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Abstract: Educational content recommendation is a cornerstone of AI-enhanced learning. In particu-
lar, to facilitate navigating the diverse learning resources available on learning platforms, methods
are needed for automatically linking learning materials, e.g., in order to recommend textbook content
based on exercises. Such methods are typically based on semantic textual similarity (STS) and the use
of embeddings for text representation. However, it remains unclear what types of embeddings should
be used for this task. In this study, we carry out an extensive empirical evaluation of embeddings
derived from three different types of models: (i) static embeddings trained using a concept-based
knowledge graph, (ii) contextual embeddings from a pre-trained language model, and (iii) contextual
embeddings from a large language model (LLM). In addition to evaluating the models individually,
various ensembles are explored based on different strategies for combining two models in an early vs.
late fusion fashion. The evaluation is carried out using digital textbooks in Swedish for three different
subjects and two types of exercises. The results show that using contextual embeddings from an
LLM leads to superior performance compared to the other models, and that there is no significant
improvement when combining these with static embeddings trained using a knowledge graph. When
using embeddings derived from a smaller language model, however, it helps to combine them with
knowledge graph embeddings. The performance of the best-performing model is high for both types
of exercises, resulting in a mean Recall@3 of 0.96 and 0.95 and a mean MRR of 0.87 and 0.86 for
quizzes and study questions, respectively, demonstrating the feasibility of using STS based on text
embeddings for educational content recommendation. The ability to link digital learning materials
in an unsupervised manner—relying only on readily available pre-trained models—facilitates the
development of AI-enhanced learning.

Keywords: educational content recommendation; AI-enhanced learning; pre-trained language
models; ensemble embeddings; knowledge graph embeddings; text similarity; textual semantic
search; natural language processing

1. Introduction

The digitalization of education has significantly transformed the learning landscape,
resulting in the availability of extensive and diverse learning resources. These digital
resources encompass a wide array of formats, including textbooks, exercises, lecture slides,
video lectures, and supplementary materials both within and outside dedicated learning
platforms. The sheer volume and diversity of materials can be overwhelming, making
it challenging for learners to identify the most relevant and beneficial content for their
needs. To that end, educational recommendation systems play a crucial role in enhancing
the accessibility of relevant content, user engagement, and the effectiveness of learning
resource usage by filtering contents, finding items of interest, and suggesting useful learn-
ing resources that can meet curriculum goals, users’ needs, and profiles. There have been
several efforts to develop educational recommendation systems for different purposes, for
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instance, to provide personalized recommendations of remedial learning materials [1] or to
provide a personalized review module [2], while others have proposed different solutions
for recommending external learning material in the form of Wikipedia pages and YouTube
videos [3–5]. In this study, we focus on educational content recommendations based on
textbook content and exercises. Textbooks remain foundational resources in education,
offering structured and comprehensive coverage of academic subjects, while exercises pro-
vide formative assessment and facilitate self-regulated learning [6]. Interlinking exercises
and relevant textbook content allow learners to practice and reinforce newly acquired
knowledge immediately after studying a particular concept. Similarly, it can facilitate
the recommendation of supportive learning resources related to an exercise, providing a
reference to the question and connecting this to the textbook sections where the examined
knowledge points reside.

There are different approaches to developing content recommendation systems; these
are summarized in Section 2.1. The most common approach is based on semantic textual
similarity (STS), essentially allowing for calculating the semantic similarity between two
texts. This technique forms the backbone of an educational content recommender and
allows it to automatically link and recommend learning materials. The key to effective and
accurate STS-based content recommendation systems is powerful text representations. The
overarching aim of our study is therefore to evaluate different text representations and
identify which ones to use in an STS-based educational content recommendation system
based on automatically interlinking textbook content and exercises. On the one hand,
transformer-based models, such as BERT [7] and GPT-4 [8], consistently achieve state-of-the-
art performance on a variety of tasks and continue to dominate the field of natural language
processing (NLP). While these pre-trained language models have acquired a profound
understanding of intricate patterns and higher-order co-occurrence statistics in text data [9],
they tend to struggle with capturing domain-specific, factual knowledge [10,11]. On the
other hand, knowledge graphs play an important role in a variety of knowledge-driven
applications and AI tasks [12], such as recommendation systems [13,14] and information
retrieval systems [15], and are excellent at representing structured knowledge.

In a previous study [16], we investigated a number of different text representations and
ways of calculating semantic similarity between textbook content and quizzes. In terms of
text representations, traditional statistical models such as TF–IDF (Term Frequency–Inverse
Document Frequency) were compared to Doc2Vec [17], BERT, and ConceptNet-based
models. Paragraph-level embeddings were employed for representing textbook content,
and three different pooling methods were investigated to represent a given textbook section.
The results showed that using a pre-trained language model in SBERT outperformed the
other models, while max paragraph pooling outperformed mean pooling and adjusted
mean pooling. The latter result can be viewed as indicating—at least for the purpose
of identifying textbook sections that are relevant for a given quiz—that high semantic
similarity with a single paragraph in a section is more important than high average semantic
similarity across all paragraphs in a section.

In this study, we carry out a thorough investigation and evaluation of text repre-
sentations in the form of embeddings from pre-trained language models to be leveraged
in an STS-based educational content recommendation system. In particular, we include
in our evaluation the use of higher-dimensional embeddings derived from an LLM and
continue to explore the potential of incorporating knowledge graphs. With respect to the
latter, we do so in one of two ways: (i) by representing texts—both exercises and textbook
content—based solely on pre-identified concepts, and (ii) by combining knowledge graph
embeddings with contextual embeddings in various ensembles in an attempt to exploit
their respective advantages. The STS-based educational content recommendation system
is designed to automatically link relevant textbook content to exercises, here, extended to
encompass both quizzes and study questions across three subjects. In summary, the main
contributions and findings of this study are described below:
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• We evaluate the use of static and contextual embeddings derived from different types
of pre-trained language models and a concept-based knowledge graph for STS-based
educational content recommendation. The results show that higher-dimension contex-
tual embeddings from LLM outperform both lower-dimension contextual embeddings
and static embeddings trained using a knowledge graph, even when resorting to
domain-specific concept filtering.

• We explore the possibilities of combining the respective advantages of contextual
embeddings and knowledge graph embeddings using three different ensemble meth-
ods based on both early and late fusion approaches. The results show that when
using contextual embeddings from a relatively smaller language model and lower
dimension (SBERT), performance improves when combined with knowledge graph
embeddings in a late fusion fashion. However, when using higher-dimension embed-
dings from LLM (text-embedding-ada-002), there is no significant gain from any of
the ensembles.

• We show that by leveraging powerful embeddings from a pre-trained language model,
an STS-based educational recommendation system can be developed in a wholly
unsupervised manner, i.e., without relying on labeled training data. The system can
accurately link exercises to relevant textbook sections: the best-performing model
obtains a Recall@3 of 0.96 and an MRR of 0.87 for quizzes and a Recall@3 of 0.95 and
an MRR of 0.86 for study questions across three subjects.

The paper is structured as follows. In Section 2, we review existing literature and
describe previous work relevant to our study, providing a comprehensive overview of the
current state of educational content recommendation systems, knowledge graph embed-
dings, as well as methods for incorporating knowledge graphs with pre-trained language
models. In Section 3, we first outline the datasets utilized in our research, which contain
textbook instructive content and two types of exercises: quizzes and study questions.
After that, we present the study design, models, evaluation metrics, and significant test-
ing. Section 4 presents the results of our experiments and analyses. Subsequently, in
Section 5, we delve into the implications of the results, contextualizing our findings within
the broader research landscape. Finally, Section 6 provides a succinct summary of the study
and its contributions.

2. Related Work

In this section, we first describe related work on designing and developing educational
content recommendation systems, summarizing the main approaches. We then introduce
the concept of knowledge graphs and describe how embeddings can be trained using the
information captured by such graphs. Finally, we describe efforts to integrate knowledge
graphs and pre-trained language models in order to harness the advantages that each of
these models brings.

2.1. Educational Content Recommendation

Educational content recommendation has gained significant attention in recent years,
with researchers exploring various methodologies to enhance learning experiences. Recom-
mendation systems in education aim to address challenges such as learner engagement,
content relevance, and adaptability. Recommendation algorithms are generally based on
(i) heuristic rules, (ii) content similarity, or (iii) behavior similarity. Rule-based recom-
mendation systems involve intricate human logic and consideration of content attributes
such as difficulty level, completion time, and types, providing a pre-configured content
subscription. Content similarity-based recommenders focus on the content itself, projecting
the content into numeric representations within a feature space and evaluating the seman-
tic distance between texts. The semantics of learning materials can be captured through
ontology-based approaches, representing educational concepts [1,3,18], or through con-
textual semantic meanings of entire sentences [19,20] in an approach based on contextual
semantics. Learning materials can then be linked using methods like exact concept phrase
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matching or using word embeddings for STS. Recommenders based on user behavior tailor
recommendations to individual students’ needs, analyzing profiles based on knowledge
level, preferences, and learning style. Collaborative filtering is a user behavior-based
approach that groups students with similar behavior patterns and recommends resources
based on collective engagement. Content recommendation systems often leverage infor-
mation retrieval and semantic search technologies for content processing, integrating rule-
based and behavior-based perspectives for more relevant recommendations. Niu et al. [18]
combined an ontology-based content similarity approach with students’ behaviors, us-
ing extracted concepts from the learning contents to construct a knowledge graph and
aggregating concept similarities and students’ behavior (student–concept interactions)
into the knowledge graph for collaborative content recommendation. Rahdari et al. [3]
used a graph database, Neo4j, to store the constructed knowledge graph that contains
Wikipedia articles, textbook content, and the student model, and used Neo4j’s internal
full-text search engine, Lucene, to calculate the relevance scores for the recommendations.
Hybrid approaches, combining multiple methods, are also prevalent [1,3,21,22].

2.2. Knowledge Graph Embeddings

A knowledge graph is a structured representation of knowledge that captures general
knowledge relationships between entities in a domain, often represented as nodes and
edges in a graph. Examples of large-scale knowledge graphs are Wikidata [23], YAGO [24],
Freebase [25], and DBpedia [26]. Knowledge graph embeddings refer to techniques that
transform entities and relationships in a knowledge graph into numerical representations
in a feature space that can capture semantic relationships and patterns within the graph.
When it comes to modeling methods, a variety of approaches are available. One traditional
mathematical method involves representing the relational space using a term–term matrix,
positive pointwise mutual information, and singular value decomposition, as demonstrated
in ConceptNet [27]. Another approach is based on relation paths, representing relations lin-
early as translations, for instance, as exemplified by TransE [28]. Alternatively, graph neural
networks can be employed, utilizing graph convolutional layers or similar architectures to
aggregate information from neighboring entities, as seen in models like GraphSAGE [29]
and R-GCN [30]. Random walk-based methods utilize graph traversals to generate se-
quences of entities, which are used to train the embeddings, as seen in Node2Vec [31],
capturing both local and global structural information. Attention-based mechanisms, such
as KGAT (Knowledge Graph Attention Network) [32], have also been applied. Addition-
ally, enriching knowledge graphs with descriptive external information is another strategy,
which involves incorporating supplementary details like entity type [33] or descriptive
information of entities [34–36]. Knowledge graph embeddings are usually derived from
diverse sources, including crowd-sourced data and hybrid methods.

2.3. Combining Knowledge Graphs and Pre-Trained Language Models

Knowledge graph embeddings excel in structured knowledge representation, while
pre-trained language models are powerful for understanding and generating natural
language text in various contexts. Extensive research has been conducted to harness the
advantages of both structured knowledge and unstructured text comprehension. Below, we
summarize strategies for combining knowledge graphs with pre-trained language models
into three categories:

• Traditional ensemble methods. These encompass the most commonly used ensemble
methods. The ensemble can be conducted directly with the embeddings, i.e., feature-
level fusion, which is also called early fusion. A straightforward way to combine
embedding vectors is simply to “stack” them into a higher-dimension embedding
vector [37]. An alternative is to add up the embedding vectors in a linear way, for
example, through a linear interpolation, where the weights can be either preset or
trained [1,37,38]. Learning a projection function between embeddings is another solu-
tion. For linear projection, Muromägi et al. [39] conducted linear regression in two
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ways, i.e., ordinary least squares and orthogonal procrustes to learn the transforma-
tion matrix. Gammelgaard et al. [40] instead used ridge regression and generalized
procrustes analysis. The projection function can also be non-linear, for example, us-
ing a neural network to learn a multilayer perceptron (MLP) [41]. An alternative to
early fusion ensembles is to perform the combination in the decision stage, i.e., late
fusion. Each individual model makes their own independent decisions, which are
then combined or fused to produce the final result [42].

• Retrofitting. Originally proposed in [43], this process uses external lexical relational
resources from knowledge graphs to refine an existing matrix of word embeddings
to obtain higher-quality semantic vectors. Speer et al. [27] used a generalization of
the “retrofitting” method to create ensembles that learned from Word2Vec, GloVe, and
ConceptNet. Faruqui et al. [43], Fang et al. [44,45] further leveraged the information
in words, in relations embedded in edges and multisense knowledge, and developed
extensions of the retrofit ensemble models.

• Injecting external structured knowledge in the transformer architecture. One
method involves incorporating entity embeddings using a layerwise local/global
fusion strategy [34,46]. Alternatively, Ri et al. [47] trained an entity-aware BERT
model using the self-attention mechanism and masked language modeling objective.
Another approach involves a deep integration through knowledge attention and a
recontextualization mechanism [48]. Injecting external knowledge in the transformer
architecture requires further training or fine-tuning of the language models, which
means they are relatively computationally expensive methods.

3. Methods

In this section, we elucidate the dataset utilized in this study and expound upon
the methodologies employed in the evaluation of different embeddings in an educational
content recommender based on semantic textual similarity. We aim to investigate the
potential of pre-trained language models for this task and explore the use of three different
types of pre-trained embedding models, which are described below. In addition to using
the models individually, we also explore ensembles of embeddings and evaluate different
strategies for combining models. To evaluate the performance of the embeddings on
the task of recommending textbook content based on an exercise, we use two metrics
in Recall@3 and mean reciprocal rank, and employ McNemar’s test for testing whether
observed differences in performance are statistically significant.

3.1. Data

The data used in this study are instructive textbook content and the single/multiple-
choice quizzes and study questions from three Swedish digital textbooks: Biology G7-9,
Social Science G11, and Physics G7-9. The textbooks follow a hierarchical structure of
Chapter→Section→Sub-section. Each section, presented as a web page in the frontend,
encompasses multiple subsections and associated exercises. To obtain labeled data for
evaluating our solution, we leverage the web page’s structure, where exercises are situated
on the same page as the corresponding section in the textbook. Hence, each exercise labels
the section where it resides as a TRUE recommendation. This setup eliminates the need
for additional human annotation, assuming that each exercise has only one corresponding
relevant section as the TRUE recommendation in the textbook. While quizzes or study
questions often focus on a limited knowledge scope that can typically be explained within a
section, there might be instances where the same knowledge point spans multiple sections.
Nevertheless, our auto-labeling approach suffices for evaluating the content recommender,
as validated by manual inspections of sample pages and supported by our case-adjusted
evaluation metrics introduced in Section 3.6.

Table 1 shows the statistics of the data, encompassing a total of 147 textbook sections,
930 quizzes, and 1625 study questions. By employing the concept summary at the end of
each section, we calculate concept density, revealing that Biology and Physics exhibit a
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higher richness in concepts than Social Science. Social Science is, on the other hand, exercise-
intensive, with an average of 11 quizzes and 16 study questions per section. Quizzes are
single or multi-choice questions. Study questions are inquiries or prompts designed to
guide the process of learning. The data for study questions contain only the questions,
without answers. The complexity level of study questions can range from simple recall-
based questions to more analytical or calculation-related questions. Generally, answers can
be found or inferred with references to the relevant textbook content. The complexity level
of quizzes is somewhat higher than study questions since the questions are sometimes not
that straightforward.

Table 1. Statistics of the textbook data.

Statistic Biology Social Science Physics

# chapters 6 11 11
# sections 56 34 57
# sub-sections 585 288 457
# paragraphs 5834 2762 3741
avg # tokens per paragraph 22 41 18
Concept density: avg # tokens per concept 183 3643 184

# quizzes 264 386 280
avg # quizzes per section 5 11 5

# study questions 550 556 519
avg # study questions per section 10 16 9

3.2. Pre-Trained Embedding Models

In this study, we consider three different types of pre-trained embedding models:
(i) contextual embeddings from a pre-trained language model, (ii) contextual embeddings
from an LLM, and (iii) static embeddings trained using a concept-based knowledge graph.
Figure 1 illustrates how these models are used individually.

Figure 1. Illustration of how models are used individually. CN-NB * = ConceptNet Numberbatch.
PLM † = Pre-trained Language Model.

3.2.1. Contextual Embeddings from a Pre-Trained Language Model

Unlike traditional language models that treat words in isolation, contextual models
offer a nuanced understanding of linguistic context. A pioneering Open Source exemplar
in this realm is BERT (Bidirectional Encoder Representations from Transformers). BERT
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is a transformer-based model that uses deep bidirectional architectures [7]. KB-BERT
is a pre-trained Swedish BERT model [49]. In this study, we use SBERT [50], which is
sentence KB-BERT, an extension of the KB-BERT model. In our previous study [16], SBERT
proved to perform better than traditional models and ConceptNet Numberbatch models
for educational content recommendations. In addition, the benchmark results on translated
STS-B data show that KB-BERT outperforms other Swedish semantic representation models
on STS tasks [51].

3.2.2. Contextual Embeddings from a Pre-Trained Large Language Model

GPT (Generative Pre-trained Transformer) is an autoregressive and unidirectional
transformer model [52]. Although GPT models were originally designed for text generation
tasks, GPT-based embedding models have also been used for text similarity-related tasks
(https://platform.openai.com/docs/guides/embeddings. Last accessed 28 November
2023) [53]. text-embedding-ada-002 (henceforth referred to as ADA-002) is OpenAI’s
second-generation embeddings-as-a-service API endpoint model specifically adapted for
text embeddings and is multilingual (including Swedish). ADA-002 is recommended
by OpenAI for text similarity tasks since it outperforms the previously most capable
first-generation embedding model text-similarity-davinci-001 on most text similarity-
related tasks and is also cheaper and computationally lighter [54]. The first-generation
embedding models of OpenAI are reported to be GPT-based (https://platform.openai.
com/docs/guides/embeddings. Last accessed 28 November 2023) [53]. However, as a
proprietary commercial product, no detailed information, such as architecture, training
data, or model, has been disclosed publicly for ADA-002 since its release in late 2022. With
the recent popularization of LLMs and embeddings-as-a-service, we include ADA-002 for
semantic similarity in this study. ADA-002 embeddings have 1536 dimensions [54], and we
assume these have been derived from an LLM.

We have also explored the possibility of using GPT-SW3—AI Sweden’s recent release,
which is multilingual but focuses on the Nordic languages [55]. It is the first truly large-
scale generative language model for the Swedish language and is based on the same
technical principles as the much-discussed GPT-4 (https://www.ai.se/en/project/gpt-sw3.
Last accessed 28 November 2023). The current status of GPT-SW3 is not suitable for
sentence embeddings since it is not especially further trained for embeddings (https:
//lab.kb.se/leaderboard/results. Last accessed 28 November 2023). Yet, it provides
possibilities for a Swedish GPT-based text embedding solution, which is Open Source in
contrast to OpenAI.

3.2.3. Static Embeddings from a Concept-Based Knowledge Graph

Compared to contextual embeddings derived from pre-trained language models, the
strength of knowledge graph models lies in their ability to represent structured information
and explicit relationships. The integration of knowledge graphs in AI systems may enhance
the performance and explainability of the system [12]. There is a wide range of pre-trained
knowledge graph models, such as those mentioned in Section 2.2; however, we find only
two options for the Swedish language: ConceptNet Numberbatch and mLUKE. Our further
examination shows that mLUKE has only 30,129 Swedish entities [47], while Numberbatch
has 167,321 entities (https://github.com/commonsense/conceptnet-numberbatch. Last
accessed 28 November 2023) [27].

ConceptNet is a knowledge graph that is designed to capture common-sense knowl-
edge and relationships between concepts [27]. It calculates word embeddings directly
from a sparse, symmetric term–term matrix that represents the ConceptNet graph, using
positive pointwise mutual information and truncated singular value decomposition [27].
ConceptNet Numberbatch is a pre-trained ConceptNet extention model. It is an ensemble
of models that combines knowledge and semantic properties from ConceptNet, Word2Vec,
and GloVe, using a variation on retrofitting [27]. Therefore, it is a ConceptNet-based
ensemble model.

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://www.ai.se/en/project/gpt-sw3
https://lab.kb.se/leaderboard/results
https://lab.kb.se/leaderboard/results
https://github.com/commonsense/conceptnet-numberbatch
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3.3. Semantic Textual Similarity

Given two input texts, we want to derive a score that measures their similarity at a seman-
tic level, rather than their simple lexical features [56]. Specifically, in our study, we define each
exercise as qi from the query set {Q : q1, . . . , qi, . . . , qn} to conduct the similarity search in the
textbook corpus {C : {p1 : c1

1, . . . , c1
n1
}, . . . , {pk : ck

1, . . . , ck
j , . . . , ck

nk
}, . . . , {pP : cP

1 , . . . , cP
nP
}},

where P is the number of web pages (sections) in the corpus, nk is the number of paragraphs
on page k, vi is the embedding vector of query qi, uk

j is the embedding vector of the jth
paragraph on page k.

We employ cosine similarity to measure semantic textual similarity between qi and
page k:

Sim(vi, uk) =
vi · uk

| vi || uk |
, (1)

where uk is the embedding vector of page k.

3.4. Pooling Methods

In our previous study [16], max-pooling was shown to surpass mean-pooling and
adjusted-mean pooling in both Recall@3 and MRR. We therefore adopt max-pooling as the
paragraph-level pooling strategy in this study.

Max-pooling: max
1≤j≤nk

Sim(vi, uk
j ) (2)

ConceptNet Numberbatch also needs a word-level pooling method to be defined since
the model is concept-based. When there is more than one identified concept according to
the ConceptNet vocabulary, we use mean-pooling as the concept-level pooling method,
following [57]. When no concept can be identified in the text, we set the embedding vector
to be a zero vector.

For ConceptNet Numberbatch, it is necessary to define a word-level pooling method
since the model is concept-based. When multiple concepts are identified based on the
ConceptNet vocabulary, mean-pooling is employed as the concept-level pooling method,
as described in [57]. When no concept is identified, the embedding vector is set to a zero
vector [58].

3.5. Ensemble Methods

In the context of NLP, ensembles enable the fusion of distinct semantic representations
for a more comprehensive and multifaceted representation of language. It has, moreover,
been shown that the utilization of ensemble models can bring advantages such as increased
robustness, improved generalization, and overall superior performance compared to the
deployment of individual models [10]. We want to combine the power of state-of-the-art
transformer models with a knowledge graph-based model through different ensemble
strategies. We employ commonly used ensemble methods due to not requiring any further
pre-training or fine-tuning. In addition, certain linear ensemble methods allow us to
further examine the contribution of contextual embeddings and knowledge graph-based
embeddings when they are fused.

3.5.1. Learning a Projection Function

We train and learn a projection function on the intersection words of the pre-trained
embedding models (SBERT and ADA-002) and ConceptNet Numberbatch, denoted by
⇒. The training direction is from SBERT or ADA-002 feature spaces to the ConceptNet
Numberbatch space. This is because the pre-trained language models such as SBERT and
ADA-002 tend to contain more words than ConceptNet Numberbatch since they are trained
on large datasets and use WordPiece tokenization.
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Given {E : e1, . . . , ei, . . . , e167321} as the concept vocabulary of ConceptNet Number-
batch, {Y : y1, . . . , yi, . . . , y167321} is the corresponding ConceptNet Numberbatch em-
bedding vector set, and {W : w1, . . . , wi, . . . , w167321} is the corresponding concept entity
embeddings from the pre-trained contextual language models, i.e., SBERT or ADA-002,
respectively, in our case. A function f for f (W) ≈ Y is trained. Here, we represent the
function as a multi-layer perceptron (MLP). Starting from initial random weights, MLP
minimizes the loss function by repeatedly updating these weights. After computing the
loss, a backward pass propagates it from the output layer to the previous layers, providing
each weight parameter with an update value meant to decrease the loss. We set the MLP to
be two hidden layers and train it with the sum of two loss functions: mean squared error
(MSE) + mean cosine similarity (MCS). Other parameters are set: epochs = 50, batch_size =
32, validation_split = 0.2, optimizer = adam. The MLP is trained on the intersecting words
of SBERT|ADA-002 embeddings and ConceptNet Numberbatch. After training the MLP,
the remaining word embeddings that exist in SBERT|ADA-002 but not ConceptNet Num-
berbatch are projected into the ConceptNet Numberbatch space. Note that we project from
high-dimensional spaces of pre-trained language models to the 300-dimension ConceptNet
Numberbatch space, as SBERT and ADA-002 embeddings have 768 and 1536 dimensions,
respectively. Figure 2 provides an overview of the proposed method.

Figure 2. Overview of ensemble method based on projecting contextual embeddings of pre-trained
language models into the ConceptNet Numberbatch space. CN-NB * = ConceptNet Numberbatch.
PLM † = Pre-trained Language Model.

3.5.2. Stacking Embeddings

Stacking the embeddings’ vectors from different models simply means concatenating
the vectors vertically to create a combined higher-dimension embedding vector. This is
another early fusion ensemble method. We denote this method using

⊕
. For the input text,

we first retrieve sentence embeddings from SBERT|ADA-002. For sentence embeddings
from ConceptNet Numberbatch, we follow the method explained in Section 3.4. We then
stack the two sentence embedding vectors. The dimension of the stacked embeddings is
equal to the sum of the two embedding vectors’ dimensions. Figure 3 provides an overview
of the proposed method.
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Figure 3. Overview of ensemble method based on stacking the embeddings from two models.
CN-NB * = ConceptNet Numberbatch. PLM † = Pre-trained Language Model.

3.5.3. Linear Interpolation of Similarity Scores

Fusing the similarity scores of two models occurs after each model has measured the
semantic textual similarity of each text pair. Hence, this is a late fusion ensemble method.
A linear interpolation is typically a weighted average where different weights are applied
to each model’s embeddings (see Equation (3)). The weights can be learned during training
or assigned based on knowledge of the performance of individual models. We denote this
method using ++.

Sim f used
qi ,tk

= α · SimPLM
qi ,tk

+ (1 − α) · SimCN−NB
qi ,tk

, (3)

where Simqi ,tk is the similarity between question qi and section tk. The default α is set
to be 0.5, which means that pre-trained language model embeddings and ConceptNet
Numberbatch embeddings have equal weight in the fusion. In Section 4.3, we present the
linear interpolation results in detail when the alpha is set between 0 and 1 with the gradient
0.1. Figure 4 provides an overview of the proposed method.

Figure 4. Overview of ensemble method based on fusing the similarity scores through a linear
interpolation. CN-NB * = ConceptNet Numberbatch. PLM † = Pre-trained Language Model.
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3.6. Evaluation Metrics

We request the models to recommend three relevant sections for each exercise, and
the top three sections with the highest cosine similarity scores will be recommended. We
adopt Recall@3 and Mean Reciprocal Rank (MRR) to evaluate the results of our content
recommendation systems.

• Recall@3 is a modified version of the original recall metric, which measures binary
output. Top-N recall is also called high Hits@N. For each query, if the recommended
top three sections include our TRUE-labeled section, it returns 1, otherwise returns
0. The Recall@3 score is then obtained by averaging the Boolean values across all n
queries. (See Equations (4) and (5).)

RecBooleani =

{
1 if pTrue

i ∈ Top@3(prec
1 , prec

2 , prec
3 )

0 otherwise
(4)

Recall@3 =
1
n
·

n

∑
i=1

RecBooleani (5)

• Mean Reciprocal Rank (MRR) calculates the average of the inverse of the ranks where
the first relevant section was retrieved for a set of queries. It assesses the model’s
effectiveness in recommending the TRUE relevant section towards the top of the
ranking as in Equation (6).

MRR =
1
n
·

n

∑
i=1

1
ranki

, (6)

where ranki is the rank position of the TRUE relevant page for the ith query.

3.7. Significance Testing

In order to see if the observed differences between the evaluated models is statistically
significant or occurred due to chance, we perform significance testing. More specifically,
we employ McNemar’s test, which is also referred to as “within-subjects chi-squared test”.
It is a statistical test that is used when comparing two models or interventions on binary
outcomes. The test analyzes paired dichotomous measurements in a 2 × 2 contingency
table and assesses whether there is a significant difference in the marginal frequencies of
two related variables. In machine learning, McNemar’s test can be employed to evaluate
and compare the predictions of two models to each other by examining the instances where
their predictions differ. By comparing the number of discordant pairs (cases where one
model is correct while the other is incorrect), McNemar’s test helps to identify whether the
observed differences are statistically significant.

In our experiments, we apply McNemar’s test to compare the performance of selected
pairs of models. Similar to Recall@3, for each query, if the recommended top three sections
include our TRUE-labeled section, it returns 1, otherwise it returns 0. The 2× 2 contingency
table is calculated as in Table 2, with 1 representing OK and 0 representing FAIL.

Here, the null hypothesis for McNemar’s test is that the content recommender per-
forms equally well to hit the True-labeled section in the top three recommendations with
model 1 and model 2 (i.e., there is no difference between the outcomes of the two models).
The alternative hypothesis, then, is that there is a statistical difference in the performance of
the two tested models’ outcomes. The McNemar test statistic (“chi-squared”) is computed
as follows:

χ2 =
(B − C)2

B + C
(7)

A significance level of α = 0.05 was used for hypothesis testing. This means that
if McNemar’s test gives a p-value below 0.05, we have less than a 5% probability of
erroneously rejecting the null hypothesis.
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Table 2. The contingency table in McNemar’s test.

Model 1 OK Model 1 FAIL
Model 2 OK A B

Model 2 FAIL C D

4. Results

In this section, we first present the individual results using embeddings from three
types of models, i.e., contextual embeddings from two pre-trained language models (SBERT
and ADA-002) and static embeddings trained using a concept-based knowledge graph
(ConceptNet Numberbatch). Following that, three ensemble methods are evaluated that
combine knowledge graph-based embeddings and contextual embeddings. We further
analyze the results from the late-fusion ensemble model using linear interpolation. We also
report results from exploring the use of ConceptNet Numberbatch with domain-specific
concept filtering. Finally, we describe potential differences in performance across subjects
and types of exercises.

4.1. Evaluation of Single Models

Table 3 shows the results of using embeddings derived from a single model. As can
be seen, ADA-002 demonstrates superior performance compared to SBERT with respect
to both Recall@3 and MRR, in all subjects and both exercise types, with the sole exception
being biology quizzes for Recall@3. The McNemar test shows that Recall@3 of ADA-002 is
significantly better than SBERT (p = 0.000) for study questions, although not for quizzes
(p = 0.081). Both ADA-002 and SBERT significantly outperform ConceptNet Numberbatch
(both p = 0.000). The results are in line with [34], where contextual embeddings are used
to represent entity descriptions in the entity typing task, and the results validate the
superiority of ADA-002 in semantic representation over DistilBERT, a variation of the BERT
model.

Table 3. Results of using embeddings derived from a single model. (Bold: max.).

Quiz Study Question

Recall@3 MRR Recall@3 MRR

Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean

SBERT 0.921 0.977 0.957 0.951 0.724 0.922 0.814 0.820 0.864 0.980 0.908 0.917 0.721 0.907 0.758 0.795
ADA-
002 0.909 0.997 0.986 0.964 0.775 0.966 0.881 0.874 0.916 0.984 0.960 0.953 0.773 0.926 0.865 0.855

CN-NB 0.830 0.951 0.918 0.899 0.665 0.897 0.755 0.773 0.742 0.856 0.827 0.808 0.610 0.760 0.691 0.687

Bio. = Biology, Soc. = Social Science, Phy. = Physics. CN-NB = ConceptNet Numberbatch.

4.2. Evaluation of Ensemble Models

Table 4 shows the results of the three strategies for creating ensembles of contextual
embeddings from a pre-trained language model and static embeddings from ConceptNet
Numberbatch. We divide our analysis of the results as follows: (i) evaluation within
each group, i.e., combining either SBERT or ADA-002 with ConceptNet Numberbatch,
(ii) evaluation of the projection-based ensembles, (iii) evaluation across groups, i.e., based
on SBERT or ADA-002, and (iv) a summative analysis.

4.2.1. Combining Contextual Embeddings with ConceptNet Numberbatch

In the SBERT group, the late fusion ensemble, SBERT ++ CN-NB @0.5 consistently
achieves the best results with respect to both Recall@3 and MRR in all subjects and both
exercise types. Here, we take an unweighted average of the cosine similarity scores, i.e.,
α = 0.5, so that the two models contribute equally. The McNemar test shows that the
differences in Recall@3 between SBERT ++ CN-NB @0.5 and the single use of SBERT are
statistically significant (quiz: p = 0.029, study question: p = 0.000). Additionally, SBERT
++ CN-NB @0.5 performs significantly better in Recall@3 than SBERT

⊕
CN-NB for study

questions (p = 0.000), although not for quizzes (p = 0.727).
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In the ADA-002 group, ADA-002
⊕

CN-NB, i.e., a simple embedding vector concate-
nation in an early fusion fashion, exhibits the best results for all the mean performances,
except slightly lower mean Recall@3 than using ADA-002 alone. A closer comparison be-
tween the results of the single use of ADA-002 and the best performer ADA-002

⊕
CN-NB

shows that the difference is very subtle and the advantages can almost be ignored. McNe-
mar’s test shows that the differences in Recall@3 between ADA-002

⊕
CN-NB and using

ADA-002 alone are not significant (quiz: p = 1.000, study question: p = 0.203). Moreover,
ADA-002

⊕
CN-NB outperforms ADA-002 ++ CN in all mean Recall@3s and MRRs.

4.2.2. Projecting Contextual Embeddings into ConceptNet Numberbatch Space

The results of learning a projection from contextual embeddings to ConceptNet Num-
berbatch embeddings are generally poor. The performance is significantly worse than
any individual model of SBERT, ADA-002, or ConceptNet Numberbatch (all p-values for
McNemar’s test are 0.000 for the Recall@3s).

We find that the reason may lie in the fact that when projecting high-dimension vectors
from a larger feature space (here, DimSBERT = 768, DimADA−002 = 1536) to the ConceptNet
Numberbatch space (DimCN−NB = 300), we lose a large number of dimensions that may
represent important contextual and semantic information. The reference experiment [41]
that was able to achieve better results can be attributed to the fact that the embedding model
used to project to ConceptNet Numberbatch is FastText, which has the same embedding
dimension as ConceptNet Numberbatch. Therefore, the projection does not need to do any
linear transformation, such as Principal Component Analysis, to reduce the vector to the
same dimension or a nonlinear neural network learning for the mapping with the cost of
losing valuable information. These things considered, the task in the reference experiment
is a word/phrase level task, not a sentence level task as ours that needs to understand
the context.

4.2.3. Comparing Ensembles with Different Contextual Embeddings

When we cross-analyze the SBERT and ADA-002 groups and compare the results of
SBERT ++ CN-NB @0.5 (the best in the SBERT group) and the single use of ADA-002 (the
best in the ADA-002 group), ADA-002 is shown to have better overall performance in the
mean Recall@3 and MRR, except Recall@3 for quizzes. A further McNemar’s test shows
that the difference in Recall@3 for quizzes is not significant (p = 1.000).

4.2.4. Summative Analysis

In conclusion, using contextual embeddings from ADA-002 is shown to yield the
overall best performance. The results not only validate the superiority of the ADA-002
model in semantic representation but also demonstrate that ADA-002 may have already
embedded the concept and knowledge graph features that ConceptNet Numberbatch
contains. Adding extra knowledge to SBERT can significantly boost the performance of the
SBERT model through a linear interpolation of the similarity scores from each individual
model. On the contrary, there is no significant gain when doing the same for ADA-002. The
general performance of stacked embeddings of ADA-002 and ConceptNet Numberbatch
is slightly better than using ADA-002 alone, but the advantage of this integration is very
minor. The results align with previous work [34,40], where their empirical results also
show that bringing in external knowledge through embeddings may not be useful or even
harmful for certain tasks.

Furthermore, ADA-002 alone outperforms the ensemble of SBERT ++ CN-NB @0.5.
In addition, learning the projection between embeddings may cause a loss of valuable
information in the embeddings, especially when there is a reduction of dimensions as a
result of the projection.



Future Internet 2024, 16, 12 14 of 21

Table 4. Ensemble model outputs. (Bold: max. within each group).

Quiz Study Question

Recall@3 MRR Recall@3 MRR

Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean

SBERT 0.920 0.976 0.957 0.951 0.724 0.922 0.814 0.820 0.864 0.980 0.908 0.917 0.721 0.907 0.758 0.795
SBERT ⇒ CN-NB 0.739 0.912 0.875 0.842 0.596 0.829 0.717 0.714 0.680 0.908 0.788 0.792 0.549 0.814 0.653 0.672
SBERT

⊕
CN-NB 0.921 0.977 0.964 0.954 0.729 0.920 0.798 0.816 0.866 0.980 0.911 0.919 0.720 0.911 0.757 0.796

SBERT ++ CN-NB @0.5 0.928 0.995 0.971 0.965 0.770 0.951 0.843 0.855 0.902 0.986 0.944 0.944 0.743 0.925 0.804 0.824

ADA-002 0.909 0.997 0.986 0.964 0.775 0.966 0.881 0.874 0.916 0.984 0.960 0.953 0.773 0.926 0.865 0.855
ADA-002 ⇒ CN-NB 0.470 0.684 0.607 0.587 0.398 0.552 0.543 0.498 0.466 0.565 0.559 0.530 0.399 0.485 0.472 0.452
ADA-002

⊕
CN-NB 0.909 1.000 0.979 0.963 0.779 0.971 0.874 0.874 0.918 0.989 0.969 0.959 0.784 0.937 0.855 0.859

ADA-002 ++ CN-NB @0.5 0.894 1.000 0.968 0.954 0.783 0.964 0.840 0.862 0.869 0.978 0.931 0.926 0.729 0.907 0.794 0.810

Notation: Bio. = Biology, Soc. = Social Science, Phy. = Physics. CN-NB = ConceptNet Numberbatch. ⇒: learning
a projection to,

⊕
: concatenate embedding vectors, ++: interpolate the similarity scores. @0.5: α = 0.5.

4.3. Linear Interpolation Analysis

Figure 5 shows the results of fusing the cosine similarities from the outputs of indi-
vidual models through linear interpolation with different α values. When comparing the
results from the two datasets, it can be noted that a very similar pattern of performance is
achieved for quiz and study questions. The interpolants of fusing SBERT and ConceptNet
Numberbatch reach peaks somewhere in the middle. The peak αs lie in 0.3, 0.5, 0.5, and
0.5, respectively, for the Recall@3 and MRR values of quizzes and study questions. This
suggests that ConceptNet Numberbatch does bring value to SBERT, and the contributions
are almost equivalent compared to SBERT. However, when it comes to ADA-002, the
pattern is that the performance of the similarity fusion models perform better when αs
increase. The αs that achieve the best performances are found at 1, 0.8, 0.9, and 0.9 for the
Recall@3 and MRR values of quizzes and study questions. This implies that ConceptNet
Numberbatch provides barely any value to ADA-002 in the similarity fusion model. When
the fusion model reaches the highest Recall@3 for quizzes with α = 1, it indicates that
adding ConceptNet knowledge even harms the performance.

Figure 5. Linear interpolants between similarity scores when fusing SBERT|ADA002 and ConceptNet
Numberbatch for different alphas.
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4.4. Evaluation of ConceptNet with Domain-Specific Concept Filtering

ConceptNet collected knowledge from many sources, including Wiktionary, WordNet,
etc., [27]. The concepts in ConceptNet vocabulary can be very trivial and can be distant
from the real subject-wise educational domain. Therefore, when transforming Concept-
Net’s concept embeddings to representative concept-based sentence embeddings, some
“concepts” in ConceptNet’s vocabulary may not be educational domain concepts, possibly
resulting in the sentence embeddings becoming diluted in their representation.

Based on this, we explore adding an extra layer to filter the identified concepts from
the ConceptNet vocabulary. Such a concept filter can be built by training a domain-
specific concept extraction model [59,60], or using some pre-trained “concept” extractor
such as TagMe (entity linker) [61], DBpedia Spotlight (DBpedia hyperlinks), or TopicRank
(keyphrase extraction) [62]. When it comes to terminology, there are some subtle differences
for the real meaning for mentions, keywords, named entities, knowledge graph entities,
concepts, educational concepts, or domain-specific educational concepts, which are the
outputs from these “concept” extractors. Therefore, the objectives from different “concept”
extractors can be different. Here, we instead use the gold-labeled concepts in the digital
textbooks to construct a subject-wise domain concept dictionary. Figure 6 illustrates the idea
of the ConceptNet model with domain-specific concept filtering. We posit that these filtered
concepts are more relevant in the context of the input texts compared to the complete
mapping of all concepts from the ConceptNet vocabulary.

Figure 6. Illustration of using the ConceptNet Numberbatch model with domain-specific concept
filtering. * CN-NB = ConceptNet Numberbatch.

Table 5 shows the results of using ConceptNet Numberbatch with domain-specific
concept filtering. However, compared to using ConceptNet Numberbatch alone, domain-
specific concept filtering does not improve the results. Figure 7 shows how textbook
content is mapped to ConceptNet. It seems that almost all the words can be mapped,
but “naturvetenskapliga” (English translation: natural scientific) as a compound word
can only be found separately, although this is a common word in the Swedish language.
Similarly, “Carl von Linné” is tagged word by word without having the famous whole name
as a concept phrase. Some words (“stämband”, “förtäting”, and “förtunning”) (English
translation: “vocal cords”, “thickening”, and “thinning”) are lacking inflectional forms. The
results indicate that: (1) other non-core domain conceptual words can also provide useful
information to the sentence embeddings, which explains why the original ConceptNet
Numberbatch model performs better; (2) the training data of ConceptNet for the Swedish
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language is not large enough to cover all words’ inflectional forms, compound words,
and phrases.

Table 5. Results of the ConceptNet model with domain-specific concept filtering.

Quiz Study Question

Recall@3 MRR Recall@3 MRR

Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean Bio. Soc. Phy. Mean

CN-NB 0.830 0.951 0.918 0.899 0.665 0.897 0.755 0.773 0.742 0.856 0.827 0.808 0.610 0.760 0.691 0.687
Filtered CN-NB 0.777 0.746 0.757 0.760 0.623 0.668 0.620 0.637 0.626 0.588 0.632 0.615 0.514 0.532 0.517 0.521

Bio. = Biology, Soc. = Social Science, Phy. = Physics. CN-NB = ConceptNet Numberbatch.

Figure 7. Examples of textbook content mapped to ConceptNet. Underlined: exists in ConceptNet.
Red colored: part of word/phrase exists in ConceptNet.

4.5. Evaluation for Different Subjects and Exercise Types

Regarding subject matter, the general model performances across the three subjects
follow the order: SocialScience > Physics > Biology. The models have better performance
in Social Science than Natural Science in the STS tasks, which aligns with our previous
study. The reason can be that natural science may involve more complex inferences and
reasoning, with texts sometimes incorporating symbols, equations, or calculations, posing
challenges for STS tasks.

In terms of exercise types, the mean Recall@3 and MRR values for quizzes consistently
surpass those of study questions. The explanation can be that the answers to the quizzes
provide more useful information for STS compared to study questions that contain no
answers. Additionally, the best and worst mean performances generally stem from the same
models for quizzes and study questions, respectively, as in the analysis in Sections 4.1–4.4.

5. Discussion

The results demonstrate that using powerful text representations in the form of embed-
dings derived from a large, pre-trained language model allows for the development of an
STS-based content recommendation system that is capable of automatically and accurately
linking exercises with textbook content. This approach is fully unsupervised, i.e., it does
not require training or fine-tuning models based on task-specific labeled data, which is
otherwise a major bottleneck in the development of AI, generally, but also in the educational
domain and especially for smaller languages such as Swedish. Taking cost into account,
the results, moreover, showed that combining two open-source models—i.e., SBERT and
ConceptNet Numberbatch—in an ensemble can yield results that are competitive with
those produced using OpenAI’s proprietary embeddings model, ADA-002. In this setting,
ensembles that combine the respective advantages of contextual embeddings and static
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embeddings trained using a knowledge graph proved to be effective. However, the results
showed that no significant benefit was obtained when having access to higher-dimensional
and more powerful text embeddings, such as ADA-002.

We have presented an approach that can be used for resource-efficient development
of an STS-based educational content recommendation system that was shown capable of
accurately linking learning materials, here, in the form of textbook content and exercises.
We argue that this forms a backbone component of an educational content recommendation
system, which can be further developed by integrating student models and knowledge
models, with the aim of providing personalized recommendations tailoring learning con-
tent to individual needs. Crucially, linking learning materials provides important value
to learners, educators, and creators of digital learning materials. For learners, it can, for
instance, help with self-regulated learning by recommending learning material—e.g., in
the form of textbook content—that is relevant to an exercise and provide additional input
to formative assessment activities. Especially when combined with student’s performances
on the exercises or assessment tests, for instance, if a student grapples with a specific
concept elucidated in the textbook that is revealed through failing the corresponding re-
lated exercise or test question, the recommendation system can discern this challenge and
proffer targeted learning content for remediation. This dynamic and adaptive learning path
not only fosters deeper comprehension, but also bolsters engagement through real-time
feedback and interactive assessment tools. Beyond individual student benefits, it can aid
educators by pinpointing areas within a class or student group that require additional
attention based on exercise or test performances. Educators can thereby, accordingly, refine
instructional strategies, identify curricular gaps, and ensure that teaching methodologies
align with students’ evolving needs, which actively contribute to the pedagogical landscape.
It can also be used by digital textbook creators in assessing the coverage of exercises with
respect to textbook content and help to inform the design of exercises to align with chapter
content. Thus, linking learning resources and building such AI-enhanced educational rec-
ommendation systems are foundational for intelligent textbook and technology-enhanced
teaching and learning. However, to bridge the gap between technological expectations
and user experiences, thorough testing, evaluation, and validation in real-world settings
with educators and learners are imperative. Future work should expand testing to cover
multiple subjects, languages, cross-cultural users, and diverse educational contexts to
further enhance the pedagogical value of the proposed technical solution.

In this study, exercises were linked to textbook content at the level of textbook sections.
This choice was primarily a result of the structure of the digital textbooks that were used,
where there was a 1:1 mapping between exercises and textbook sections. While this arguably
seems reasonable in terms of utility, one could consider recommending textbook content at
different levels of granularity, e.g., in the form of chapters or sub-sections. The performance
of linking exercises to textbook content at the chapter level would probably increase due
to it likely being an easier task, while utility would most probably decrease. On the other
hand, utility could potentially increase if recommendations were made on the sub-section
or even paragraph level, depending on the nature of the exercise. In future work, we
aim to evaluate our approach at different levels of abstraction, which will require manual
annotation of the data or the involvement of human evaluators. Beyond different structural
levels within textbook content, this technique can also be used to recommend and link
various learning materials, such as curriculum goals, lecture slides, concept dictionaries,
and external supporting resources. With the aid of an AI-enhanced content recommender,
these learning materials can be harnessed effectively to cater to the requirements of both
educators and students.

Our first attempt to evaluate Swedish knowledge graph-based ConceptNet Number-
batch model reveals that the model is trained under way too low a coverage of sources
in the Swedish language, which results in an uncomplete Swedish vocabulary, leading to
unstable and underperforming results. This may have an impact when using ConceptNet
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Numberbatch alone or integrating with other models. The absence of a well-established
pre-trained Swedish knowledge graph model leaves space for future research.

6. Conclusions

In this paper, we have evaluated the use of different pre-trained embeddings in an
educational content recommendation system based on textual semantic similarity. The
embeddings were derived from three types of models: (i) contextual embeddings from a
pre-trained language model (SBERT), (ii) contextual embeddings from an LLM (ADA-002),
and (iii) static embeddings trained using a concept-based knowledge graph (ConceptNet
Numberbatch). In addition to evaluating the models individually, various ensembles were
explored based on different strategies for combining pre-trained language models with
a knowledge graph-based model, with the aim of leveraging the strengths of different
models. The models were evaluated in the context of educational content recommendation,
specifically in order to link two types of exercises (quizzes and study questions) to textbook
content in an unsupervised fashion.

The contributions of this study are manifold, encompassing the empirical demonstra-
tion and evaluation of using pre-trained language models and knowledge graph-based
model, individually and combined, when linking textbook content to exercises, the elu-
cidation of methodologies for ensembling embeddings, and the derivation of valuable
insights and practical guidance based on the results and analysis in the construction of
educational recommendation systems. The experimental results revealed that leveraging
the power of contextual embeddings from an LLM, i.e., ADA-002, produced the most
accurate recommendations, in terms of Recall@3 and MRR, across three subjects (biology,
social science, and physics) and for both quizzes and study questions. While the ensembles
yielded improvements when combining contextual embeddings from SBERT and static
embeddings trained using ConceptNet, there was no gain when contextual embeddings
from an LLM, i.e., from ADA-002, were part of the ensemble. The performance of the
best-performing model was high for both types of exercises, resulting in a mean Recall@3
of 0.96 for quizzes and 0.95 for study questions, which means that, for 95–96% of exercises,
the correct textbook section was identified in the top three recommendations. It was also
observed that the models have somewhat better performance in social science than in
natural science subjects. The strong performance demonstrates the feasibility of using
STS based on embeddings from pre-trained language models for an educational content
recommendation, laying the foundation for developing a comprehensive personalized
adaptive content recommendation system.
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