A/B to quantify water levels in 144 lakes from 1995-2022. I found that 52% of the
lakes showed increasing trends (mostly in the north) and 43% decreasing trends (mostly in the
south). Water level trends and variabilities did not correlate strongly with hydroclimatic changes
(precipitation and temperature) but differed in regulated lakes compared to unregulated ones, both
in the north and in the south of Sweden.

The results of the D-InSAR method for water level estimation in two Swedish lakes (Hjäl-
maren and Solnen) showed that with water level changes smaller than a complete SAR phase,
the phase changes correlate with in-situ water level changes with a minimum Root Mean Square
Error of 0.43 cm in some pixels. In all 30 lakes, I accumulated the phase changes of each pixel
throughout the whole number of interferograms to construct water levels. This method replicated
the direction of water level changes shown by high Pearson’s correlations in at least one pixel in
each lake.

This thesis highlights the importance of EO for estimating surface water occurrence and lake
water levels and brings focus to the future of EO through advanced space missions such as Surface
Water and Ocean Topography (SWOT) and NASA-ISRO Synthetic Aperture Radar (NISAR). The
findings underscore the need to continuously monitor lake water level and occurrence to adapt to
climate change and understand the effects of water-regulatory schemes.



Sammanfattning

Floddeltan och sjöar stöder den biologiska mångfalden och erbjuder viktiga ekosystemtjänster
som färskvattenförsörjning, översvämningsbekämpning och fiske. Klimatförändringar och män-
skliga aktiviteter har dock påverkat deltan och sjöar globalt och förändrat de tjänster de tillhan-
dahåller. Eftersom förekomsten av ytvatten i delta och sjöar och vattennivåerna svarar på kli-
matförändringar och antropogena aktiviteter måste vi övervaka deras variationer för att förstå de
potentiella drivkrafterna för effektiva vattenförvaltningsstrategier. Viktiga deltan som Selenga
River Delta (SRD) i Ryssland saknar dock en detaljerad analys av vattenförekomsten. När det
gäller sjöarnas vattennivå har antalet mätstationer minskat på grund av installations- och under-
hållskostnader. Till exempel har Sverige 100 000 sjöar som är källor till sötvatten och vattenkraft,
men endast 38 sjöar har långa och kontinuerliga in situ-register över vattennivån.

Eftersom satellitdata är tillförlitliga alternativ till konventionella metoder för att övervaka
deltan och sjöar, har jag använt satellitobservationer för att kvantifiera förändringar i ytvatten-
förekomst i SRD och vattennivåer i svenska sjöar och identifiera deras huvudsakliga drivkrafter.
Jag har vidare utvecklat och utforskat en ny metod för uppskattning av sjövattennivån baserad på
Differential Interferometric Synthetic Aperture Radar (D-InSAR) genom att beräkna sexdagars
fasskillnader i 30 svenska sjöar.

För att uppnå dessamål har jag övat på, samt tillämpat enMaximumLikelihood-klassificering
på Landsat-bilder från 1987 till 2020 och kvantifierade ytvattenförekomst och dess förändringar
i SRD. Jag har nått slutsatsen att ytvattenförekomsten i 51 % av deltat upplevt en minskning.
Eftersom Selengafloden är den enda flod som rinner ut i SRD, korrelerade förändringen i ytvatten-
förekomsten i SRD med flodutsläpp, men inte med flodens suspenderade sedimentkoncentration,
sjövattennivån i SRD:s utlopp eller evapotranspiration över deltat.

I Sverige använde jag satellithöjdmätningsdata från ERS-2, ENVISAT, JASON-1,2,3, SARAL
och Sentinel-3A/B för att kvantifiera vattennivån i 144 sjöar från 1995-2022. Jag fann att 52 %
av sjöarna visade ökande trender (mestadels i norr) och 43 % minskande trender (mestadels i
söder). Vattenståndstrender och variationer korrelerade inte starkt med hydroklimatiska förän-
dringar (nederbörd och temperatur) men skilde sig åt i reglerade sjöar jämfört med oreglerade
sjöar både i norra och södra Sverige.

Resultaten av D-InSAR-metoden för uppskattning av sjövattennivån visade att i två svenska
sjöar (Hjälmaren och Solnen) med vattennivåförändringar mindre än en fullständig SAR-fas, ko-
rrelerar fasförändringarna med in situ-vattennivåförändringar med ett minsta rotmedelkvadratfel
på 0,43 cm i vissa pixlar. I 30 andra sjöar ackumulerade jag fasförändringarna för varje pixel
genom hela antalet interferogram för att konstruera vattennivåer. Denna metod replikerade rik-
tningen för vattennivåförändringar som visas av höga Pearsons korrelationer i minst en pixel i
varje sjö.

Denna avhandling belyser vikten av satellitdata för att uppskatta ytvattenförekomst och sjö-
vattennivå och sätter fokus på framtiden för jordobservationer genom avancerade rymduppdrag
som ytvatten och havstopografi (SWOT) och NASA-ISRO Synthetic Aperture Radar (NISAR).
Resultaten understryker behovet av att kontinuerligt övervaka sjövattennivåer och förekomst för
att anpassa sig till klimatförändringar och förstå effekterna av vattenreglerande system.
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1 Introduction

Surface freshwater is the lifeblood of Earth and a crucial component of human existence
(Papa et al., 2023). Surface water bodies are the primary source of freshwater for urban
and agricultural use and ensure food production. They also serve as habitats for aquatic
and terrestrial species and provide numerous ecosystem services to humans, such as fish-
ing and recreational opportunities (Palmer et al., 2015).

Despite significant advancements in hydrologic sciences regarding surfacewater bod-
ies (e.g., the development of new hydrologic models, remote sensing applications, and
implementation of machine learning and cloud computation in hydrology), our under-
standing of their past, current, and future changes and their dynamic behavior remains
limited globally (Alsdorf et al., 2007; Cooley et al., 2021). We still have substantial chal-
lenges regarding the accuracy and the limited spatiotemporal resolutions associated with
estimating surface water bodies’ extent and water levels and their changes and variabil-
ity (Alsdorf et al., 2007; Calmant et al., 2008; VanDeWeghe et al., 2022). If accurately
estimated, these variables and their changes deliver vital information on the current and
future state of the freshwater system and, ultimately, facilitate effective water manage-
ment strategies (Lee et al., 2022; Palmer et al., 2015; Xiang et al., 2021). Moreover, they
signal the impacts of climate change (e.g., drought and floods) and the responses and
resilience of these water resources and ecosystems (Schwatke et al., 2020).

However, in-situ freshwater measurements have a low spatial resolution hindering our
understanding of changes in water bodies (Xiang et al., 2021). Additionally, the number
of existing stations used for measurement is declining due to the challenges of installing
and maintaining measuring equipment, particularly in remote and mountainous regions
(Alsdorf et al., 2007; Cooley et al., 2021; Xiang et al., 2021). Therefore, to understand
freshwater systems and their spatial and temporal changes, it is necessary to obtain high-
resolution observations at a low cost and with rapid and accurate processing techniques.
Satellite sensors can provide high-density observations over water bodies (Zhang et al.,
2020).

The aim of this thesis is to use Earth Observations (EO) to understand changes in wa-
ter availability in northern inland waters. To achieve this aim, I defined three objectives.
The primary and secondary objectives are to quantitatively assess surface water extent
and lake water levels, and their spatiotemporal variations at northern latitudes with re-
motely sensed observations, and perform a detailed analysis of the potential underlying
factors influencing these changes, respectively. The third objective is to develop and ex-
plore the potential of new methodologies for measuring lake water levels. The thesis
specifically focuses on the SRD and Swedish lakes located at high northern latitudes (>
50◦) with important and diverse ecosystem services (Figure 1).
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Figure 1. The location map of the two study areas covered in this thesis, (a) the Selenga River Delta (SRD),
in Paper I, I studied the water occurrence and its change and the possible drivers of the change in the SRD
(b) 144 Swedish lakes, in Paper II, I studied the changes in the water level of these lakes, and in Paper III
and IV, I developed D-InSAR methodology to estimate the water level. Panel a is modified from Paper I
(Aminjafari et al., 2021) with a satellite image from Earthstar Geographics, and panel b is from Paper II.

1.1 A review of remote sensing for measuring inland surface
water extent and water levels

1.1.1 Remote sensing of surface water extent

Utilizing satellite optical imagery to track surface water extent is a viable approach due
to its low cost and rapid implementation, which has its roots in the CORONA mission
employed in the 1960s. First used for military purposes, then mission data became pub-
licly available in 1995 (Altmaier and Kany, 2002; Gardelle et al., 2010). Since then, the
technique has undergone continuous development through the launch of more advanced
satellites such as Landsat missions and Sentinel-2 (Chen and Zhao, 2022; Yao et al.,
2019). Due to the limitations of optical imagery in detecting surface water below vege-
tation and clouds, and during nighttime, Synthetic Aperture Radar (SAR) has emerged
as an additional source of data for monitoring surface water extent since 1992. The first
SAR sensor was the Japanese Earth Resources Satellite-1 (JERS-1), and the SAR tech-
nology has improved with the advent of newer SAR satellite sensors, such as Sentinel-1
since 2014 (Chen and Zhao, 2022; Papa et al., 2023), and the NASA-ISRO Synthetic
Aperture Radar (NISAR) mission in near future, a joint project between the American
National Aeronautics and Space Administration (NASA) and the Indian Space Research
Organisation (ISRO; Rosen and Kumar, 2021).

The new processing and classification methods such as machine learning have led to
more accurate, rapid, and spatially comprehensive extraction of water extent (e.g., An
and Rui, 2022; Isikdogan et al., 2017; Lu et al., 2021), and cloud computation platforms
such as Google Earth Engine allow fast and automatic processing of large EO data over

2



large areas without the need for high-performance local computers (Aziz et al., 2020;
Markos et al., 2023; Yue et al., 2023).

The studies using EO for water extent mapping are divided into a combination of
two main categories; 1) global or local studies and 2) long-term time series or short-
term/single-time analysis.

Global-scale datasets of water extent derived from satellite images such as Landsat
and Sentinel-2 quantify the changes in surface water extent (Allen and Pavelsky, 2018;
Donchyts et al., 2016; Pekel et al., 2016). Nevertheless, due to the global-scale coverage
and the computational complexity associated with large data, these studies used simple
techniques such as unsupervised classifications without training data, which may result
in reduced accuracy at a local scale (Foroughnia et al., 2022). Therefore, there is a need
for accurate surface water mapping based on supervised classification for deltas lacking
these datasets such as the SRD.

Short-term or single-time analysis of surface water extents has been done on local
scales (e.g., Chini et al., 2017; Lane et al., 2015; Li et al., 2022a). The aims of these
studies are to evaluate and improve classificationmethods (Li et al., 2023; Li et al., 2022b;
Zhao et al., 2023) or construct a high-resolution inventory of wetlands and deltas (Mullen
et al., 2023; Wieland et al., 2023). For example, Lane et al. (2015) used high-resolution
Worldview-2 satellite images to map the SRD. However, the single-time studies have
generally provided a single snapshot of surface water extent taken on a specific day and do
not present the evolution over time. Moreover, the main focus of these studies are remote
sensingmethod development and not hydrologic analysis. Therefore, current studies have
not fully addressed important hydrologic questions regarding surface water extent and its
changes and drivers, limiting our understanding of hydrologic processes. This is due to
their processing methods and simplified global-scale analysis or ignoring the long-term
changes.

Regarding surface water extent and variations, the Selenga River Delta (SRD) is se-
lected as a case study due to its crucial function in the hydrology of Lake Baikal and
its importance within the hydrologic context of Russia. For instance, the SRD reduces
77-99% of various metals’ concentration (mining pollutants) in the Selenga River before
flowing into Lake Baikal (Chalov et al., 2017). The hydrological connectivity between
channels andwater bodies or inundated islands in a delta system plays an important role in
the water- and sediment transport in that delta (Hiatt et al., 2018). The nutrient transport
and sediment deposition, as a result of the stream network and the connection between
floodplains in a delta, is a key factor in deltaic landscape evolution, and its biodiversity
of flora and fauna (Hiatt and Passalacqua, 2015). There are many factors influencing
the connectivity and the formation of delta systems such as the river discharge into the
delta, tides (in the case of coastal deltas), wind, delta size, and plant patchiness (Hiatt and
Passalacqua, 2015; Piliouras and Kim, 2019). For example, the seasonally inundated is-
lands in the SRD influence the metal flow into Lake Baikal (Shinkareva et al., 2019).
Therefore, studying hydrologic connectivity in a delta is important for understanding the
processes that control the functions of the delta, for example in reducing pollutants and
conserving biodiversity. Studying water occurrence with EO is a fast and efficient way to
understand the channel streams, inundated islands, and hydrologic connectivity in a delta
system. The occurrence of severe droughts and a reduction in river discharge in the Se-
lenga River basin during the past two decades (Shinkareva et al., 2019) have affected the
hydrologic functioning of the SRD and the sedimentation patterns (Pietroń et al., 2017)
that may be potentially observed through changes in its surface water extent. I employed
an accurate supervised classification of Landsat-4,5,7,8 images within the period 1987-
2020 to quantify surface water extent, its temporal variations, and the potential drivers
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of change.

1.1.2 Remote sensing of water levels

Satellite altimeters were initially designed to estimatemarine geoid andmeasure sea level.
Later, technological advances enabled the measurement of water levels in lakes and rivers
using these satellites (Abdalla et al., 2021; Nielsen et al., 2022). The monitoring of
inland water levels from space started in the 1970s with the NASA altimeter satellites
SKYLAB, GEOS-3, and Seasat, primarily focused on large water bodies such as the
Florida Everglades wetland and The Great Lakes in the United States (Berry et al., 2005;
Brown, 1977; Miller, 1979; Rapley et al., 1987). Satellite radar altimeters transmit and
receive electromagnetic microwave signals toward the water surface, and by measuring
its two-way travel time, they estimate the distance between the satellite and the water
surface. This distance measurement is important for determining water levels and water
level changes through repeat measurements.

The technology of altimetry and the related processing methods have evolved signifi-
cantly over time, leading to higher spatial resolution (300 m footprint) with SAR sensors
(e.g., Sentinel-3; Villadsen et al., 2016) and high-frequency signals with less ionospheric
errors (e.g., SARAL; Bonnefond et al., 2018; Verron et al., 2021). Moreover, new satel-
lites such as Sentinel-3 are equipped with auxiliary elevation data leading to higher ac-
curacy of water body detection (especially for small lakes) and ultimately higher quality
water levels (Biancamaria et al., 2018). These advancements have led to the development
of the newly launched SurfaceWater and Ocean Topography (SWOT) mission, which has
recently started to monitor the water levels of more than 95% of all continental waters
with a high degree of precision (Nair et al., 2022).

Altimetry satellites, during several orbits around the Earth, monitor the lakes falling
perpendicularly below their sensor’s LineOf Sight (LOS; Frappart et al., 2021). However,
there are long gaps between altimetry orbits (i.e., ground track gaps > 35 km in Sweden)
that leave many lakes undetected. Moreover, in small lakes with only one ground track,
the temporal resolution of observations is equal to the revisit time of the altimeter satellite
( 10-35 days; Nielsen et al., 2022). To improve the temporal resolution of altimetry
water levels, previous studies have implemented altimetry data from multiple satellites
to get more altimetry ground tracks over a lake (Boergens et al., 2017; Pham-Duc et al.,
2022; Tourian et al., 2016). Although satellite altimetry for water level estimation has
the potential to partially contribute to comprehensive lake water level monitoring, with a
total of 13 satellite missions since 1985 (Abdalla et al., 2021; Shu et al., 2021), there are
still insufficient water level change studies in Sweden; a country with a large number of
lakes.

Regarding water levels, I concentrated on lakes located in Sweden due to their crit-
ical function in supplying freshwater for urban, agricultural, and industrial purposes, in
addition to serving as terrestrial and aquatic habitats for diverse flora and fauna. Sweden
has 100,000 lakes covering nine percent of its surface area (Larson, 2012). Yet, today,
there is no study that comprehensively assesses the water level changes of these lakes and
there is a lack of information regarding the seasonal and long-term variations in water
levels and their drivers. Addressing these questions can help to fill the knowledge gap
regarding the effects of climate change and human influence on Swedish water resources.
Furthermore, there is a lack of data on in-situ water levels as only 38 of the Swedish lakes
(< 0.04%) have long and continuous gauged water level measurements. On the contrary,
with satellite altimetry (old and new sensors), we can monitor the water level of a larger
number of these lakes.

To tackle the challenges posed by low-resolution lake water level data in the spatial
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domain and the concomitant lack of information on water level changes and potential
drivers, I used satellite altimetry data to increase the number of Swedish lakes with water
level observations from 38 to 144 (<0.15%), allowing for improved analysis of trends and
variability in water levels, as well as an assessment of potential climatic or anthropogenic
factors that could be attributed to these changes. The findings from this analysis can offer
critical insights into the status of Swedish water resources of use to the Swedish Mete-
orological and Hydrological Institute (SMHI), among other stakeholders, to safeguard
the Swedish lake system against potential changes and establish appropriate policies and
actions in response.

Although satellite altimetry has the potential to answer hydrologic questions regard-
ing lake water level variations, its intrinsic limitations lead to a low temporal resolution,
particularly over small lakes with only one ground track.

Alternatively, Differential Interferometry of SAR images, known as D-InSAR, is a
viable tool for measuring water level changes across water bodies (Jones et al., 2021; Liu
et al., 2020; Oliver et al., 2022; Palomino et al., 2022). D-InSAR calculates the phase
difference between two SAR images (i.e., by generating an interferogram) to estimate
water level changes after removing the effects of topography, and radar imaging geometry
among other error sources. This approach can provide a high density of data points and
an in-depth assessment of water level variations across broad areas. However, the D-
InSAR methodology, so far, has mainly been applied to water bodies covered with dense
emergent vegetation. For example, Alsdorf et al. (2000), which is the first study on the
use of water level detection in wetlands with D-InSAR (mission SIR-C; Shuttle Imaging
Radar with payload C), detected continuous phase changes of the long-wavelength L-
band signal (24 cm) over flooded forests and floodplain lakes coveredwith vegetation near
the Amazon River. Due to the long wavelength, they could detect water level changes of
11 cm during the 24 hours between the two acquisitions (Alsdorf et al., 2000). Wdowinski
et al. (2004, 2008) applied the D-InSAR method to the wetlands of Florida Everglades
to estimate water level changes, and Kim et al. (2009) and Jones et al. (2021) used D-
InSAR in Louisiana wetlands. Although short-wavelength radar cannot penetrate dense
vegetation such as mangroves, it can be used in wetlands with marsh and short shrubs.
For example, Chen et al. (2020) employed short wavelength SAR images (C-band; λ =
5.6 cm) from Radarsat-2 and Sentinel-1 in the marsh-dominated wetlands of Lake Erie in
Ontario, Hong et al. (2010) used Radarsat-1 C-band SAR data over Florida Everglades
wetlands, and Oliver and Wdowinski (2016) used long-wavelength (L-band; λ = 24 cm)
ALOS together with C-band Radarsat-1 over the Louisiana Coastal Wetlands. Wetland
InSAR uses interferograms over the water surface with emergent vegetation and obtains a
continuous phase changewith high coherence over those surfaces. Coherence is a unitless
measure of interferogram quality, ranges between zero (only noise) and one (only signal),
and is helpful in detecting pixels with strong backscattering (Aminjafari, 2017). As the
interferogram phase is wrapped between±π, all the wetlandD-InSAR studies unwrapped
the interferograms by counting the phase change between adjacent pixels to obtain the
relative water level change w.r.t a reference pixel (Oliver et al., 2022; Yuan et al., 2017).
Due to phase unwrapping, the water level change derived from D-InSAR in wetlands is
relative in space unless there is a ground point measurement of the water level.

As there is no continuous vegetation cover around a lake, D-InSAR is not commonly
applied to open bodies of water due to the discontinuity of sporadic pixels which does not
allow the process of phase unwrapping. There is only one study focusing on lakes without
emergent vegetation over the surface of the water (Palomino et al., 2022). Palomino et
al. (2022) used D-InSAR with Sentinel-1 images over the mountainous lakes of Ecuador
to investigate water level changes. Nevertheless, they did not have in-situ water levels for
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validation and were only able to compare their results with precipitation patterns. There-
fore, there is a need to evaluate the performance of D-InSAR in detecting small water
level changes (less than the distance equivalent to a full cycle of SAR signal) without
unwrapping the phase.

1.2 Thesis Objectives

Regarding the challenges to understanding the temporal variation in surface water extent
and levels, this thesis addresses three over-arching objectives (Figure 2 and Table 1).
The first two objectives relate to a hydrologic analysis of water extent and water levels
by applying satellite optical imagery and radar altimetry, and the third objective seeks
to tackle remote sensing methodological challenges of D-InSAR application for water
level estimation. Figure 2 illustrates the structure of this thesis based on the objectives’
categories (hydrologic analysis or method development) and the type of satellite sensors
(radar or optical) employed in the methodology of each paper. The study area of the first
paper is the Selenga River Delta, situated in East Siberia, and the three subsequent papers
focus on Swedish lakes (Figures 1 & 2).

1.2.1 Objective A

The first objective of this thesis is to quantify changes in surface water extent in the
Selenga River Delta and water levels in Swedish lakes in the last three decades. Surface
water extent and water levels inform the changes in the volume of water within the water
systems. Furthermore, surface water extent provides crucial data on the changes in the
structure and configuration of the Selenga River Delta and variations in sedimentation
patterns that have not been thoroughly and accurately studied before with local or global
datasets.

In the case of the Swedish lake system, this thesis, for the first time, focuses on a
large dataset of lake water levels (144 lakes) derived from satellite altimetry and in-situ
measurements to see the long-term and seasonal water level variations.

1.2.2 Objective B

The second objective of this thesis is to understand the principal factors responsible for the
changes observed when addressing objective A. Understanding the relationship between
hydroclimatic variables and water extent and water level changes can partly contribute to
this objective. First, I aim to compare changes in surface water extent in the SRD with
those in river discharge, sediment discharge, evapotranspiration from the delta, and Lake
Baikal water levels. Second, finding differences in water availability between regulated
and unregulated lakes could lead to additional insights into objective B by confirming
the large-scale hydrologic effects of regulation. In the case of the Swedish lakes, I com-
pared water level trends and variabilities with trends and variabilities in precipitation and
temperature and the lakes’ regulatory regimes.

1.2.3 Objective C

The third objective entails the development of novel remote sensingmethodologies for es-
timating lakewater levels and their changes. It aims at obtaining high-temporal-resolution
observations for lakes of various sizes using D-InSAR. Such a goal can support achieving
objectives A and B. I specifically used Sentinel-1A&B SAR images. To meet objective
C, I first employed a D-InSAR methodology to test if the phase differences between SAR
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images can estimate small changes in the water levels of some lakes. Then, I assessed
whether the accumulated phase changes over a large set of lakes could estimate the di-
rection or even the magnitude of water levels, despite the limitations of D-InSAR.

Figure 2. The thesis is structured based on three objectives in four papers. The objectives relating to hydro-
logic analysis are denoted in blue, and the objective relating to method development is denoted in orange.
The color yellow indicates the utilization of optical sensors in the methodology, while the color green indi-
cates the use of radar remote sensing.

Table 1. The three objectives of the thesis (A-C). The blue cells represent papers with hydro-logic analysis
objectives, and the orange cell represents papers with the method development objective.

Objective Type Paper I Paper II Paper III Paper IV

A To quantify surface water extent, water
levels, and their changes

Hydrologic
analysis X X

B To analyze the drivers of changes in
surface water extent and water levels

Hydrologic
analysis X X

C To improve methods of water level
change measurements

Method
development X X
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2 Methods

2.1 Surface water extent

In Paper I, I used Landsat 4-5/TM, 7/ETM+, and 8/OLI imagery from 1987 to 2020 to
map the surface water extent in the SRD. The Normalized Difference Vegetation Index
and Normalized Difference Water Index were used to calculate image spectral indices
(McFeeters, 1996), and the Maximum Likelihood supervised classifier (Guo et al., 2017)
to distinguish water and non-water pixels. Training data was selected by visual inspection
of Google Earth’s historical view, obtaining an overall classification accuracy higher than
98%. The binary classification for 87 cloud-free and ice-free images during 33 years
resulted in binary images containing two classes of pixels: water (equals 1) and non-
water (equals 0).

Surface water occurrence is defined as the presence of water at a specific location on
the surface and particular time, and is calculated as the average of the binary values of
all images for every pixel, leading to a final value between zero and 100. This value for
each pixel represents the probability that water is detected on that pixel for 33 years. The
meanmagnitude of change in water occurrence at each pixel between two 16-year periods
(1987–2002 and 2003–2020) is also calculated by subtracting the water occurrence in the
first period from that in the second. The change in water occurrence ranges from -1 (no
water in any binary image in the second period and water in all binary images in the first
period) to +1 (water in all binary images in the second period and no water in any binary
image in the first period). Hence, negative and positive values correspond to decreasing
and increasing water occurrence.

For validation, one binary image in this study, from June 2011, was compared to the
binary image in a study by Berhane et al. (2018) derived from the supervised classifica-
tion of a 2 m-resolution Worldview-2 satellite image. Furthermore, the change in surface
water extent in the SRD is compared to global-scale datasets from studies by Donchyts
et al. (2016) and Pekel et al. (2016).

Finally, the Selenga River surface runoff (RO), the water level in Lake Baikal, the
suspended sediment concentration of the Selenga River (SSC), and potential evapotran-
spiration over the delta were compared to changes in surface water extent. The Russian
Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet)
provided river discharge data and SSC. The potential evapotranspiration data for the re-
gion of the SRD was derived from the 0.5◦ by 0.5◦ gridded data sets of the Climatic Re-
search Unit (Harris et al., 2020). For Lake Baikal’s water level, I used two gauge stations
of the International Data Centre on Hydrology of Lakes and Reservoirs (HYDROLARE;
available at: http://hydrolare.net/catalogue.php) and processed satellite-altimetry water-
level data from the HYDROWEB service (available at: https://hydroweb.theia-land.fr;
Crétaux et al., 2011).
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2.2 Satellite altimetry for lake water level estimations

In Paper II, I used satellite radar altimetry to estimate water levels in Swedish lakes. Radar
altimeters measure the distance between the satellite and the water surface (i.e.,Rg based
on the two-way travel time of an emitted microwave signal between the satellite and the
Earth’s surface. The geodetic height of a lake water surface (hA) is the difference between
the height of the satellite (Hs) and the measured Rg after applying atmospheric and
geophysical corrections. The atmospheric corrections are attributed to different speeds
of electromagnetic waves through the ionosphere (Cion) and the dry and wet components
of the troposphere (Cdry, and Cwet). The geophysical corrections are the Earth’s crustal
movements caused by the solid-Earth and pole tides (CsolidEarth andCpole) and the geoid
height (Gh) given by the Earth Gravitational Model 2008 (Frappart et al., 2021):

hA = Hs −Rg + Cion + Cdry + Cwet + CsolidEarth + Cpole −Gh (2.1)
As the Radar signal from inland water bodies is mixed with the signal from the sur-

rounding land, the data from the Offset Center of Gravity retracking algorithm is used
to filter land-contaminated signals (Frappart et al., 2006). On each epoch of altimetry
measurements, the satellite sends a bundle of radar beams to illuminate a footprint be-
low the satellite, and all the reflected beams from the water surface are received by the
satellite. Therefore, there are several observations on each epoch of altimetry measure-
ments. From all of the observations on each epoch, those not falling within the range
of ±2σ are detected as outliers and removed from the observations. The median of the
remaining measurements was used as the water level value on each epoch. To assess
the accuracy of altimetry-derived water levels, I compared the altimetry estimations with
in-situ measurements in two lakes (Lake Hjälmaren and Lake Vättern). Paper II used
data from the following satellite altimetry missions: European Remote-Sensing Satellite
(ERS-2), Environmental Satellite (ENVISAT), Joint Altimetry Satellite Oceanography
Network (JASON-1,2,3), Satellite with ARgos and ALtika (SARAL), Sentinel-3A, and
Sentinel-3B.

To synthesize water level variations and understand the hydrologic regime in each
lake, I estimated the mean annual Dynamic Storage (DS; the average of yearly maximum
minus yearly minimum) and the DS annual trend with the Theil-Sen trend estimator. I
calculated the long-term yearly, spring, summer, and autumn water level trends for each
lake and period by the Theil-Sen trend estimator. The Theil-Sen trend of a time series
is the median of all slopes between every possible pairwise combination of data points
(Kraemer et al., 2020).

2.3 D-InSAR for water level change estimation in lakes

Similar to Radar altimetry, SAR images have a phase component related to the distance
between the satellite and the surface of the Earth. However, contrary to Radar altimetry,
SAR has a side-looking geometry. The pixel-based difference between two SAR im-
ages taken at two different times (∆φ) carries information on the change in the surface
displacement between the acquisition times (∆φdisp), Earth’s topography (∆φtopo), the
geometry of the radar imaging (∆φgeo), and the atmospheric delay and the transmitter’s
noise (∆φother) (Ferretti et al., 2007):

∆φ = ∆φdisp + ∆φtopo + ∆φgeo + ∆φother (2.2)
D-InSAR is the process of calculating the phase difference between two SAR images

(∆φ) and removing all the components except for ∆φdisp. Therefore, ∆φdisp if obtained
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over water bodies, is equivalent to changes in the water level. A Digital Elevation Model
(DEM) and orbital information of the satellite during acquisition time are used to remove
the components of ∆φtopo and∆φgeo, respectively (Darvishi et al., 2021). The compo-
nent of noise and atmosphere (∆φother) can be reduced by applying filtering methods
(e.g., Goldstein filter; Sun et al., 2013) and atmospheric models (Xiao et al., 2022; Yun-
jun et al., 2019).

For open water bodies such as lakes, the SAR signal can have three different interac-
tions with the water surface (Figure 3):

1. When there is no vegetation on the water’s surface or near the shore, the signal is
mirrored in the opposite direction of the satellite’s LOS and is not received by the
satellite.

2. In the case of emergent vegetation covering the water surface (e.g., mangrove or
marsh-type wetlands), the SAR signal bounces first on the water and then on the
vegetation stems, and finally, is received by satellite. This so-called double-bounce
backscattering generates high-intensity pixels in SAR images.

3. When there is stable vegetation surrounding a lake (e.g., lakes in forested areas),
there are high chances of double-bounce backscattering near the shore.

Figure 3. Three different types of interaction of the SAR signal with water bodies and vegetation. Figure is
from Paper III and Paper IV.

In Swedish lakes, case numbers two and three are very likely to happen with high-
intensity pixels near the shorelines of the lakes. Therefore, Papers III and IV focus on
these areas.

To estimate water level change, I used the combination of Sentinel-1A and Sentinel-
1B in 2019 to generate the shortest temporal baseline interferograms (every six days)
with the smallest changes. I chose a potentially stable reference point near the lakes (e.g.,
buildings and car parks) and subtracted its phase change from that of the other pixels,
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and performed the analysis within a 1 km distance from the reference point to mini-
mize atmospheric delays. Since D-InSAR cannot detect changes exceeding the distance
equivalent to a full cycle of the SAR signal, I used in-situ measurements to identify the
instances of such large changes and removed them from the analysis. Finally, I compared
the time series of phase change with the in-situ water level changes and calculated Lin’s
Concordance Correlation Coefficient (CCC) between them (Akoglu, 2018).

The procedure in Paper IV is similar to the methodology in Paper III; however, I kept
all of the interferograms, even those corresponding to water level changes exceeding the
distance equivalent to a full cycle of the SAR signal. This is to determine if, with a
large sample of lakes, the general long-term trend of water level in the lakes can be pre-
dicted. This paper accumulated the water level changes of the pixels with high coherence
(> 0.25) sequentially, starting from the first interferogram to the last one (without the
pre-knowledge of the actual water level changes). However, since D-InSAR alone can
estimate the magnitude of water level changes only if the actual water level changes are
less than the distance equivalent to a full cycle of the SAR signal, Paper IV tested if the
long-term direction of change in water level (instead of the magnitude) can be estimated
by D-InSAR despite the rapid water level changes.
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3 Results

3.1 Objective A

3.1.1 Paper I

This paper aimed to analyze the water occurrence and its changes in the SRD from 1987-
2002 to 2003-2020. The changes in surface water occurrence in the SRD generally point
to drying of the delta; however, they are relatively small and often fall within the range
of ±20% (Figure 4a). Furthermore, 51% of the spatial extent of the SRD experienced a
decreasing water occurrence and predominantly in seasonally flooded regions rather than
in areas covered permanently with water (Figure 4b).

Figure 4. (a) Change in surface water occurrence (∆w) between 1987-2002 and 2003-2020 for pixels with
∆w 6= 0. Red areas (-1) show losses of water surface, and blue areas gains (+1), (b) Pixel distributions of
∆w by general categories (i.e. permanent water, seasonal water, and land). Figure is modified from Paper I
(Aminjafari et al., 2021).

3.1.2 Paper II

This paper aimed to estimate water level trends in 144 Swedish lakes. Around 52% of
lakes studied here showed statistically significant increasing trends in water levels, and
43% exhibited statistically significant decreasing trends from 1995 to 2022 (Wilcoxon
rank sum test, p < 0.05, large circles; Figure 5a). Most of the decreasing trends occur
in the south and most of the increase in the north of Sweden. During a shorter period
(2013-2022) with more lakes, I observed similar patterns of water level trends, with 53%
of them showing increasingwater levels (mainly in the north) and 24%of them decreasing
(mostly in the south; Figure 5b).
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Figure 5. Water level trends WLT from both altimetry and gauges (a) from 1995 to 2023 in 58 lakes with
all available altimetry sensors and (b) from 2013 to 2022 in all 144 lakes. Large circles show a significant
trend (Wilcoxon rank sum test; p-value < 0.05). Blue implies a positive trend, whereas red a negative trend.
Figure is modified from Paper II.

3.2 Objective B

3.2.1 Paper I

This paper aimed to determine the possible drivers of the change in water occurrence.
At the center of the SRD (Figure 1a), there is a significant positive correlation (p-value
< 0.05) between the temporal patterns of surface water occurrence and RO. On the other
hand, changes in SSC, lake water levels, and potential evapotranspiration do not signifi-
cantly correlate with changes in surface water occurrence (Table 2).

Table 2. Statistics of the linear regressions between the time series of surface water occurrence (ws) and
RO, SSC, water level (WL) in Lake Baikal, and potential evapotranspiration (PET) in the central part of the
SRD (Figure 1a). I selected RO data on the images’ acquisition days, SSC with a 2-week delay, the Lake
water level data nearest to the image acquisition date, and PET in the same month. Numbers in bold denote
significant positive correlations. Table is modified from Paper I (Aminjafari et al., 2021).

R2 p-value
ws vs. RO 0.58 <0.05
ws vs. SSC 0.01 0.7

ws vs. WL (Altimetry) 0.06 0.03
ws vs. PET 0.01 0.28
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3.2.2 Paper II

This paper aimed to determine how the regulatory structure of the 144 Swedish lakes and
climatic variables can affect water level trends and DS. The trend in water levels, and DS,
of non-regulated lakes (N) are significantly different (Wilcoxon rank sum test, p-value <
0.05) from those in regulated lakes (i.e., with direct regulatory structures (R) or upstream
regulatory regimes (U; Table 3). This means that the population of water level trends and
DS in non-regulated lakes have a different distribution with a different median than the
population of water level trends and DS in regulated lakes.

Table 3. P-values of the Wilcoxon rank sum test between pairs of lake water level trends (WLT ) and mean
annual Dynamic Storage (DS) with four regulatory structures: non-regulated lakes (N), upstream regula-
tory regimes (U), regulated lakes (R), and lakes subjected to both upstream and direct regulatory structures
(R+U). Astrix denotes those values with statistically significant differences. Table is from Paper II.

WLT N U R R+U DS N U R R+U
N 0.001** 0.06** 0.26 N 0.01** 0.08** 0.05**

U 0.83 0.16 U 1 0.86
R 0.34 R 0.78

R+U R+U

On the other hand, I did not observe a strong Pearson’s correlation (Pc > 0.7) between
water level trends (or DS) and climatic variables (precipitation and temperature) in any
regulation lake category (N, U, R, R+U; Figure 6).

Figure 6. Pearson’s correlation matrix in (a) non-regulated lakes and (b) regulated lakes (U, R, and
R+U) between DS, water level trends (overall WLT , spring WLSP−T , summer WLSM−T , and autumn
WLAU−T ), precipitation (average P , trend PT , and standard deviation Pσ), temperature (average T , trend
TT , and standard deviation Tσ), lake elevation, lake surface area, and lake volume during the period 2013
– 2022. The numbers inside the cells and the color bar show the correlation values. Gray cells are not
significant, and colored square values are significant (Pearson’s p-value < 0.01). Figure is from Paper II.
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3.3 Objective C

3.3.1 Paper III

This paper aimed to evaluate the performance of D-InSAR in estimating small changes
in lake water level. The two lakes studied in Paper III, Lake Hjälmaren and Lake Sol-
nen, are located in southern Sweden (Figure 7a) and have historically small water level
changes (Figure 7b, e). I generated 17 and 34 interferograms for Lake Hjälmaren and
Lake Solnen, respectively, corresponding to occasions when the water level changes be-
tween consecutive dates were smaller than the distance equivalent to a full cycle of the
SAR signal (Figure 7b, e). Focusing on small areas near lake shores, I detected forested
vegetation cover in Lake Hjälmaren and emergent vegetation (marsh-type wetland on the
surface) in Lake Solnen, which create a double-bounce backscattering (Figure 3) evident
in the SAR images (Figure 7d, g). The high average coherence of the pixels in these areas
is most probably attributed to the double-bounce backscattering (Figure 7c, f). In Lake
Solnen, pixels with higher mean coherence show higher CCC with in-situ water level
changes (Figure 7d, g).

Figure 7. (a) The location of the two lakes in Southern Sweden with small six-day water level fluctuations.
(b) The time series of daily in-situ water levels (WLG), orange dots denote the occasions that six-day water
level changes are smaller than the distance equivalent to a full cycle of the SAR signal, (c) the average
coherence of all interferograms (C), and (d) CCC between D-InSAR- and in-situ water level change for
Lake Hjälmaren. (e to g) WLG, C, and CCC for Lake Solnen respectively. The circle in panels d and g
denotes an area with high CCC. Figure is from Paper III.

CCC between D-InSAR- and gauged water level change (∆WLD and ∆WLG) can
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be as large as 0.63 and 0.89 in Lake Hjälmaren and Lake Solnen, respectively, equivalent
to Root Mean Square Errors (RMSE) of 0.92 and 0.43 cm (Figure 8). This shows that
D-InSAR can potentially detect water level changes in some ungauged lakes.

Figure 8. Correlation between D-InsAR water level change (∆WLD) and gauged water level change
(∆WLG) for the pixel with the highest CCC in (a) Lake Hjälmaren and (b) Lake Solnen. Figure is modified
from Paper III.

3.3.2 Paper IV

This paper aimed to test the methodology employed in Paper 3 over a larger sample of
Swedish lakes (30 lakes) to estimate the direction of change in water levels. Here, I used
Pc and CCC to compare the derived D-InSAR water levels (WLD) with gauged water
levels (WLG). The study finds that there are, in fact, pixels within the lakes that show a
high Pc between water level anomalies based on gauged observations and D-InSAR phase
changes, proving that the method can eventually determine the direction of the change in
water level (i.e., increase or decrease).

The high Pc betweenWLD andWLG is found mainly in Southeast Sweden (Figure
9a). On the other hand, CCC is low, especially in northern Sweden (Figure 9b), which
is expected as the method includes water level changes beyond the distance equivalent
to a full cycle of the SAR phase. It is worth noting that the pixels with the highest Pc
are located near the shoreline and surrounded by wetlands and forests. It is possible
that some of these pixels were indeed located onshore rather than in the lake itself, and
lake water level variations could have influenced the surrounding land, resulting in the
observed correlation. This may be due to the poroelastic soil responding to changes in
water levels.

Therefore, the pixel-specific D-InSAR method can determine the direction of water
levels between consecutive acquisitions but not the exact magnitudes of water levels, as
most changes extend beyond the distance equivalent to a full cycle of the SAR phase
(Figure 9).

17



Figure 9. The relationship between gauged- and D-InSAR-derived water levels (a) Pearson’s correlation
coefficient (Pc) showing if the direction of the change in water level is estimated and (b) Lin’s Concordance
Correlation Coefficient (CCC) showing if the magnitude of water level is estimated. Figure is modified from
Paper IV.
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4 Discussion

4.1 Objective A

The findings in Paper I showed that during the last 33 years, the SRD experienced a
decrease in surface water occurrence in 51% of its surface area. The rest of the delta
exhibited no change (30%) or an increase (19%). The dominant decrease in surface wa-
ter occurrence agrees with the decreasing water occurrence pattern in northern Siberia
observed by Borja et al. (2020). However, on larger scales, water occurrence varies
across regions characterized by diverse hydrologic and geomorphologic conditions. For
example, two different wetlands in Turkey show contradicting trends in water occurrence
during the same period, although being neighbors (Dervisoglu, 2022).

Within the scope of quantifying changes in surface water occurrence, Paper I demon-
strated its ability to identify planformmigrations and oxbow lake formations based on the
change in water occurrence, setting Paper I apart from other related studies (such as Chen
et al., 2020; Dervisoglu, 2022; Donchyts et al., 2016; Pekel et al., 2016). The changes in
river planforms in deltas can be detected from individual satellite images (such as Yuan et
al., 2022); however, they are only snapshots of the tributaries, while the maps of surface
water occurrence and its changes exhibit the percentage (or probability) and the growth
of a newly formed path, drying path, or an oxbow lake formation. The in-channel pro-
cesses can further complement in-situ geomorphological data of bedload variations and
changes in the shape of a delta.

Quantifying surface water occurrence in deltas and wetlands with satellite images has
a certain level of uncertainty associated with the presence of water below vegetation. For
example, in Paper I, with the utilization of Landsat optical images, the water beneath a
dense vegetation canopy in the forested areas remains undetected, leading to two distinct
patterns of water occurrence. Firstly, in areas with perennial vegetation, hidden water
below the vegetation leads to a detected water occurrence that is lower than the actual wa-
ter occurrence. Secondly, in areas with deciduous vegetation, the hidden water beneath
the vegetation causes the detected water occurrence during leaf-off seasons to represent
the actual water occurrence. In contrast, the detected values are lower during leaf-on
seasons. Some studies compensated for the limitation of optical images in detecting wa-
ter below vegetation by incorporating radar images (Chen and Zhao, 2022; Li and Niu,
2022; Tottrup et al., 2022). However, most of these studies have used short-wavelength
SAR images, which cannot penetrate thick tree canopies. This challenge can be miti-
gated using L-band sensors such as ALOS PALSAR, ALOS PAL-SAR-2, and soon, the
long wavelength dual-frequency NISAR mission. The NISAR satellite is equipped with
SAR sensors operating in both S-band (7.5-15 cm wavelength) and L-band (15-30 cm
wavelength), which enables the detection of water beneath vegetative cover, providing an
enhanced capability to observe and analyze water resources.

Similar to variations in surface water occurrence in deltas, lake water level changes
have implications for water supplymanagement and the ecological well-being of the biota
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inhabiting them and their surrounding environments. Therefore, the common motivation
for quantifying changes in water level is to provide insights into water management and
restoration strategies. These strategies aim to enhance the adaptation of the ecosystem
to the dynamic changes in water levels, with the ultimate goals of improving hydrologic
connectivity to increase water circulation, mitigating water salinity issues, and achieving
sustainable water consumption practices (e.g., Dersseh et al., 2020; Ren et al., 2019;
Saber et al., 2020; Schulz et al., 2020).

Regarding water levels, I could estimate water level trends and variability in 144 lakes
in Sweden using satellite radar altimetry data, doubling the number of lakes with current
in-situ observations. With laser altimeter satellites such as ICESat-2, it is possible to
monitor even more lakes due to shorter gaps between satellite ground tracks; however,
with coarser temporal resolutions (e.g., Cooley et al., 2021).

In addition, current altimetry sensors could complement upcoming missions. For in-
stance, water levels from laser and radar altimeters can help validate and cross-compare
the data from the newly-launched SWOT mission that covers 95% of all inland water
bodies globally. SWOT, a collaborative mission by NASA, the French Space Agency
(CNES), the Canadian Space Agency (CSA), and the UK Space Agency (UKSA), pro-
vides more than four observations within each 21-day repeat cycle in high latitudes, en-
hancing our understanding of water level variations as well as water storage (Crétaux et
al., 2015; Yoon et al., 2016).

Our interpretation of the total changes in lake water levels can also be more com-
prehensive when accounting for small lakes rather than only studying large lakes as it
is done conventionally. For example, Paper II, which investigated both large and small
lakes, found different water level trends compared to the study recently conducted solely
on large lakes by Yao et al. (2023). They used a dataset of the 1972 largest global lakes
and found that water storage in the largest lakes in high-latitude humid regions, such as
Sweden, has a decreasing trend (Yao et al., 2023). This contradicts our findings in Pa-
per II, showing an increasing trend for most lakes. The difference between the results of
Paper II and those of Yao et al. (2023) may stem from two facts: 1) Yao et al. (2023) con-
sidered only lakes larger than 100 km2 with the reasoning that the largest lakes account
for 96% of the global lake volume and 81% of the reservoir storage; 2) Paper II estimated
the trends of water levels, whereas Yao et al. (2023) estimated the trends of lake water
storage. As lake water storage is calculated by multiplying the change in water level by
the change in water surface extent, the trend of water storage cannot be necessarily similar
to the trend of water level.

4.2 Objective B

Quantifying the water occurrence and level changes is merely the first step to enabling
decision-making and targeted actions. In the next step, it is required to identify the poten-
tial drivers behind those changes. Most studies quantifying changes in water occurrence
and lake water levels on local and global scales tried to discern the relative significance of
each driver from the combined effect of all drivers. This includes investigating whether
these changes are primarily attributed to direct human intervention, climate change, or
a combination of both factors (e.g., Borja et al., 2020; Fan et al., 2021; Gronewold and
Rood, 2019; Papa et al., 2023; Schulz et al., 2020; Woolway et al., 2020; Yao et al.,
2023).

However, identifying and differentiating the sources of changes in water occurrence
and water level is not straightforward. For example, the main driver of water occurrence
in the central part of the SRD (Figure 1a) was surface runoff, with a weak coefficient of
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determination (R2 = 0.58). Considering that runoff in the main tributary of a delta is
the main driver of its water changes a higher correlation between water occurrence and
surface runoff was expected. However, suspended sediment load and geomorphological
changes in the delta can lead to delta uplift or delta sink which ultimately modify water
occurrence by the formation or the sinking of islands. This was evident by the spatial
variation in water occurrence corresponding to patterns in sediment aggregation and re-
tention and the uplift of the delta found in another study (Chalov et al., 2017).

Additionally, as discussed in Objective A, since quantifying water occurrence and its
changes with optical imagery has a level of uncertainty attributed to hidden water below
the vegetation, accounting for hidden water may find a stronger relationship between RO
and actual water occurrence in the SRD.

Moreover, Paper I did not focus on the potential anthropogenic factors such as changes
in land use and water exploitation for agriculture and mining that may have affected the
changes in surface water occurrence. As shown by other studies, agricultural and mining
activities, on-site or upstream of a delta, can also drive changes in water occurrence
(Chang et al., 2015; Chen et al., 2020; Chuai et al., 2021).

In the context of the SRD, my analysis focused solely on the unregulated nature of the
Selenga River, which directly feeds into the SRD. However, it is important to note that the
regulatory regime of other rivers flowing into Lake Baikal, such as the Angara River on
the opposite side of the lake (Figure 1a), indirectly influences the SRD. For example, the
Irkutsk dam on the Angara River has primarily impacted the fluctuations in the water level
of Lake Baikal itself. Consequently, the absence of a discernible correlation between the
water level of Lake Baikal and the changes in water occurrence within the SRDmay relate
to the complex interplay of the regulatory measures on the many other rivers flowing into
the lake (Figure 1a).

Regarding Swedish lake water levels, identifying the sources of their changes is not
straightforward either. Paper II classified the Swedish lakes into two broad categories:
Regulated and Non-regulated. The purpose was to examine the correlation between
changes in water levels and hydroclimatic variables within each category to determine
if the impact of climate varies among categories. Despite this classification, no corre-
lation was found. However, it is worth noting that the hydrologic responses of water
resources to climatic changes may be more discernible when using other classifications.
On a global scale, factors such as the region’s general climatic and geomorphological
conditions can complicate the identification of water level change drivers (Yao et al.,
2023). For example, the response of lakes located in humid regions to climatic changes
or anthropogenic intervention is different from those in arid regions. Yao et al. (2023)
categorized global lake catchments into humid and arid regions based on precipitation
rates, and Sweden is classified as a humid region. Another study has explored classifica-
tions based on regional landforms (e.g., mountains, plateaus, and plains), climate types
(e.g., arid, semi-arid, and continental), and ecosystem features (e.g., forests and prairies;
Heidari et al., 2020). Heidari et al. (2020) studied the impacts of climate change on all
river basins in the United States and showed that aridity in mountain, plateau, and basin-
type of landforms decreased over the 21st century, with basin types being more sensitive
to climate change.

Paper II showed a notable distinction in the direction of water level changes. For
example, northern Swedish lakes, predominantly in mountainous regions, exhibited an
increasing trend in water levels. On the other hand, southern lakes, mainly located in
the plains, displayed a decreasing trend. Therefore, it is plausible that by categorizing
lakes according to various landforms, climate types, and ecosystem characteristics, we
can identify correlations between hydroclimatic changes and water level variations within
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one or more of these classes.
In Sweden, the effect of climate change is not evident on lake water levels. Studies in

Sweden have shown that evapotranspiration trends and runoff variability strongly depend
on flow regulation (Destouni et al., 2013), agricultural development (Jaramillo et al.,
2013), and forestry management (Jaramillo et al., 2018). Therefore, the lack of a strong
climate change signal in lakes should not be interpreted as water resources in Sweden
being unaffected.

There is a statistically significant difference betweenwater-level trends (or DS) in reg-
ulated lakes and water-level trends (or DS) in unregulated ones (Paper II). This response
of lakes to water regulation aligns with the response observed in evapotranspiration and
river flow during the last century; regulated Swedish basins experienced a noticeable
increase in relative evapotranspiration and a decrease in runoff variability, while unreg-
ulated basins did not display a clear trend (Destouni et al., 2013). Regarding the future,
Arheimer et al. (2017) suggested that water regulation, particularly through hydropower
operations, will be the main driver of river runoff in snow-fed rivers in Sweden through-
out the 21st century.

The influence of water regulation extends beyond Sweden, impacting water level
trends and variabilities in lakes worldwide. A notable example is the Yellow River basin
in China, where reservoir operations have emerged as the primary driver of changes in
terrestrial water storage (Xie et al., 2022). Even globally, 57% of the variability in surface
water storage is attributed to the regulated reservoirs (Cooley et al., 2021).

4.3 Objective C

Paper III showed that over a dataset of six-day interferograms, the phase change of pixels
that may exhibit a double-bounce backscattering of the radar signal can correlate with
lake water level changes. This finding is consistent with the study by Palomino et al.
(2022), which showed that the accumulated phase change of the pixels over mountainous
lakes in Ecuador correlates with precipitation data. However, Palomino et al. (2022)
did not have in-situ water levels to validate their results. The lakes in that study were
surrounded by cliffs that probably created a suitable medium for double-backscattering.
However, Paper III revealed that forest and marsh-dominated wetlands near the lakes’
shores can also cause the proper conditions for a double-bounce backscattering around
the lakes.

Moreover, Palomino et al. (2022) reconstructed water levels by accumulating the
phase change of each pixel through the whole number of interferograms, while Paper III
focused on phase changes (without accumulation) and compared those with in-situ water
level changes only on occasions corresponding to a water level change that is less than
the distance equivalent to a full SAR phase cycle.

Regarding the D-InSAR methodology to estimate water level changes, as explained
in the Method section, there are three scenarios of radar interactions with water bodies
(Figure 3). Most previous studies have focused on the second scenario, where the water
body is covered by emergent vegetation, usually occurring in wetlands (Alsdorf et al.,
2000; Jones et al., 2021; Kim et al., 2009; Oliver et al., 2022; Wdowinski et al., 2008;
Yuan et al., 2017). However, Paper III and Paper IV focused on the third scenario of the
interaction of the SAR signal with water bodies (Figure 3) occurring on the shore of lakes
and surrounded by vegetation. As this scenario only relates to sporadic pixels coherent
in time but not connected to the neighboring pixels and occurring at very local scales,
unwrapping the phase is impossible. Hence, Paper III focused on the subtle changes in
water levels in individual pixels and calculated the absolute water level change between
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image pairs.
Furthermore, the use of short wavelength in Paper III (C-band) can only detect subtle

water level changes (2.75 cm in the LOS direction), limiting this method’s applicability
as lakes usually have much larger water level changes between SAR acquisitions. This
challenge highlights the importance of the future NISAR mission with long wavelength
(L-band; 24 cm), 12-day repeating orbit, and quad polarization in some areas (Rosen and
Kumar, 2021).

Finally, it is to wonder why, despite knowing that some of the water level changes
studied in Paper IV are beyond the distance equivalent to one full cycle of the SAR signal,
Pc between the time series of water levels constructed from D-InSAR and observations
are relatively high across some lakes. A possible explanation for this is that pixels exhibit-
ing this high correlation may have been located on the land near the shore of the lake and
not on the water, with the surrounding land responding to changes in water availability
in the lake. Examples of these effects have been described in other lakes and reservoirs
(Cavalié et al., 2007; Darvishi et al., 2021). The phase change may relate to the rebound
of the soil around the lake originating in a poroelastic or elastic deformation with changes
in water level (Doin et al., 2015; Zhao et al., 2016). These deformations would imply an
agreement in the direction of change in the lake water level and the deformation of the
ground surface shown by a high correlation in some lakes.

Another disadvantage is that without in-situ water level observations, it is difficult to
find the pixel whose phase change best describes real water level changes. Hence, the
method now relies on lakes with in-situ water levels to assess its effectiveness.

The assessment of changes in water occurrence and levels and their drivers in this
thesis has greatly benefited from the utilization of remotely sensed EO. Future advance-
ments in satellite sensors like SWOT and NISAR, coupled with innovative processing
methods, have the potential to enhance our understanding of freshwater resources and
the development of more effective water monitoring and management strategies.
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5 Conclusion

5.1 Objective A

The findings in this thesis show that in the Selenga River Delta:

• The change in surface water occurrence ranges from -20% (water loss) to +10%
(water gain), with 51% of its area experiencing a weak decrease.

• The change in surface water occurrence reveals in-channel processes (such as river
planform migration and oxbow lake formations) which deliver information on the
evolution of the delta structure and the stream network change.

Moreover, Paper II shows that in 144 Swedish lakes:

• Water levels in about 52% of the analyzed Swedish lakes show significant increas-
ing trends during both 1995-2022 and 2013-2022, and in 43% of the lakes, de-
creasing trends. Water levels in northern lakes usually exhibit an increasing trend,
and in southern lakes, a decreasing trend.

5.2 Objective B

In the Selenga River Delta:

• The changes in surface water occurrence correlate moderately with surface runoff
(R2 = 0.56) and not with suspended sediment concentration in the Selenga River,
lake water levels in the outlet of the delta, and potential evapotranspiration over the
surface of the delta.

• Since the values of surface water occurrence are based on the open water observed
in optical images, accounting for hidden water below vegetation would possibly
alter such correlation.

Paper II shows that in 144 Swedish lakes:

• There is not a strong relationship between changes in water levels and their vari-
ability and precipitation, temperature, or the physical characteristics of lakes such
as lake surface area, volume, and elevation.

• There is a statistically significant difference between water level trends (or variabil-
ities) in regulated lakes and water level trends (or variabilities) in non-regulated
lakes.
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5.3 Objective C

This thesis shows that:

• The time series of phase change in individual pixels in the Swedish lakes Hjäl-
maren and Solnen, correlate with the actual water level changes from in-situ mea-
surements when these changes are smaller than the distance equivalent to a full
cycle of the SAR phase.

• There is at least one pixel along the shores of the 30 Swedish lakes in which the
accumulated phase change follows the direction of change in the actual water levels
(increase or decrease). However, the magnitude of water levels cannot be estimated
with D-InSAR as there are many occasions when water level changes exceed the
distance equivalent to a full cycle of the SAR phase.
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