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Abstract
This thesis presents a critical examination of the positive impact of Machine Learning (ML) and the Internet of Medical
Things (IoMT) for advancing the Clinical Decision Support System (CDSS) in the context of COVID-19 and early sepsis
detection.

It emphasizes the transition towards patient-centric healthcare systems, which necessitate personalized and participatory
care—a transition that could be facilitated by these emerging fields. The thesis accentuates how IoMT could serve as a
robust platform for data aggregation, analysis, and transmission, which could empower healthcare providers to deliver
more effective care. The COVID-19 pandemic has particularly stressed the importance of such patient-centric systems for
remote patient monitoring and disease management.

The integration of ML-driven CDSSs with IoMT is viewed as an extremely important step in healthcare systems
that could offer real-time decision-making support and enhance patient health outcomes. The thesis investigates ML's
capability to analyze complex medical datasets, identify patterns and correlations, and adapt to changing conditions, thereby
enhancing its predictive capabilities. It specifically focuses on the development of IoMT-based CDSSs for COVID-19 and
early sepsis detection, using advanced ML methods and medical data.

Key issues addressed cover data annotation scarcity, data sparsity, and data heterogeneity, along with the aspects of
security, privacy, and accessibility. The thesis also intends to enhance the interpretability of ML prediction model-based
CDSSs. Ethical considerations are prioritized to ensure adherence to the highest standards.

The thesis demonstrates the potential and efficacy of combining ML with IoMT to enhance CDSSs by emphasizing the
importance of model interpretability, system compatibility, and the integration of multimodal medical data for an effective
CDSS.

Overall, this thesis makes a significant contribution to the fields of ML and IoMT in healthcare, featuring their combined
potential to enhance CDSSs, particularly in the areas of COVID-19 and early sepsis detection.

The thesis hopes to enhance understanding among medical stakeholders and acknowledges the need for continuous
development in this sector.
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Abstract

This thesis presents a critical examination of the positive impact of Machine
Learning (ML) and the Internet of Medical Things (IoMT) for advancing the
Clinical Decision Support System (CDSS) in the context of COVID-19 and
early sepsis detection.

It emphasizes the transition towards patient-centric healthcare systems,
which necessitate personalized and participatory care—a transition that could
be facilitated by these emerging fields. The thesis accentuates how IoMT could
serve as a robust platform for data aggregation, analysis, and transmission,
which could empower healthcare providers to deliver more effective care. The
COVID-19 pandemic has particularly stressed the importance of such patient-
centric systems for remote patient monitoring and disease management.

The integration of ML-driven CDSSs with IoMT is viewed as an extremely
important step in healthcare systems that could offer real-time decision-making
support and enhance patient health outcomes. The thesis investigates ML’s
capability to analyze complex medical datasets, identify patterns and correla-
tions, and adapt to changing conditions, thereby enhancing its predictive ca-
pabilities. It specifically focuses on the development of IoMT-based CDSSs
for COVID-19 and early sepsis detection, using advanced ML methods and
medical data.

Key issues addressed cover data annotation scarcity, data sparsity, and data
heterogeneity, along with the aspects of security, privacy, and accessibility.
The thesis also intends to enhance the interpretability of ML prediction model-
based CDSSs. Ethical considerations are prioritized to ensure adherence to the
highest standards.

The thesis demonstrates the potential and efficacy of combining ML with
IoMT to enhance CDSSs by emphasizing the importance of model interpretabil-
ity, system compatibility, and the integration of multimodal medical data for
an effective CDSS.

Overall, this thesis makes a significant contribution to the fields of ML and
IoMT in healthcare, featuring their combined potential to enhance CDSSs,
particularly in the areas of COVID-19 and early sepsis detection.

The thesis hopes to enhance understanding among medical stakeholders
and acknowledges the need for continuous development in this sector.
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Sammanfattning

Denna avhandling presenterar en kritisk granskning av den positiva effekten av
maskininlärning (ML) och Internet of Medical Things (IoMT) för att främja
det kliniska beslutsstödsystemet (CDSS) kopplat till covid-19 och tidig upp-
täckt av sepsis.

Avhandlingen betonar övergången mot patientcentrerade vårdsystem som
kräver personlig och deltagande vård – en övergång som skulle kunna under-
lättas av dessa framväxande områden. Studien visar hur IoMT kan fungera
som en robust plattform för dataaggregering, analys och överföring, vilket kan
ge vårdgivare möjlighet att erbjuda mer effektiv vård. Covid-19-pandemin har
särskilt betonat vikten av sådana patientcentrerade system för fjärrövervakning
av patienter och sjukdomshantering.

Integreringen av ML-drivna CDSS med IoMT ses som ett extremt vik-
tigt steg i vårdsystemen som kan erbjuda stöd för beslutsfattande i realtid och
förbättra patienternas hälsoutfall. Avhandlingen undersöker maskininlärnin-
gens förmåga att analysera komplexa medicinska dataset, identifiera mönster
och korrelationer, samt göra anpassningar till föränderliga förhållanden, vilket
därmed förbättrar dess prediktiva förmågor. Den fokuserar specifikt på utveck-
lingen av IoMT-baserade CDSS för covid-19 och tidig upptäckt av sepsis, med
användning av avancerade ML-metoder och medicinska data.

Nyckelfrågor som adresseras täcker bristen på dataannotering, datasprid-
ning och dataheterogenitet, tillsammans med aspekter av säkerhet, integritet
och tillgänglighet. Avhandlingen avser också att förbättra tolkbarheten av ML-
prediktionsmodellbaserade CDSS. Etiska överväganden prioriteras för att säk-
erställa efterlevnad av de högsta standarderna.

Avhandlingen demonstrerar potentialen och effektiviteten i att kombinera
ML med IoMT för att förbättra CDSS genom att betona vikten av modelltolk-
barhet, systemkompatibilitet och integrering av multimodala medicinska data
för ett effektivt CDSS.

Sammantaget bidrar denna avhandling till områdena ML och IoMT inom
hälsovården, med deras kombinerade potential att förbättra CDSS, särskilt
inom områdena covid-19 och tidig upptäckt av sepsis.

Förhoppningen är att avhandlingen ska förbättra förståelsen bland medicin-
ska intressenter och understryka behovet av kontinuerlig utveckling inom denna
sektor.
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1. Introduction

1.1 Background

The primary objectives of healthcare systems are to promote health, prevent
disease, and provide medical care. Traditional healthcare generally comprises
various medical interventions, such as diagnosis, treatment, and rehabilitation,
delivered by skilled medical professionals such as doctors, nurses, and ther-
apists. These traditional systems uphold a high standard of care by applying
evidence-based practices [7; 8].

In contrast, patient-centric healthcare systems take a different approach
to providing care, placing individual patients’ needs and preferences at the
forefront. Their goal is to deliver care tailored to each patient’s unique situa-
tion by encouraging patients to become more actively engaged in their health-
care while acknowledging their concerns and considerations. While traditional
healthcare systems are mainly focused on the provision of standardized treat-
ments adhering to clinical guidelines and best practices, they may not always
account for individual patient needs or offer the same level of patient engage-
ment and satisfaction as the patient-centric systems [9–12].

Increasingly, the large volume of medical data generated by various de-
vices [13] is presenting opportunities to enhance patient-centric healthcare
systems. This data offers insights into patient health status, treatment effec-
tiveness, and disease progression. Interconnected devices [14] are essential to
maximize the utility of medical data. Such connectivity is instrumental in di-
minishing the occurrence of errors, enhancing the precision of diagnoses, and
expediting the provision of individualized treatments.

The Internet of Medical Things (IoMT) [15–18], a rapidly growing field,
embodies this device interconnectivity, enabling the gathering and analysis of
data to improve healthcare outcomes. IoMT devices, equipped with various
technologies, generate and transmit data across networks and platforms, aiding
healthcare providers in making informed decisions about patient care. Com-
bining IoMT with healthcare systems can revolutionize healthcare by offer-
ing real-time monitoring, personalized treatments, and better patient outcomes.
IoMT can also address many challenges inherent in traditional healthcare sys-
tems, such as error reduction, enhanced diagnosis accuracy, and swift delivery
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of personalized treatments [19]. The COVID-19 (coronavirus disease1) [20]
pandemic has deepened the importance of IoMT in enhancing healthcare sys-
tems by providing remote patient monitoring, reducing the need for in-person
visits, and helping curb the spread of infectious diseases [21].

Clinical Decision Support Systems (CDSSs) [22] can further enhance health-
care systems by analyzing medical data. In the context of IoMT, CDSSs can
use data [23; 24] generated by various medical devices to provide real-time
decision-making support [25] for healthcare practitioners.

Machine learning (ML) [26] has proven a powerful tool in creating CDSSs
that help healthcare professionals make informed and timely decisions. These
systems use patient data, medical knowledge, and ML methods to provide clin-
icians with diagnosis, treatment, and prevention recommendations. Incorporat-
ing ML methods in CDSSs can enhance the accuracy, efficiency, and effective-
ness of clinical decision-making, thereby enhancing patient-centric healthcare
systems [27–29].

A key benefit of using ML within CDSSs is its ability to analyze large,
complicated datasets comprising heterogeneous medical data from various sources.
ML methods can detect patterns and relationships in data that might be diffi-
cult for humans to identify, providing insights that can guide clinical decision-
making. Furthermore, ML methods can learn from new data and adjust to
changing circumstances, progressively improving their accuracy and predic-
tive capabilities over time [30; 31].

1.2 Research Aims

Given the discussion thus far, it is evident that integrating efficient CDSSs
with the IoMT represents a noteworthy area for investigation. In this context,
the present thesis seeks to explore the application of ML and IoMT within
two selected CDSSs, namely (a) COVID-19 detection and (b) early sepsis [32]
detection. More specifically, this thesis intends to examine three different Re-
search Aims: (1) enhancing predictive capabilities, (2) strengthening security
and privacy safeguards, and (3) enhancing overall accessibility and acceptabil-
ity to all concerned stakeholders. Further details on each of these Research
Aims are provided as follows:

Research Aim 1: It is essential to thoroughly examine the predictive perfor-
mance of the two CDSSs mentioned above. This enhanced performance
should consider various evaluation metrics appropriate for the specific
tasks. It is also essential to effectively use the highly varied nature

1https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-
coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
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of medical data. Issues such as data annotation scarcity, data sparsity,
and data heterogeneity are all critical and must be considered appropri-
ately. There is a need to explore data annotation shortages with multi-
task learning, an area not extensively researched in current studies. The
sparsity of medical data also presents a significant challenge, demanding
further study into improved approaches for handling randomly and non-
randomly missing data, particularly about the impact of varying time-
series bin sizes. Additionally, the varied nature of data expects further
study, especially in developing CDSSs for COVID-19 and early sep-
sis detection, which need to be sufficiently investigated. Therefore, it
is essential to explore advanced ML methods to address these issues to
achieve enhanced performance in the CDSSs for COVID-19 and early
sepsis detection.

Research Aim 2: Medical data management, often distributed across various
devices and locations, demands scrutiny. Prioritizing security and pri-
vacy is critical when consolidating or storing this data due to its sensi-
tive nature and the severe implications of potential breaches. Ensuring
the highest levels of security and privacy during data analysis is essential
to mitigate these risks. Therefore, the aim is to guarantee medical data’s
reliability, security, and safety while enhancing performance. This aim
emphasizes a focused approach towards adopting and assessing robust
data aggregation methods, a critical area that needs further exploration
and development.

Research Aim 3: The final aim of this thesis is to augment the practicality
of the CDSS within the healthcare community. Therefore, this thesis
will probe into the development of the system infrastructure, particularly
stressing its compatibility with less advanced devices, with the ultimate
aim of broadening the system’s reach to a broader spectrum of end-users.
This reach could significantly enhance accessibility and usability in var-
ious healthcare settings and warrants further in-depth exploration. In
addition, it is essential to tackle the interpretability challenges tied to the
black-box ML prediction model. Accordingly, this thesis will explore
the medical significance of the model predictions to support its accept-
ability. A critical aspect of using ML models in healthcare, specifically
in CDSSs, is analyzing their predictions’ capacity to accurately reflect
medical significance. This medical significance evaluates how the ML
model predictions interpret clinical manifestations and their effects on
the biological functions of cells, tissues, organs, or entire organ systems,
ensuring the ML model predictions’ effectiveness in real-world health-
care applications. The evaluation will consist of an in-depth analysis
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of correct and incorrect predictions using quantitative and qualitative
methods, which demands a more comprehensive and systematic investi-
gation.

While it is possible to examine these Research Aims individually, it is nec-
essary to recognize their interconnected nature. Enhancing predictive perfor-
mance through addressing challenges such as data sparsity, data annotation
scarcity, and data heterogeneity (Research Aim 1) can significantly influence
the implementation of a distributed ML setting (Research Aim 2). This inter-
play stresses thorough exploration and empirical evaluation to understand the
combined effects. Likewise, the effectiveness of a distributed ML framework
(Research Aim 2) is substantially influenced by the practical deployment on
devices with varying computational capacities (Research Aim 3), demanding a
comprehensive understanding and investigation.

1.3 Research Questions

To address the stated Research Aims effectively, this thesis formulates the fol-
lowing Research Question:

Research Question: How, and to what extent, can the development of ML
models enhance the performance and usability of a CDSS within the
field of the IoMT?

To provide an exhaustive investigation, this Research Question has been
subdivided into three more specific Research Sub-Questions:

Research Sub-Question 1: How, and to what extent, can the predictive per-
formance of these CDSSs be enhanced, given the distinctive nature of
medical data, namely limited annotation, sparsity, and heterogeneity?

Research Sub-Question 2: How, and to what extent, can the concerns related
to the security and privacy of medical data be addressed?

Research Sub-Question 3: How, and to what extent, can usability be en-
hanced to encompass a broader spectrum of stakeholders in these CDSSs,
particularly in low-end device adaptability and interpretability?

4



1.4 Significance of Research Questions in Contemporary
Academic Studies

1.4.1 Enhancement in Predictive Performance

1.4.1.1 Handling Medical Data Annotation Scarcity Issue

Despite the abundance of medical data from various IoMT devices, a promi-
nent challenge in its application to ML fields is the need for more annotated
data [33; 34]. This lack significantly hinders the ability to train robust models.
A potential solution to this issue lies in semi-supervised ML and transfer learn-
ing approaches [35–37]. These approaches can use vast amounts of unlabeled
data in conjunction with the limited labelled instances to enhance learning ef-
fectiveness. These approaches could be essential for fully leveraging IoMT
data within ML frameworks.

Integrating multi-task learning [38] with semi-supervised approaches of-
fers a promising path for improving the generalizability and efficiency of CDSSs.
The joint use of semi-supervised and multi-task learning in medical imaging
still needs to be explored. However, recent studies in this area emphasize its
potential [39–41]. Therefore, exploring this integration, especially in the con-
text of COVID-19 detection, deserves attention and could guide significant
progress.

1.4.1.2 Dealing with Data Sparsity in Medical Context

Building on the notion for effective management of missing data in medical
dataset-related research, which can significantly impact study outcomes [42–
44], it becomes evident that addressing missing data mechanisms [45; 46]
is necessary. In the context of early sepsis detection, missing data is often
treated as a random phenomenon, thus modelled using multi-task Gaussian
process (MGP) adapters [47–49]. This approach undersells the potential of us-
ing missing data to provide insights into the patient’s condition or the treating
physician’s assessment. Despite the advancements in handling missing data,
there remains a notable gap in addressing cases where missingness is not ran-
dom. This observation aligns with the suboptimal handling and reporting of
missing data in ML-based clinical predictive modelling, stressing the need for
more comprehensive investigation and robust methodological approaches in
this area [50].
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1.4.1.3 Tackling Heterogeneity in Medical Data

The heterogeneity inherent in medical data, with its varied origins ranging
from clinical notes to diagnostic imaging, presents a significant challenge for
CDSSs. Addressing this needs the integration of multi-modal approaches,
which leverage the breadth of data types to enhance diagnostic processes.
These approaches provide a more detailed analysis by considering the vari-
ous data modalities and align with the complicacy of real-world medical diag-
noses. Advances in ML have further enabled the effective use of multi-modal
data, providing a robust framework for enhancing CDSS through a holistic
view of patient information [23; 24; 51–54].

Within the scope of this thesis, there has been considerable focus on early
sepsis detection using tabular data [55], and COVID-19 detection using chest
X-ray data [56]. However, the exploration of multimodality in these areas,
specifically early sepsis detection using text and non-text data and COVID-
19 detection using a combination of tabular and thermal imaging data, still
needs to be explored. This area presents opportunities for further investigation,
indicating a need for more comprehensive studies to understand and use the
potential of multi-modal approaches in these medical contexts.

1.4.2 Securing Medical Data Privacy

Federated Learning (FL) could be a viable approach to address data security
and privacy concerns in the context of medical data. At its core, FL comprises
a domain of ML where computational processes are decentralized, allowing
data to remain on the local devices where it was generated. The training of
ML models occurs on-site, without the need to centralize sensitive information,
thereby enhancing data privacy. This decentralized architecture is essential for
safeguarding patient confidentiality and enabling the scalability of ML across
devices with different computational capabilities [57].

The adaptability of FL to the IoMT sector is particularly promising, with
applications in drug discovery, clinical diagnostics, digital health surveillance,
and the prognostication and detection of diseases. The decentralized nature
of FL allows it to process the vast data generated by IoMT devices efficiently
while complying with privacy regulations and minimizing data breaches. This
methodology could revolutionize healthcare data utilization, creating a more
collaborative and secure environment for predictive modelling and clinical
decision-making [58–62].

The academic field is abundantly filled with literature on applying FL
methods to healthcare data, covering breast cancer diagnosis, COVID-19 de-
tection, prediction of hospital stay durations, and depression diagnosis [63].
However, there needs to be more research on comparing and benchmarking
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effective medical data aggregation methods within FL frameworks [63]. This
absence accentuates a need for more research to evaluate and improve these
methods for optimal application in healthcare settings.

1.4.3 Enhancing Practical Usability

1.4.3.1 Low-End Device Adaptability

Integrating low-end edge devices within a federated IoMT framework for CDSSs
is critical. The study in [57] inquires into the progress and existing challenges
in FL, emphasizing how the heterogeneity of device hardware impedes plat-
form development. The research in [64] outlines the constraints imposed by
the devices’ communication, storage, and computational capabilities, focus-
ing on limitations related to power and hardware, such as CPU (central pro-
cessing unit) and memory. In [65], the discussion centres around computa-
tional resources and storage constraints, addressing scalability challenges in
FL systems. Experimental studies, such as those in [66], which perform us-
ing Raspberry Pi [67] for speech and ECG (electrocardiogram) tasks, and in
[68], which focus on model fine-tuning on the CelebA dataset (CelebFaces At-
tributes dataset) [69], bring out the necessity for further exploration of low-end
devices in FL environments. However, a systematic comparison of different
edge devices has yet to be performed in these studies. These insights stress
the importance of exploring the system performance of different edge devices,
particularly in the utilization of low-end devices, to enhance the overall acces-
sibility in CDSSs.

1.4.3.2 ‘Medical Significance’: Holistic Investigation of Prediction Inter-
pretability

Interpretability in ML is instrumental for understanding model behaviour and
ensuring ethical, trustworthy, and fair decision-making, as emphasized in reg-
ulatory frameworks such as the EU GDPR (European Union’s General Data
Protection Regulation) and the US (United States) Algorithmic Accountabil-
ity Act. This understanding is essential in healthcare applications, where in-
terpreting the medical significance of model predictions is essential for their
adoption in CDSSs [70–75].

Various interpretability methods such as LIME (Local Interpretable Model-
agnostic Explanations) [76], Grad-CAM (Gradient-weighted Class Activation
Mapping) [77], SHAP (Shapley Additive exPlanations) [78], and LRP (Layerwise-
Relevance Propagation) [79] have been applied to medical tasks such as COVID-
19 prediction from radiography images, detection of ocular diseases from OCT

7



(optical coherence tomography) scans, and classification of MRI (magnetic
resonance imaging) scans for Alzheimer’s disease. [80–91].

In the existing body of research, there needs to be a more comprehensive
comparative analysis of these interpretability methods, particularly one that
uses both qualitative and quantitative approaches and emphasizes the evalua-
tion of correct and incorrect predictions. This area holds significant importance
and calls for an in-depth investigation to understand the medical significance
fully.

1.5 Research Contributions

This thesis intends to bridge the research gaps outlined in Section 1.4 while
answering the Research Questions discussed in Section 1.3 by presenting con-
tributions across six different studies. These studies consider the unique con-
straints and characteristics of medical data, applying various advanced ML
methods to enhance performance. The studies also pay attention to security
and privacy issues. They use appropriate distributed ML methods to address
these concerns effectively. Furthermore, the usability of low-end devices and
the interpretability of ML model prediction have been examined extensively.
A summary of the contributions made by each study is provided below:

Paper I: Federated Semi-Supervised Multi-Task Learning to Detect
COVID-19 and Lungs Segmentation Marking Using Chest
Radiography Images and Raspberry Pi Devices: An Internet of
Medical Things Application [1]

This study explores two key objectives within the context of IoMT, fo-
cusing specifically on detecting COVID-19 and segmentation of lung
areas in chest radiographs. This investigation encompasses a variety
of sophisticated ML approaches, including FL, semi-supervised learn-
ing, transfer learning, and multi-task learning, to tackle these challenges.
Furthermore, the study assesses the practicality of using less robust com-
putational hardware, such as Raspberry Pi, in a federated IoMT environ-
ment. It reports on the effectiveness of these methodologies in terms of
accuracy, precision, recall, and Fscore for the detection of COVID-19, as
well as the average dice score for lung segmentation tasks, using Rasp-
berry Pi units. In addition, it provides a comparative analysis of these
outcomes with those derived from server-centric simulations. The re-
sults (federated semi-supervised transfer learning) demonstrate that the
Raspberry Pi-centric model improves effectiveness in lung segmentation
tasks, as indicated by a 1.92% elevation in the average dice score. In
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contrast, the server-centric model performs better in detecting COVID-
19, marked by a 6.63% increase in accuracy.

Paper II: COVID-19 detection from thermal image and tabular medical
data utilizing multi-modal machine learning [2]

This study investigates the challenge of detecting COVID-19 using ther-
mal imagery and related tabular medical data drawn from an accessible
public dataset. The research uses a multi-modal ML approach, exam-
ining various combinations of medical and data type modalities to en-
hance the effectiveness of the detection process. The methodology in-
corporates a range of machine and deep learning methods, namely Ran-
dom Forests, Extreme Gradient Boosting (XGBoost), Multi-layer Per-
ceptron (MLP), and Convolutional Neural Network (CNN). The findings
indicate that multi-modal approaches yield superior results to single-
modality approaches, with thermal imaging playing a central part in this
enhancement. XGBoost achieved the most favourable outcomes, with
an Area Under the Receiver Operating Characteristic Curve (AUROC)
score of 0.91 and an Area Under the Precision-Recall Curve (AUPRC)
score of 0.81. Additionally, the study presents an average of leave-one-
positive-instance-out cross-validation evaluation scores, which aligns con-
sistently with the test evaluation scores for Random Forests and XG-
Boost models.

Paper III: Cognitive Internet of Medical Things Architecture for
Decision Support Tool to Detect Early Sepsis Using Deep Learning
[3]

The study conducts an empirical investigation using six different time-
series bin sizes from the same data obtained from a medical dataset for
early sepsis detection. It uses Long Short-Term Memory (LSTM) mod-
els within a Recurrent Neural Network (RNN) framework for predic-
tion. The most favourable outcome is observed with a four-hour bin
size model, based on the assumption that the data is missing-not-at-
random. This model shows a 4.6% improvement in performance over
the missing-at-random scenario, as indicated by the AUROC score. The
findings indicate that, in early sepsis detection, the choice of time-series
bin size is essential for achieving high predictive accuracy, especially
when dealing with sparsely distributed medical data sequences.
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Paper IV: FedSepsis: A Federated Multi-Modal Deep Learning-Based
Internet of Medical Things Application for Early Detection of
Sepsis from Electronic Health Records Using Raspberry Pi and
Jetson Nano Devices [4]

This study introduces FedSepsis, an approach for early sepsis detec-
tion using electronic health records, leveraging advanced ML and nat-
ural language processing. To assess practicality, it uses FL with low-
computational devices, Raspberry Pi and Jetson Nano. Key results in-
clude an AUPRC of 96.55%, an AUROC of 99.35%, and an earliness
of 4.56 hours for sepsis prediction. The study features the effectiveness
of multi-modal data and generative adversarial neural networks (GAN),
with GAN improving AUPRC by 23.17% and AUROC by 6.89% com-
pared to other approaches. In various settings, the combination of clinical-
text and non-text modalities consistently outperformed single modali-
ties, with improvements in the single-server setting (AUPRC: 9.25%,
AUROC: 1.04%), using Raspberry Pi (AUPRC: 11.06%, AUROC: 0.89%),
and Jetson Nano (AUPRC: 4.56%, AUROC: 0.39%) in multi-modal
cases.

Paper V: Exploring LRP and Grad-CAM visualization to interpret
multi-label-multi-class pathology prediction using chest
radiography [5]

This study examines the use of LRP and Grad-CAM in interpreting chest
radiography images for a multi-label, multi-class pathology prediction
task. It comprises a selection of examples based on correct, incorrect,
and ambiguous predictions, focusing on classes showing both the high-
est and lowest prediction accuracies and cases with no findings. This
approach thoroughly evaluates LRP and Grad-CAM in clinical settings,
emphasizing LRP’s capability to produce more detailed heatmaps com-
pared to Grad-CAM. The study stresses the importance of these methods
in improving the interpretability of CDSSs.

Paper VI: SHAMSUL: Systematic Holistic Analysis to investigate
Medical Significance Utilizing Local interpretability methods in
deep learning for chest radiography pathology prediction [6]

In this study, termed as SHAMSUL1, the interpretability of deep neural
networks in medical imaging was assessed using LIME, SHAP, Grad-

1The acronym SHAMSUL, derived from a Semitic word for ‘the Sun,’ symbolizes a holistic approach to
analyzing the interpretability of deep neural network models, especially in medical contexts. This approach
emphasizes using heatmap scores from various interpretability methods to uncover the medical significance
hidden in the predictions of black-box deep neural network models.
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CAM, and LRP. SHAMSUL used a transfer learning approach on a multi-
label-multi-class chest radiography dataset, focusing on interpreting spe-
cific pathologies. These methods were evaluated both quantitatively and
qualitatively against human expert annotations. The quantitative analy-
sis, using the Intersection over Union (IoU) metric, showed varied effec-
tiveness among methods, with Grad-CAM achieving the highest mean
IoU of 0.234. Qualitatively, the study incorporated instances with high
IoU and prediction probability scores in selected classes for single-label
instances and a multi-label instance based on a high prediction prob-
ability score to analyze the variance in interpretation among different
methods. LIME’s heatmap visualization demonstrated the closest align-
ment with medical significance. The study emphasizes the potential of a
multi-modal approach for enhanced interpretability in CDSSs.

1.5.1 Aligning Research Contributions with Aims and Questions

Research Aim 1 (as outlined in Section 1.2) and the related Research Sub-
Question 1 (as outlined in Section 1.3) are comprehensively addressed within
Papers I to IV. These papers launch on exploring various state-of-the-art ML
methods, striving to enhance predictive performance. Paper I performs an in-
vestigation of the issue of data annotation scarcity. Papers III and IV engage
with the challenge of data sparsity. Specifically, Paper III analyzes variable
length time-steps within a time-series to mitigate the problem. The approaches
used to handle missingness in medical data, aiming at enhanced performance,
are exhaustively examined in Papers III and IV. Papers II and IV undertake a
thorough analysis of the issue of data heterogeneity, implementing efficacious
multi-modal ML methods to achieve improved performance.

Research Aim 2 and its related Research Sub-Question 2 are targeted in
Papers I and IV. These papers explore varied distributed ML methods to assure
security and privacy. Particular attention is bestowed on ensuring satisfactory
overall performance with such a setup.

Papers I, IV, V, and VI cater to Research Aim 3 and the corresponding Re-
search Sub-Question 3, elucidating ways to enhance the practical usability of
the CDSSs. In particular, Papers I and IV provide a detailed analysis of the
adaptability of low-end devices. An extensive focus is directed towards the
system-level cases applicable to low-end devices. Papers V and VI steer the
discussion towards the critical issue of interpretability from the CDSS perspec-
tive. They provide an exhaustive introspection on pathology prediction tasks
using different interpretability methods, striving to ensure medical significance
in both correct and incorrect predictions.

The contribution linking with the Research Sub-Questions is illustrated in
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Figure 1.1: Correlation diagram illustrating the connection between conducted
studies’ contributions and their corresponding Research Sub-Questions.

Figure 1.1.
In this thesis, the quantitative extent of outcomes associated with each Re-

search Sub-Question is initially summarized within the context of each study’s
contributions (see Section 1.5). This aspect is then explored more comprehen-
sively in Chapter 4, which details the methods used to achieve these outcomes,
addressing the how aspect of each Research Sub-Question. This structured
approach provides a clear and thorough understanding of the research contri-
butions about the specific Research Sub-Questions posed.

1.6 Disposition

Chapter 2 primarily explores ML methods used in this thesis, accompanied by
a comprehensive overview of specific medical datasets used. Additionally, a
summary of the central topics of the CDSS, namely COVID-19 and sepsis, is
provided.

Chapter 3 expounds on the strategic research approach adopted in this the-
sis, beginning with an examination of underlying philosophical assumptions
and a focus on reproducibility, reliability, and generalizability. It outlines the
empirical investigation process for answering Research Sub-Questions, dis-
cusses performance metrics used for assessments and end-to-end data science
research methodology, and addresses ethical considerations, ensuring compli-
ance with high standards and enhancing credibility.
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Chapter 4 comprehensively synthesizes various studies addressing the Re-
search Sub-Questions, focusing on ML methodologies and their impact on per-
formance. It explores the enhancements in predictive accuracy brought forth
by ML, emphasizing its effectiveness in mitigating challenges such as limited
data annotation, sparse data, and data heterogeneity to improve results. The
chapter stresses the importance of safeguarding the privacy and security of
medical data, discussing tested approaches in the context of CDSSs. Finally,
it emphasizes the importance of enhancing the accessibility of ML models, es-
pecially for use on low-end devices, along with the prediction interpretability.

The final chapter, Chapter 5, presents a thorough reflection on the thesis.
While succinctly summarizing this thesis’s critical findings and contributions,
this chapter emphasizes the implications for the field at large. It integrates
the insights from the individual investigations, elucidating the broader patterns
and new trends. The chapter does not merely provide a concluding note; it also
casts an anticipatory glance at the future.
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2. Machine learning with
Medical Data for Clinical
Decision Support Systems

This chapter provides a detailed description of the primary ML methods used
in the studies (See Section 1.5). A broad overview of medical data, focusing
on the specific medical datasets used in these investigations, is offered. The
chapter concludes with a summary of the two central topics of the CDSSs: (a)
COVID-19 and (b) sepsis.

2.1 Machine Learning & Deep Learning

Medical data is vital for training ML models, which use this information to
make predictions through probabilistic computational algorithms. The process
of fine-tuning the parameters of ML models, key for reaching high prediction
accuracy, is referred to as training the model. This training comprises adjusting
the weights and biases to optimal levels by learning from labeled data exam-
ples [26]. Deep Learning (DL) [92] is a branch of ML. It uses a hierarchical
method to transmute input feature information into progressively higher-level
representations. This transformation is enabled by deep neural networks that
learn beneficial features straight from the input data, reducing the need for
extensive human feature engineering. With their ability to use a multitude of
hyperparameters, DL models emulate the human learning process, thereby es-
tablishing DL as a significant topic within the field of artificial intelligence.

In the subsequent subsections (Sections 2.1.1 to 2.1.5) of this section, a
thorough overview of the various ML/DL models used in this thesis is pro-
vided. The concluding subsection (Section 2.1.5) will specifically focus on the
details of individual studies (see Section 1.5) related to these models. Con-
sidering the vast scope of the ML/DL field, this discussion will be limited to
fundamental methods. The exploration of more advanced and cutting-edge
methodologies is deferred to Chapter 4, where they are examined within the
context of their implementation in specific studies.
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2.1.1 Random Forests & Extreme Gradient Boosting

Supervised ML uses methods to train models by identifying patterns within
labelled datasets. One such method is decision tree learning, which creates a
model to predict labels by analyzing a series of conditional feature queries. The
algorithm estimates the minimum questions needed to determine the likelihood
of a correct decision, making it suitable for classification tasks.

Gradient Boosting Decision Trees (GBDT) and random forests [93] are ex-
amples of ensemble learning algorithms which combine multiple ML methods
to yield an improved model. They both form models consisting of multiple
decision trees, but their construction and combination approaches differ sig-
nificantly.

Through a bagging method, random forests concurrently build full deci-
sion trees from randomly sampled data. The algorithm’s final prediction is an
average of all the decision tree predictions, which helps minimize variance and
overfitting.

In contrast, GBDT uses a method known as gradient boosting. This method
boosts a weak model by integrating it with other weak models to form a robust
prediction system. The process of additively generating weak models is for-
malized as a gradient descent algorithm [94] over an objective function. Each
model iteration uses the error residuals of the preceding model to fit the next
one, with the final prediction being a weighted sum of all tree predictions. This
gradient-boosting method reduces bias and underfitting.

Extreme Gradient Boosting (XGBoost) [95], a highly accurate and scalable
implementation of gradient boosting, is designed to optimize computing power
for boosted tree algorithms and enhance ML model performance. Contrary
to GBDT’s sequential approach, XGBoost constructs trees in parallel using a
level-wise approach. It scans across gradient values and uses partial sums to
assess the quality of splits at every possible point in the training set, thereby
enhancing computational speed.

2.1.2 Multi-Layer Perceptron Networks

One well-recognized deep neural network archetype is the Multi-Layer Per-
ceptron (MLP), the feedforward neural network or fully connected layers.
MLPs are designed to approximate a specific function, f ∗. For example, con-
sider a classifier, y = f ∗(x), which maps input x to a classification label y
through a series of computations. This mapping operation is y = f (x;θ). In an
MLP, the network learns the parameter θ that best estimates this function.

The designation feedforward in the context of MLPs refers to the linear
progression of data transmission commencing from the input layer, proceed-
ing through any intervening hidden layers, and culminating at the output layer,
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Image Source (changes were made): [96]

Figure 2.1: Diagram of a neuron (top) and its corresponding mathematical model
(bottom)

while absent of any recurrent or looping routes. This structural character-
istic distinguishes MLPs from other neural network architectures consisting
of feedback or recurrent connections, commonly known as Recurrent Neural
Networks (RNNs). The appellation multi-layer perceptron is derived from the
architectural composition of these networks, which comprises a minimum of
three layers of nodes: an initial input layer, one or more hidden layers, and
a concluding output layer. This nomenclature is rooted in the foundational
work on perceptrons, where the initial rudimentary model, lacking any hidden
layers, was introduced as the perceptron [97].

The neural label implies that the neural activity of the human brain loosely
inspires the MLP. Conventionally, each hidden layer is vector-valued, with the
dimensionality of these layers determining the network’s width. Analogous
to the part of neurons in the human brain, each unit of this vector operates in
parallel, embodying a vector-to-scalar function. Each unit, imitating a neuron,
receives input from various other units and computes its activation function
based on these inputs. The resulting outputs are then transmitted to other units
for further computations (Figure 2.1).

The term network typically refers to the assembly of numerous functions
correlating to a directed acyclic graph in network architecture. A chain struc-
ture, such as f (x) = f (3)( f (2)( f (1)(x))), derived from the connection of three
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Image Source: [98]

Figure 2.2: Diagram of multi-layer perceptron or feed-forward network.

functions f (1), f (2), and f (3), epitomizes the most common architecture of
neural networks. Here, f (1) is designated as the first layer of the network, f (2)

as the second, and so forth. The extent of the sequential arrangement in this
model, characterized by the chain length, exemplifies the model’s depth. This
particular attribute underpins the conceptualization of deep learning as a ter-
minological reference within the field. The final layer in the sequence is known
as the output layer.

In the design of a feedforward network, layers beyond the input and output
layers are not directly prescribed. Instead, the learning algorithm shapes these
layers to best approximate f ∗. As the training data does not provide the de-
sired output for these intermediate layers, they are aptly named hidden layers
(Figure 2.2).

Various activation functions are used to ascertain the values within the
hidden layers, among which the following are of particular importance:

• Sigmoid: This activation function processes a real-valued input and
compresses it to fall within the range of 0 and 1.

σ(x) =
1

(1+ exp(−x))
(2.1)

When the collective output equals 1, this activation function is identified
as the softmax function, commonly used in multi-class classification. For
probabilistic classification, the softmax function is implemented at the
output layer.
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• Tanh: This function receives a real-valued input and constrains it to a
range between -1 and 1.

tanh(x) = 2σ(2x)−1 (2.2)

Deep neural networks optimize parameters by computing the gradients of
various functions. In a feedforward neural network, this is achieved by input
propagation through each unit of the hidden layers, a process referred to as
forward propagation. During training, forward propagation generates a scalar
cost, denoted as J(Θ). Subsequently, the back-propagation algorithm propa-
gates this cost information backwards through the network to compute gradient
values. Another learning algorithm is implemented to learn the optimal param-
eters yielding the best approximations.

The learning rate is a critical hyperparameter in training deep neural net-
works (DNNs), guiding the optimizer on how much the weights should be ad-
justed relative to the gradient for each mini-batch. DNN models are typically
trained using update functions, or optimizers, which apply various methods to
regulate the learning rate. Examples of such optimizers comprise Stochastic
Gradient Descent (SGD), Adam (adaptive moment estimation), and RMSProp
(Root Mean Square Propagation).

• SGD: SGD updates parameters for each individual training input xi and
corresponding label yi. The update rule is given as:

Θ = Θ−η .∆ΘJ(Θ;xi;yi) (2.3)

In this equation, Θ denotes the model parameters, η represents the learn-
ing rate, and ∆ΘJ(Θ;xi;yi) is the gradient of the objective function. SGD
conducts updates one at a time, providing the dual advantage of faster
execution and dynamic learning. However, due to the high variance in
these frequent updates, the objective function can fluctuate significantly.

• Adam: Adam implements adaptive learning rates for each parameter
[99]. In addition to preserving an exponentially decaying average of
previous gradients, denoted as mt , Adam concurrently retains an expo-
nentially decaying average of past squared gradients, denoted as vt .

The updates for mt and vt are computed as follows:

mt = β1mt−1 +(1−β1)gt (2.4)

vt = β2vt−1 +(1−β2)gt
2 (2.5)
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Within these formulations, mt and vt approximate the first and second
moments of the gradient distributions, corresponding respectively to the
mean and the uncentered variance. Initially, both mt and vt are set as
zero vectors, which can create an initial bias towards zero in the early
stages of the algorithm’s iterations.

To rectify this initial bias, bias-corrected first and second-moment esti-
mations are computed as follows:

m̂t =
mt

1−β1
t (2.6)

v̂t =
vt

1−β2
t (2.7)

These corrected estimations are then used to update the parameters,
which are captured in the update rule:

Θt+1 = Θt −
η√

v̂t + ε
m̂t (2.8)

In this equation, Θ denotes the model parameters, η is the learning rate,
and ε is a small constant for numerical stability.

• RMSProp: RMSProp is designed to regulate the update process during
gradient descent, mainly focusing on the bias (b) and the weight (W ). It
is characterized by utilizing the squares of the gradients of W and b.

RMSProp operates on the principle that dividing a larger derivative by
its corresponding large weighted average results in a smaller quotient,
effectively moderating the update magnitude. This concept is mathe-
matically represented by:

SdW = βSdW +(1−β )dW 2, (2.9)

Sdb = βSdb +(1−β )db2, (2.10)

W =W −α
dW√

SdW + ε
, (2.11)

b = b−α
db√

Sdb + ε
. (2.12)

In these equations, SdW and Sdb track the weighted averages of the squared
derivatives of weight and bias, respectively. The use of ε prevents divi-
sion by zero. RMSProp aims to moderate the update velocity differently
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for each parameter, slowing down updates for the bias while accelerat-
ing updates for the weight. The learning rate is denoted by α , and the
adjustments to W and b are made based on the computed derivatives dW
and db for each iteration within a mini-batch. RMSProp’s effectiveness
lies in its ability to adjust learning rates dynamically, enhancing the ef-
ficiency of the gradient descent process.

The reliability of neural network training increases when the learning rate
is maintained at a relatively low level. However, this approach may prolong
the optimization process as steps towards the minimum of the loss function
become incrementally smaller. On the contrary, if the learning rate is set
too high, the training may not converge or may even diverge. This instability
is attributed to significant weight alterations, which may exacerbate the loss.
Therefore, it is often advantageous to commence training with a relatively large
learning rate and then systematically decrease it exponentially during training.
This approach allows for more balanced weight updates.

A comprehensive training procedure typically uses multiple iterations, of-
ten referred to as epochs, over the entire dataset. Upon completion of training,
the networks are evaluated using novel test inputs. The model is considered
adequate for the intended task only if the predictions are satisfactory.

In designing a neural network, various elements demand meticulous atten-
tion. Key among these is the determination of the number of hidden layers, the
quantification of neurons in each respective layer, the choice of an appropri-
ate activation function, and the selection of a suitable optimizer. The optimal
configuration of these parameters is contingent upon the particular nature of
the task at hand and the characteristics of the input data, needing potential
adjustments to align with specific needs.

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), also referred to as Convolutional
Networks or Convnets, represent a specialized subcategory of neural networks
that have demonstrated impressive effectiveness within the field of image recog-
nition and classification [101]. CNNs are suited to processing data that pos-
sesses a known, grid-like topology.

The architecture of a CNN presupposes that the inputs are images, allow-
ing the incorporation of specific properties directly into the architectural de-
sign. This presumption allows for a more efficient implementation of the for-
ward propagation function and provides a reduction in the overall number of
parameters within the network.

The term convolution is used in mathematics to describe a specific opera-
tion conducted upon two functions, resulting in the generation of a third func-
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Image Source: [100]

Figure 2.3: Three-dimensional representation of a convolutional neural network
(ConvNet).

tion. This resultant function typically represents a modified or transformed
variant of one of the initial functions. Conventionally, this operation is de-
noted using an asterisk notation.

s(t) = (x∗w)(t) (2.13)

At a given time t, the convolution operation is characterized by the inter-
action of an input function x and a kernel function w, with the resultant output
denoted as the feature map, s.

Traditional neural networks often struggle with effectively scaling full im-
ages. In contrast, CNNs use a three-dimensional structure for their neurons,
encompassing width, height, and depth. The depth referred to in this context
pertains to the activation volume rather than the overall depth of the network.

For instance, input images in the CIFAR-10 dataset (Canadian Institute
For Advanced Research-10 dataset) [102] are represented as three-dimensional
volumes with dimensions of 32× 32× 3 (width, height, and depth respec-
tively). Neurons in this framework are not fully connected to the preceding
layer but are instead linked to a specific region within it. The ConvNet archi-
tecture reduces the input image into a single vector of class scores in the final
output layer, represented by dimensions 1×1×10.

In the structural design of CNNs, as illustrated in Figure 2.3, neurons
are organized within a three-dimensional architecture. This configuration en-
ables each Neuron to effectively transform the input volume, which is three-
dimensional, into a corresponding three-dimensional output volume of neu-
ronal activations. Within this framework, the input layer encompasses the im-
age data. Its dimensions in terms of width and height are congruent with those
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Image Source: [103]

Figure 2.4: Illustrative example of a convolutional neural network structure.

of the input image. The depth dimension is established at three, reflecting the
typical composition of colour images comprising three primary channels: red,
green, and blue.

Figure 2.4 delineates the four fundamental components of a CNN:

(i) Convolution

(ii) Non-Linearity

(iii) Pooling

(iv) Classification (fully connected layer)

(i) The Convolution Step: The fundamental aim of the convolution phase
in a CNN centres on extracting salient features from the input image.
This procedure uses diminutive, square segments of the input data to
discern image features, thereby maintaining the spatial interrelationships
among pixels. Within this framework, each image undergoes processing
as a pixel-value matrix. One might envisage a 5×5 image constituted by
pixel values designated as either ‘0’ or ‘1’ for elucidation. Concurrently,
a specific 3×3 matrix provides the convolution operation. These images
are represented in Figure 2.5.

In the convolutional stage, the input image, sized 5× 5, and a 3× 3
matrix, commonly referred to as a filter or kernel, are subjected to the
convolution process. The filter traverses across the image during this
process, executing a dot product operation at each position. The resul-
tant matrix from this operation is known as the Convolved Feature, also
termed as the Activation Map, Feature Map, or Filter Map. This map ef-
fectively captures local dependencies present within the original image.
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Image Source: [104]

Figure 2.5: Illustrative example of an image matrix and corresponding filter
matrix.

The dimensions of the feature map are governed by three pre-established
parameters:

• Depth: This parameter indicates the number of filters used in the
convolution operation.

• Stride: It determines the magnitude of pixel displacement that the
filter undergoes during each step of the convolution process.

• Zero-padding: This method is applied to regulate the spatial di-
mensions of the feature maps. Applying zero-padding creates what
is known as a wide convolution, whereas its absence results in a
narrow convolution.

(ii) Non-Linearity: After every convolution operation, a non-linear opera-
tion, commonly known as ReLU (Rectified Linear Unit), is applied.

ReLU: The ReLU function is a conversion that receives a real-valued
input and replaces any negative value within this input with zero.

f (x) = max(0,x) (2.14)

It is possible that ReLU elements, during training, become inactive, a
phenomenon often referred to as the dying ReLU problem. Consider a
scenario where a large gradient flows through a ReLU neuron, updating
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Image Source: [105]

Figure 2.6: Illustrative demonstration of max pooling and average pooling.

the weights such that the neuron will never be activated by any subse-
quent data point. From this point forward, any gradient flowing through
this unit will invariably be zero. This phenomenon can cause an irre-
versible state where the ReLU unit becomes perpetually inactive during
training.

Leaky ReLU (LReLU): The Leaky ReLU is an alternative to mitigate
the dying ReLU problem. Instead of returning a zero for x < 0, this
function produces a small negative slope, typically around 0.01. This
negative slope for subzero input has been found to aid the convergence
process.

σ(x) = (x > 0)?x : αx (2.15)

In this equation, α is a small constant. This variant, known as the very
leaky ReLU, incorporates a higher leakiness value of 1

3 for α .

(iii) Pooling Step: Pooling works to reduce the dimensionality of each fea-
ture map while preserving salient information. It is also referred to as
subsampling or downsampling. There are various types of pooling meth-
ods, including Max, Average, and Sum. In the context of Max Pooling, a
spatial neighbourhood is specified and the largest element from the rec-
tified feature map within that window is selected. Alternatively, one can
calculate the average (Average Pooling) or the sum (Sum Pooling) of all
elements within the window rather than opting for the largest element.

Figure 2.6 illustrates how Max Pooling and Average Pooling operations
are applied to a rectified feature map using a 2× 2 window. Precisely,
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in Max Pooling, the window moves across the feature map in two-cell
increments, selecting the maximum value within each window.

(iv) The Fully Connected Layer: This final segment of the architecture
comprises a conventional MLP, which integrates a softmax activation
function within its output layer. The designation fully connected implies
that each neuron within a specific layer is interconnected with every
neuron in the adjacent layer.

2.1.4 Long Short-Term Memory Networks (RNN-LSTM)

Recurrent Neural Networks (RNNs) [106], due to their ability to maintain and
retrieve information in their internal memory, have proven helpful for ana-
lyzing time-series data. This usefulness is achieved by iteratively processing
all time-steps within each time-series, thereby leveraging current and previ-
ous time-step data to detect patterns indicative of an outcome when making
a prediction. However, two primary challenges encountered with RNNs are
the phenomena of exploding and vanishing gradients. The former refers to
where the model weights are assigned exorbitantly high values. The latter typ-
ically occurs in long sequences or time-series of significant length, generating
unreasonably low values.

As a response to these challenges, Long Short-Term Memory (LSTM) net-
works [107] were introduced. These networks comprise an advanced memory
mechanism that captures essential and relevant information from extensive past
time-steps. LSTMs incorporate three gated cells - input, forget, and output -
allowing for selective storage or discarding of information. The input gate ac-
quires relevant information, the forget gate identifies non-relevant information,
and the output gate prioritizes the outputs from previous steps. This method is
akin to medical diagnosis, where recent information is weighted more heavily
when diagnosing.

Equation 2.16 represents the feedforward networks where Xi stands for the
input:

h = f (Xi) (2.16)

The aggregation of features derived from antecedent temporal intervals is
conceptualized as the hidden state, instrumental in preserving temporal infor-
mation within a time-series. To determine the nature of the current stage –
for example, whether it is positive or negative, as in early sepsis detection –
at a specific temporal juncture, the analysis incorporates not only the input
at that time-step, denoted as Xt , but also the hidden state from the preceding
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time-step, represented as ht−1. This integrative approach is articulated in the
ensuing mathematical formulation:

ht = f (xt ,ht−1) (2.17)

In LSTMs, the functionalities are typically separated into two variables, ht

and C. The former is the LSTM hidden cell capable of controlling the flow
of information via the three gates mentioned above. gate f orget , gateinput , and
gateout represent the forget, input, and output gates, respectively.

gate f orget = σ(Wf xXt +Wf hht−1 +b f ) (2.18)

gateinput = σ(WixXt +Wihht−1 +bi) (2.19)

gateout = σ(WoxXt +Wohht−1 +bo) (2.20)

In situations where updating of the cell state and hidden state is needed,
the following equations are used:

C∗ = tanh(WcxXt +Wchht−1 +bc) (2.21)

Ct = gate f orget .Ct−1 +gateinput .C∗ (2.22)

ht = gate f orget .tanh(Ct) (2.23)

The activation functions used in these equations are σ(x) (sigmoid) and
tanh(x).

2.1.5 Applying Machine Learning and Deep Learning in Conducted
Studies

In this thesis, a variety of ML/DL models have been incorporated across a
series of studies (see Section 1.5), each chosen for its particular strengths in
addressing the Research Sub-Questions (see Section 1.3) posed. In Paper II,
the capabilities of ensemble learning methods, namely Random Forests and
XGBoost, alongside neural network architectures, namely the MLP and CNNs,
were used. The exploration was then extended to recurrent neural networks,
specifically the RNN-LSTM model, central to the methodologies applied in
Papers III and IV. Papers V and VI were distinguished by applying a variant of
CNN, the DenseNet-121 (Dense Convolutional Network) [108].

In Paper I, a U-net-based encoder-decoder architecture [109] was used.
Papers III and IV used Generative Adversarial Imputation Nets (GAIN) [110],
demonstrating generative adversarial networks’ use to impute missing values.
For the analysis of textual data in Paper IV, two clinically adapted Bidirectional
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Encoder Representations from Transformers (BERT) models [111–113] were
used.

Finally, two interpretability methods, Grad-CAM [77] and LRP [79], were
applied in Paper V. Additionally, in Paper VI, along with these two methods,
another pair of methods, namely LIME [76] and SHAP [78], were used.

2.2 Heterogeneous Medical Data

Medical data, an aggregation of digitally recorded patient-specific information,
is disseminated across many medical infrastructures. Given its widespread
presence, using this data within an IoMT setup is advantageous to establish
a robust CDSS. Characteristically expansive and heterogeneous, medical data
comprises various types of information. These cover prescription notes detail-
ing medications, past medical records, clinical annotations provided by health-
care professionals, and numeric, image-based, and categorical data generated
from laboratory tests and body vitals assessments. Furthermore, demographic
details about the patient also form part of this data. By effectively leveraging
this wealth of information, it is possible to create an inclusive CDSS that can
substantively assist in clinical decision-making processes. As a result, it can
enhance the outcomes for patients [23; 24].

2.2.1 COVID-19 Radiography Database

The COVID-19 Radiography Database [114; 115] is an extensive compilation
of chest X-ray (CXR) images representing conditions such as COVID-19, nor-
mal, and other lung infections. The database has been successively augmented
over various stages. Initially, it contained 219 COVID-19, 1341 normal, and
1345 viral pneumonia CXR images. The first expansion saw the COVID-19
section grow to comprise 1200 CXR images. The second update was more sig-
nificant, with the incorporation of an additional 3616 COVID-19 positive cases,
accompanied by 10,192 normal, 6012 lung opacity, and 1345 viral pneumonia
images.

This dataset forms the foundation of the research presented in Paper I.

2.2.2 COVID-19 Thermal Imaging Database

The Upper Body Thermal Images and Associated Clinical Data from a Pilot
Cohort Study of COVID-19 Database [116; 117] was curated to investigate
the diagnostic potential of thermal videos for detection of COVID-19. The
database, which comprises data from 252 volunteers, covers various aspects
such as Polymerase Chain Reaction (PCR) results, demographic information,
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vital signs, participant activities, medications, respiratory symptoms, and ther-
mal video sessions. The latter related to volunteers conducting a simple breath-
hold in four unique positions at the Hospital Zambrano-Hellion of TecSalud in
San Pedro Garza Garcia, Nuevo León, México. Using the data to drive research
into clinical associations relating to temperature patterns, demographics, and
vital signs could be possible. It could also catalyze the development of novel
computer algorithms for extracting scientifically relevant insights from thermal
videos.

This dataset is used in the research discussed in Paper II.

2.2.3 MIMIC-III Clinical Database

The MIMIC-III (Multiparameter Intelligent Monitoring in Intensive Care-III)
Database [118] is a substantial, freely accessible compilation of deidentified
health-related data about over forty thousand patients who received care in the
critical units of the Beth Israel Deaconess Medical Center between 2001 and
2012. It encapsulates various data types, including demographics, hourly vital
sign measurements, laboratory test results, procedures, medications, caregiver
notes, imaging reports, and post-hospital discharge mortality.

The database is versatile and aids various analytical studies, ranging from
epidemiology to enhancing CDSSs. It stands out for three reasons: (1) its
accessibility to researchers globally, (2) its representation of a large and varied
ICU (Intensive Care Unit) patient population, and (3) the granular nature of
the data, which contains vital signs, lab results, and medication records.

This dataset has been used in the studies detailed in Papers III and IV.

2.2.4 CheXpert Radiography Database

Developed by a team at Stanford University, the CheXpert (Chest eXpert)
dataset [119] represents a significant collection of chest X-ray studies. These
studies were gathered from patient visits to Stanford Hospital’s facilities be-
tween October 2002 and July 2017. The dataset, intended solely for non-
commercial, non-clinical research, is available in two sizes: a version of 440
GB and a more condensed version of 11 GB. The images in the dataset are
modified for reduced grayscale levels, and the smaller version offers a reduced
resolution of around 390 × 320 pixels.

Utmost care was taken to ensure the dataset’s compliance with privacy
standards, excluding any images containing private or identifiable patient in-
formation. The Stanford Hospital Institutional Review Board (IRB) approved
the dataset’s creation [120].

The CheXpert dataset comprises two primary components: The training set
consists of 64,540 unique patients contributing a total of 223,414 images, and
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the validation set includes images from 200 patients, totaling 234 images. Each
patient’s data is confined to one of these two sets. Every image is annotated for
fourteen types of pathologies. The annotations are categorized into three labels
— positive, negative, and uncertain — to denote the confirmed presence, ab-
sence, or potential ambiguity of pathologies. The training set uses a rule-based
labeling system, developed using a list of phrases compiled by board-certified
radiologists, to derive labels from sections of radiology reports. This labeller
underwent evaluation against 1000 manually reviewed reports by two board-
certified radiologists. The validation set’s annotations were independently pro-
vided by three board-certified radiologists, classifying observations as present,
likely uncertain, unlikely uncertain, or absent. These classifications were then
binarized. The majority agreement of the radiologist’s annotation decisions
from these image-based evaluations, excluding report assessments, is deemed
the authoritative ground truth [120].

This dataset is integral to the research presented in Papers V and VI.

2.2.5 CheXlocalize Radiography Database

The CheXlocalize dataset [91] provides radiologist-annotated data for locat-
ing ten different pathologies in chest X-rays, with pixel-level segmentation
and point-based representations. It comprises 234 X-rays from 200 patients
and 668 from 500 patients, curated from the CheXpert dataset. These images
were segmented by two experienced board-certified radiologists using MD.ai
annotation software, focusing on areas with positive labels from the CheXpert
dataset [119].

In Paper VI, the CheXlocalize dataset is used to underpin the research.

2.3 Clinical Decision Support System Topics

This section provides an overview of the two CDSS topics selected for the
research.

2.3.1 COVID-19 (coronavirus disease)

COVID-19, a respiratory disease incited by the SARS-CoV-2 (severe acute res-
piratory syndrome-related coronavirus 2) virus [20], was declared a pandemic
by the World Health Organization (WHO) in March 2020. As per WHO re-
ports1, by January 21, 2024, global cases had soared to 774,395,593, with
confirmed deaths surpassing 70 million.

1https://data.who.int/dashboards/covid19/deaths
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This respiratory ailment can cause acute respiratory distress syndrome (ARDS),
which is characterized by pulmonary infiltrates and hypoxemia. The dominant
symptoms encompass dry cough, fever, and fatigue. The primary diagnostic
instrument for detecting SARS-CoV-2 is a PCR (Polymerase Chain Reaction)-
based DNA (deoxyribonucleic acid) test [121], which needs respiratory speci-
mens procured via nasal or pharyngeal swabs.

In Papers I and II, the challenge of detecting COVID-19 through medical
data and ML methods is explored.

2.3.2 Sepsis

Sepsis [32], an alarming medical condition, is characterized by the presence of
a systemic inflammatory response syndrome in conjunction with a confirmed
or suspected infection. Clinical manifestations of this response commonly con-
sist of fever, rapid heart rate, accelerated breathing, and increased white blood
cell count. When sepsis advances to a stage where organ dysfunction is ev-
ident, it is classified as severe sepsis. Indicative symptoms of this state of
dysfunction encompass a wide range, such as low blood pressure, inadequate
oxygen levels, reduced urine output, metabolic acidosis, thrombocytopenia, or
altered mental status. Further progression of severe sepsis can result in septic
shock, which is characterized by persistent low blood pressure despite appro-
priate fluid resuscitation.

Septic shock and multi-organ dysfunction are the primary causes of mor-
tality in sepsis patients, emphasizing the substantial potential of this condition
to exacerbate critical situations. Sepsis represents a significant cause of both
mortality and morbidity within hospital settings [32]. The survival rate heavily
relies on timely intervention by administering suitable antimicrobial treatment
[122]. Each hour of delay in initiating treatment increases mortality risk by
7.6% [123]. Therefore, early detection of sepsis is of utmost importance, given
its significant impact on patient outcomes.

In Papers III and IV, the challenge of early sepsis detection using medical
data and ML methods is investigated.
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3. Research Methodology

Research is defined as the systematic examination and study of materials and
sources. It seeks to establish facts and uncover novel conclusions. The essence
of this definition emphasizes the significance of methodical exploration to un-
ravel new insights [124]. This chapter elucidates the strategic approach for
research adopted in this thesis. The underlying philosophical assumptions in-
herent in the research approach are critically examined in initiating this discus-
sion. The focus extends to reproducibility, reliability, and generalizability, key
concepts that shape the robustness and applicability of the study’s outcomes.

Further, the process by which the research questions are sought to be an-
swered is outlined. This process comprises executing empirical investigations
designed to evaluate the proposed solutions. The yardstick for these assess-
ments is encapsulated in evaluation metrics, a vital component of the eval-
uative methodology. A supplementary framework designed to navigate the
end-to-end data science research methodology relevant to this thesis is also
examined. Finally, the chapter engages with ethical considerations associated
with the study. A thorough exploration of these issues ensures that the re-
search abides by the highest ethical standards, lending credibility to its results
and conclusions.

3.1 Research Strategy

Research represents a systematic pursuit of knowledge [125], guided by differ-
ent philosophical underpinnings known as research paradigms. These paradigms,
embodying the philosophies of science [126], fundamentally influence the con-
duct of scientific inquiry. They do so by defining key aspects such as ontology
(the nature of reality), epistemology (the nature and scope of knowledge), ax-
iology (the values within the research process), methodology (the approach
to conducting research), and rigour (criteria for evaluating research quality)
[127; 128].

This thesis adopts the positivism paradigm, which is closely associated
with the ‘hypothetico-deductive’ model of science. Positivism emphasizes the
verification of hypotheses derived from theory, typically through quantitative
measures that establish relationships between independent and dependent vari-
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ables [125]. However, positivist research is not limited to quantitative methods
alone; it can also encompass qualitative analyses [129] within experimental
studies, such as those investigating medical significance.

The ‘hypothetico-deductive’ method [130], central to positivism, operates
cyclically. It starts with the formulation of testable hypotheses based on ex-
isting theory, followed by the design and execution of experiments to opera-
tionalize variables. This experiment specifies variables for manipulation and
measurement and assigns them to different groups. The empirical findings
from such experiments are then integrated into the theory, enhancing it and
thus completing the cycle from theory to hypothesis, operationalization, ex-
perimentation, and back to theory. Through this process, positivist research
hopes to contribute robustly to scientific knowledge by thoroughly testing the-
oretical propositions [131].

In this research context, experimentations are predictions corresponding
to a particular dataset. The scrutinized variables are the inputs, representing
various data transformation approaches, and the dependent variable is the pre-
dictive performance.

Specific evaluation metrics assess the predictive performance, numerical
scores determined by comparing the predictions against known outcomes, also
called the ground truth. Objectively evaluating these metrics measures the
model’s capability to generate accurate predictions.

The research primarily inquires about assessing the relative effectiveness
of predictive models. Therefore, the hypotheses typically propose that model
X is more effective than model Y, while the null hypothesis assumes no signifi-
cant difference between the two models’ performance. This structure provides
a systematic model comparison and thorough performance evaluation.

Although the research primarily adopts a deductive and causal approach,
there is an exploratory component to it as well. This component arises from
the potential ambiguity in defining the specific problems that need solving,
especially when investigating interpretability analysis of CDSSs, a terrain rife
with many potential challenges.

The construction of a research strategy needs thoughtful consideration of
various instrumental factors, namely reproducibility, reliability, and generaliz-
ability [132]. Reproducibility measures the extent to which empirical evidence
is recreated, thereby ensuring that results are not coincidental or the product of
specific circumstances. Reliability assesses the accuracy with which the em-
pirical evidence represents the actual conditions within the research setting.
Finally, generalizability pertains to the applicability of research findings be-
yond their original testing context. Each of these components plays a vital
part in enhancing the rigour and relevance of the research, thereby ensuring its
broader impact and significance within the scientific community.
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To replicate the empirical evidence, a thorough description of the experi-
mental setup and the data used in the experiments is essential. All experiments
strictly adhere to cautiously designed experimental setups within this thesis
and use publicly available datasets. This methodological rigour grants the re-
search significant reproducibility. In addition, the code implementations for
the various studies are made publicly accessible1 to promote transparency and
an open research culture.

Regarding ensuring reliability, the size and number of datasets used are vi-
tal considerations. Although the training data size can significantly influence
the performance of the developed predictive models, the reliability of perfor-
mance estimates largely depends on the test data size. It is critical to evaluate
predictive models using independent test data. If the same data is used for
model training and evaluation, it can result in over-optimistic performance es-
timates and potential underperformance on unseen data.

Therefore, data is often split into separate training and test sets, with the
former used for model training and the latter for generating predictive obser-
vations. However, there is a balancing act between training and test data sizes
- while a more extensive training set often boosts model performance, a larger
test set reduces the risk of unreliable performance estimates.

A solution to this trade-off is k-fold cross validation [133], where data is
split into k subsets. Each round of validation uses one subset as test data and
the remaining subsets as training data. This process is repeated k times to
minimize variability, ensuring each subset is used as test data once. The final
performance estimate is calculated as the average over all rounds, providing a
more stable and reliable performance assessment.

Generalizability is closely tied to reliability. Evaluating learned predic-
tive models on independent test data enhances the reliability of the findings,
thereby boosting the confidence that a superior model will continue to outper-
form others when applied to data drawn from the same underlying distribution.
However, all findings are conditional on the dataset used and the specific tasks
the models are deployed for. As such, assuming that it is possible to create a
universally optimal model that consistently outperforms others across different
domains and data drawn from varying distributions is not viable. This context
emphasizes the difficulty of model generalizability in ML.

1The source code about all studies is accessible for public examination and utilization via the following
GitHub repository: https://github.com/anondo1969.
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3.2 Evaluation Metrics

In ML, the evaluation of models needs consistent measurement methods to
ensure reliability and reproducibility of results. A widely used approach in
this discipline is the Cranfield evaluation paradigm, initially introduced in the
context of information retrieval systems [134]. In this case, the objective is
to extract a subset of relevant documents from a more extensive collection.
The evaluation of such a system consists of measuring precision and recall,
signifying, respectively, the fraction of retrieved documents that are relevant
and the fraction of all relevant documents that are retrieved. The Cranfield
paradigm provides this evaluation using a manually curated test collection of
documents, offering an efficient alternative to costly user-based evaluations.
This method makes it feasible to compare the performance of different systems
using identical test data.

The field of ML uses an array of standard metrics to gauge the reliability of
its models, including accuracy, precision, recall, F-score, AUROC (area under
the receiver-operating characteristic), and AUPRC (area under the precision-
recall curve) [135]. These metrics, however, are not uniformly applicable to
all tasks as the specifics of the task at hand dictate certain metrics. Therefore,
while a single metric is generally used for a specific task, incorporating multi-
ple metrics can demonstrate the robustness of a model and provide a broader
evaluation.

Accuracy, one of these measures, is computed as the proportion of correct
predictions about the total number of input samples.

Accuracy =
Number o f correct predictions

Total number o f predictions made
(3.1)

While effective in scenarios where each class has an equal number of sam-
ples, accuracy is misleading in situations with class imbalances or when the
cost of misclassification for a minority class is high. A classic illustration of
this is diagnosing a rare yet fatal disease, where the cost of not diagnosing an
infected person outweighs the cost of subjecting a healthy individual to further
testing.

Precision, recall, and F-score are other widely used measures. Precision
is the ratio of relevant and correct predictions, while recall is the fraction of
all relevant instances that are predicted accurately. The F-score represents the
harmonic mean of precision and recall metrics. These measures are usually
computed using the counts of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) in binary classification scenarios.

Precision =
T P

T P+FP
(3.2)
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Recall =
T P

T P+FN
(3.3)

Fscore =
2∗Precision∗Recall

Precision+Recall
(3.4)

In a multi-class context, it is possible to assess each class individually by
treating it as the positive class and all others as negative. Additionally, micro-
averaging is used to calculate an average across all classes, providing a com-
prehensive evaluation metric in such scenarios.

AUROC and AUPRC are two other critical evaluation metrics. AUROC,
computed by varying the threshold for classifying examples as belonging to the
positive class, is a function of the true and false positive rates. It corresponds
to the area under the curve plotting pairs of these rates. AUPRC is particularly
useful in cases of class imbalance, as it plots precision against recall for differ-
ent thresholds. Both metrics yield values between 0 and 1, with higher values
indicating superior performance.

The selection of an appropriate evaluation metric is essential for each task
to assure the reliability of the ML model.

Implementing the Cranfield evaluation paradigm requires a gold standard
or manually annotated assessment test set. The inter-annotator agreement,
gauged through measures such as Cohen’s kappa, allows the evaluation of the
accuracy of these annotations [136]. This method comprises multiple experts
annotating identical data and hence estimates the reliability of the annotations.

3.3 CRISP-DM Framework in End-to-End Data Science
Research Methodology

As an academic pursuit, data science stands out due to its varied nature, ef-
fectively merging statistical analysis, scientific computation, and a broad ar-
ray of scientific methods [137]. It is fundamentally concerned with eliciting
and interpreting insights and knowledge from data, which may present in var-
ious forms, including unstructured, structured, or noise-embedded [138]. The
scope of data science is further broadened by integrating specialized knowl-
edge from areas such as the natural sciences, information technology, and
medicine, thereby amplifying its practical relevance [138]. Additionally, the
field is not just confined to being a scientific discipline; it also epitomizes a
research paradigm, offers a methodological framework, embodies a structured
workflow, and represents a unique professional field [139].

The subsequent discussion explores the research methodology relevant to
data science, focusing mainly on the end-to-end approach. The Cross-Industry
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Standard Process for Data Mining (CRISP-DM) is a suitable framework within
this context [140].

CRISP-DM consists of six critical phases. The first, Business Understand-
ing, is foundational to project management, needing a comprehensive grasp of
the project’s objectives and requirements. This grasping encompasses setting
business objectives, assessing the situation for resources and risks, defining
data science goals, and producing a project plan.

The second phase, Data Understanding, builds upon the first by identify-
ing, collecting, and analyzing relevant datasets through initial data collection,
description, exploration, and quality verification.

Data Preparation, frequently identified as the most labour-intensive stage,
encompasses the processes of data selection, cleaning, construction, integra-
tion, and formatting to prepare the data for modelling.

Following this is the Modeling phase, where various models are built and
assessed. This phase warrants selecting modelling methods, generating test
designs, building the model, and assessing it to find the most effective one.

The Evaluation phase goes beyond technical assessment to determine which
model best meets business needs and to review the overall process to decide
on the subsequent steps.

Finally, the Deployment phase, which varies in difficulty, covers planning
for deployment, monitoring and maintenance, producing the final report, and
conducting a project review.

These structured phases ensure a thorough approach to applying ML/DL
models in data science projects.

3.4 Ethical Considerations

The central focus of this thesis revolves around the utilization of sensitive med-
ical data, an approach that inherently introduces various ethical considerations
related to protecting patients’ personal information. To address this critical
issue consciously, various ethical guidelines [141] have been diligently fol-
lowed.

The need to preserve anonymity in patient records is a top priority. This
process removes all personal identifiers such as names, addresses, phone num-
bers, and email addresses from the dataset. Another measure adopted to main-
tain consistent patient identification while upholding anonymity is the replace-
ment of actual security numbers with unique identification keys. Even though
achieving absolute anonymity may not be entirely feasible, all possible efforts
are made to mitigate any risk of reverse engineering. This anonymization pro-
cess safeguards patient identity and establishes a robust ethical foundation for
the research.
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The next significant ethical aspect considered is related to data access.
Only individuals with the proper authorization are permitted access to the
database. This requirement encompasses a mandatory procedure where a con-
fidentiality agreement is executed between the data provider and the researcher.
This agreement, drafted with utmost clarity, articulates the purpose of the re-
search and restricts the use of provided data solely to the tasks specified in the
agreement. This measure ensures that data is not misused and helps maintain
the sanctity of the research process.

Finally, utmost importance has been placed on ensuring that the published
research findings are free from any information to identify the patients. The
methodologies and programming codes used in this research lack any poten-
tial for reverse engineering. Strict adherence to ethical guidelines is maintained
further to strengthen the protection of patient privacy and anonymity. Securing
sensitive medical data is not merely viewed as an obligation but as a commit-
ment to ethical research practice. Through these efforts, this research intends
to ensure ethical compliance in studies that use sensitive medical data.
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4. Summary of Papers

This chapter offers a detailed overview of the studies (see Section 1.5) ad-
dressed in this thesis, specifically related to the Research Sub-Questions out-
lined in Section 1.3. It integrates an analysis of ML methods (see Section 2.1)
used in these studies, focusing on how these methods overcome challenges and
improve performance.

The chapter first explores how ML has enhanced predictive accuracy. It
then addresses the critical issue of protecting the privacy and security of medi-
cal data. It stresses the importance of keeping healthcare data confidential and
secure. Different approaches to safeguard private medical information within
CDSS are discussed.

The concluding section of this chapter focuses on enhancing the usabil-
ity of ML models by deploying them on low-end devices and improving their
interpretability. This section discusses the importance of making CDSSs ac-
cessible on simpler devices to increase usability. It also emphasizes the need
for interpretable ML models in CDSSs, exploring ways to make these more
medically significant.

4.1 Enhancement in Predictive Performance

4.1.1 Handling Medical Data Annotation Scarcity Issue

A common assumption in ML is the availability of fully annotated or labelled
datasets that can easily be used for a range of tasks. Notably, in supervised
learning, labelled data are of the essence. However, this scenario is far from
the norm, more so in the context of medical data. This kind of data needs an-
notation, a process that is costly and demands medical professionals’ expertise
[142].

Methodologies such as semi-supervised learning (SSL) and transfer learn-
ing (TL) can prove instrumental in countering the challenge of data annotation
scarcity. SSL can train models using labelled and unlabeled data simultane-
ously [143]. TL enables knowledge transfer from an already trained model to
a new one, an attribute critical for domain knowledge transfer [144]. When
SSL and TL are jointly used, the results are promising. SSL and TL have
demonstrated impressive performances in fields such as computer vision and
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natural language processing [145–148]. Given the common scarcity of medical
data, multi-task learning [149] could also be a worthwhile area of exploration,
provided the performance is satisfactory. Therefore, the study in Paper I also
undertakes lung segmentation detection from chest radiography data alongside
the task of COVID-19 detection.

As documented in Paper I, the study deploys an architecture as outlined in
[150], which incorporates a U-net [109] based encoder-decoder model. The
encoder is constructed using a CNN consisting of pooling layers connected to
fully-connected layers. Segmentation and classification images are denoted as
X s and Xc, respectively, with corresponding labels as Y and C. The study as-
sumes the data distribution as unknown, represented as p(X s,Y ) and p(Xc,C)
for both cases. Both labelled (Ds

l and Dc
l ) and unlabeled (Ds

u and Dc
u) training

sets are sampled from these distributions, following the principle of indepen-
dent and identical distribution (i.i.d.).

The methodology incorporates data augmentation and pseudo-labeling for
semi-supervised learning in unlabeled images. Augmentation uses both strong
and weak variants. The classification loss, as represented in the following
equation,

Lc = Ll(ĉl,cl)−λLu(ĉs,argmax(ĉw)≥ t) (4.1)

is a combination of supervised and unsupervised losses, the latter being
weighted by λ and determined through a threshold t for pseudo-labeling. These
losses are based on the input predictions and from the strong augmentation.

The process subsequently obtains gradients from the encoders, generating
saliency maps of the predicted classes that direct the segmentation during the
decoding phase. The input images merged with the maps undergo downsam-
pling and connection with the feature maps. The study ensures consistency
by calculating the KL (Kullback-Leibler) divergence between labelled and un-
labeled segmentation predictions. The following equation represents the seg-
mentation loss,

Ls = αLl(ŷl,yl)+βLu(ŷl,yu) (4.2)

This loss is calculated using labelled and unlabeled segmentation predic-
tions, with weights α and β determined from the dice loss.

The experiments were conducted using two different configurations, and
the outcomes from both consistently demonstrate that the integration of semi-
supervised learning with transfer learning outperforms the application of semi-
supervised learning in isolation. This synergy offers a viable solution to the
pervasive issue of limited medical data annotation resources. In the initial con-
figuration, the performance of semi-supervised transfer learning exhibited a
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Image Source: [4]

Figure 4.1: Distribution of missing rates in various time-series (care episodes)
as presented in Paper IV.

7.6% enhancement in COVID-19 detection, as measured by the Fscore, and a
2.8% improvement in lung segmentation detection, as assessed by the average
Dice Similarity Score. The Dice Similarity Score is quantified by calculat-
ing twice the area of overlap between two images, divided by the total pixel
count across both images. In the second configuration, semi-supervised trans-
fer learning showed a 9% advancement in COVID-19 detection in terms of
Fscore and a 1.3% elevation in lung segmentation detection, also gauged by the
average Dice Similarity Score, relative to the semi-supervised learning frame-
work.

4.1.2 Dealing with Data Sparsity in Medical Context

Medical data is notorious for its sparsity [151], a characteristic that presents an
intriguing yet challenging issue when deploying such data in a CDSS. To op-
timally exploit the richness of medical data, the investigation must be done on
managing sparsity to ensure the resulting CDSS delivers improved predictive
capabilities in diagnostics. For example, a time-step in a sepsis information
time-series may be marked by multiple input-feature values or, conversely,
none at all. Therefore, crafting an efficient method for representing these data
gaps, given the high level of sparsity evidenced in Figure 4.1 for the early sep-
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sis detection task in Paper IV, is a prerequisite for more accurate prediction.

4.1.2.1 Time-Series Exploration

One method was used to manage data missingness, specifically through the in-
vestigation of the sepsis information time-series, or care episodes, by manip-
ulating the time-step or bin size (time window). This approach acknowledges
the temporality of the data, converting the care episodes into sequences based
on a predetermined window (bin) size.

An array of different window sizes were selected in this exploration, com-
prising 1, 2, 3, 4, 6, and 8-hour intervals. This range of windows was designed
to accommodate varying lengths of care episodes, as illustrated in Figure 4.2.
Optimal results were yielded from a four-hour time window when coupled with
a missing data imputation approach, as documented in Paper III, resulting in an
Area Under the Receiver Operating Characteristic (AUROC) score of 88.54%.

The choice of time window size significantly influenced the predictive per-
formance of the resulting models. Therefore, the appropriate selection of the
time window, balancing temporal accuracy and data completeness, could be a
vital aspect in the overall ML model performance, signifying the importance
of cautious selection in the determination of time-step or bin size when dealing
with temporal data missingness.

4.1.2.2 Data Imputation Approaches

Two methods have been constructed premised on randomness to address the
missing-data imputation issue. In the case of missing not-at-random data, two
approaches were used.

The Generative Adversarial Imputation Nets (GAIN) [110] were applied
to generate imputation data (GAIN-imputation). GAIN represents a broad ap-
plication of the Generative Adversarial Networks (GAN) architecture [152].
In keeping with the principles of GAN architecture, the generator’s task within
GAIN is to impute the missing data. At the same time, the discriminator works
to minimize the classification loss between the true and the observed imputa-
tions. To ensure that the imputations adhere to the underlying data distribution,
hints are provided to the discriminator within the GAIN architecture.

For the alternative scenario, rather than imputation, an absent integer value
in the dataset was used (distinct-value). This approach aims to signal that the
missingness of a particular value is intentional or missing not-at-random.

On the other hand, a carry-forward approach was adopted in dealing with
missing-at-random data, extending the existing data to subsequent time-steps
until a new value is found. Any subsequent value is similarly carried forward
to fill any future gaps. If the whole time-series features a missing value for
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Image Source: [2]

Figure 4.3: Illustrative representation of the multi-modal approach for COVID-
19 detection as described in Paper II.

a specific input, the global average for that particular value across the entire
dataset is used (carry-forward-mean-imputation).

GAIN implementation for managing missing data has shown a notable dif-
ference in model prediction performance (Paper IV). On average, the Area
Under the Precision-Recall Curve (AUPRC) score saw an improvement of
23.17%, and AUROC was improved by 6.89% compared to the following im-
putation approach.

4.1.3 Tackling Heterogeneity in Medical Data

In medical data, heterogeneity is a characteristic that should be considered vi-
tal. The varied nature of such data stems from multiple sources, including
prescription notes, patient’s diagnostic history, clinical texts from healthcare
professionals, numeric and image-based information from body vitals and lab-
oratory tests, and demographic data of patients [23; 24]. Recognizing and
managing this heterogeneity is essential to effectively utilizing CDSS.

A potential approach for handling the heterogeneous nature of medical data
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is the adoption of multi-modal approaches, which offer a systematic means to
explore data across different modalities. Multimodality, the study of data in its
different forms or modalities, equips us with deeper insights into the diagnos-
tic process within a CDSS [51]. It broadens the scope of data interpretation,
potentially guiding novel insights and discoveries that remain concealed in
unimodal analyses.

The salient strength of multimodality lies in its capability to enrich the use
of medical data by providing a comprehensive view of the diagnostic process.
A typical medical diagnosis is inherently complicated, comprising multiple
aspects. In this regard, a multi-modal approach provides a holistic method
for diagnosis that imitates real-world scenarios instead of relying solely on a
singular data modality [52].

Furthermore, contemporary ML/DL methodologies are adept at handling
data from multiple modalities, making them well-suited to create more robust
and comprehensive CDSSs [53; 54].

4.1.3.1 Multi-modal COVID-19 Detection

In Paper II, multi-modal COVID-19 detection was undertaken, illustrated in
Figure 4.3, where different modalities were explored based on data type and
medical content.

Specifically, the data was categorized into two different modalities depend-
ing on the data type: (a) the Thermal-Image data modality and (b) the Tabular
data modality.

The Thermal-Image data modality comprised a selection of a single image
from each position-video per subject, resulting in four images for each indi-
vidual. Additionally, an exploration of various medical information modalities
present in the tabular medical data was conducted. The thermal information
features extracted collectively from the thermal videos make up the Thermal-
Tabular data modality (1).

Additional tabular medical information was sorted into four different modal-
ities: Symptoms (2), Vitals (3), Drugs (4), and Other (5). These four modalities
and associated feature names are detailed in Table 4.1.

ML methods were used for the COVID-19 detection task using these five
tabular medical information data modalities, namely random forests, XGBoost,
and MLP. A combined CNN and MLP model incorporated the Thermal-Image
data modality for a more comprehensive multi-modal COVID-19 detection,
which simultaneously used the five modalities above. This combined model is
termed CNN+MLP.

The optimal results achieved through the application of XGBoost quan-
tified in terms of AUROC and AUPRC, are depicted in Figures 4.4 and 4.5,
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Symptoms Vitals Other

Fever Body Temperature (°C) Age
Cough Sex

Sore Throat Blood Pressure Home Exposure
Diarrhea (Systolic-Diastolic) Hospital Exposure

Vomit Work Exposure
Loss of Smell Cardiac Frequency Other Exposure
Loss of Taste Breathing Frequency Food Intake

Chills SpO2 Alcohol Intake
Headache Weight (kg) Tobacco Smoking

Muscle Pain Height (cm) Resting an Hour Ago
Joint Pain Walking an Hour Ago
Malaise Drugs Running an Hour Ago

Other Symptom Gym an Hour Ago
Drug Name

Drugs/Vaping Intake
Drug for Diabetes

Drug for Hypertension
Drug for Pain
Drug for Fever

Other Drug Used

(Table Source: [2])

Table 4.1: Overview of multi-modal tabular features in medical data for COVID-
19 detection, as explicated in Paper II.

Image Source: [2]

Figure 4.4: Comparative analysis of AUROC scores for multi-modal COVID-19
detection using XGBoost with tabular medical data, illustrated in Paper II.
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Image Source: [2]

Figure 4.5: Comparative analysis of AUPRC scores for multi-modal COVID-19
detection using XGBoost with tabular medical data, illustrated in Paper II.

respectively. Each stacked bar plot in these figures symbolizes one of the
thirty-one conducted experiments. The structure of each bar plot is divided
into three segments, representing, from top to bottom, the test evaluation score,
the highest score achieved during validation, and the mean score derived from
a leave-one-positive-instance-out-cross-validation procedure. These segments
are color-coded for clarity. The highest scores in these three categories are
further marked using dot (•)-patterned markers.

The initial five bar plots are allocated to experiments related to the five
tabular medical data modalities. The sixth bar plot illustrates the experiment’s
outcome using the entire tabular medical data, encapsulating all Tabular data
modalities. The remaining twenty-five bar plots, arranged in descending order
based on the test evaluation score, represent the other experiments. A unique
acronym, reflecting the combination of Tabular data modalities, is assigned
to label the experiments from the sixth to the thirty-first. For example, the
combination of (T)hermal-Tabular and (V)itals data is denoted as (T)+(V). Ex-
periments that incorporate the Thermal-Tabular data modality are emphasized
with bold typography, such as (T)+(V).

The analysis of these results indicates that the multi-modal approach, mainly
when thermal imaging is an instrumental component, consistently surpasses
the performance of individual modalities across all scenarios. This observa-
tion emphasizes the effectiveness of multi-modal methodologies in elevating
the precision of COVID-19 detection, thereby stressing their capability to han-
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Image Source (changes were made): [4]

Figure 4.6: Illustrative schematic of the multi-modal early sepsis detection
methodology as presented in Paper IV.

dle this challenging diagnostic task.

4.1.3.2 Multi-modal Early Sepsis Detection

The multi-modal methodology for the early detection of sepsis, explicated in
Paper IV, is illustrated through the schematic diagram featured in Figure 4.6.
This approach comprises two main components: the non-text modality and the
text modality.

The non-text modality, embodying numerical and categorical data as pre-
sented in Table 4.2, was subjected to a specific process to address missing
data, as expounded in Section 4.1.2.2. When a particular feature within a time
window had multiple values, an average was computed to represent the values.

On the other hand, the text modality was processed using the Bidirectional
Encoder Representations from Transformers (BERT) model [111], a DL model
built upon the Transformer-Encoder architecture [153]. It is well-regarded for
its ability to pre-train language representation using extensive data. The BERT
model was used to generate text features from the given clinical text, referred
to as text embeddings. These embeddings were then used for subsequent clas-
sification tasks using various ML models, collectively known as downstream
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Non-Text Clinical-TextVital Data Demographic Data Laboratory Data
Systolic Blood Pressure Gender Albumin Nursing Notes
Diastolic Blood Pressure Admission Age Bands (Immature Neutrophils) Physician Notes

Mean Blood Pressure Ethnicity Bicarbonate
Respiratory Rate Admission Type Bilirubin

Heart Rate Admission Location Creatinine
SpO2 (Pulsoxymetry) Chloride
Temperature Celsius Sodium

Cardiac Output Potassium
Tidal Volume Set Lactate

Tidal Volume Observed Hematocrit
Tidal Volume Spontaneous Hemoglobin
Peak Inspiratory Pressure Platelet Count

Total Peep Level Partial Thromboplastin Time
O2 flow INR (Standardized Quick)

FiO2 (Fraction of Inspired Oxygen) Blood Urea Nitrogen
White Blood Cells

Creatine Kinase
Creatine Kinase MB

Fibrinogen
Lactate Dehydrogenase

Magnesium
Calcium (free)
pO2 Bloodgas
pH Bloodgas

pCO2 Bloodgas
SO2 Bloodgas

Glucose
Troponin T

Prothrombin Time (Quick)

(Table Source: [4])

Table 4.2: Inventory of sepsis data features used in Paper IV.

tasks.
The Transformer-Encoder architecture in BERT incorporates a self-attention

mechanism. The model’s pre-training objective function comprises two unsu-
pervised tasks: masked language modelling and next-sentence prediction. The
model parameters and text embeddings are estimated using stochastic opti-
mization. Further fine-tuning may be needed for problem-specific downstream
tasks.

For the study, two such fine-tuned BERT models were used to generate
the text embeddings from clinical text data. These models, referred to as
ClinicalBERT-Alsentzer [112] and ClinicalBERT-Huang [113] in Paper IV,
were applied to predict the early detection of sepsis.

Both ClinicalBERT-Alsentzer and ClinicalBERT-Huang used clinical texts
from the MIMIC-III v1.4 database [118]. ClinicalBERT-Alsentzer divided 15
types of clinical texts into two categories: discharge summary type data and
non-discharge summary type data. These categorized texts were then tok-
enized using ScispaCy [154], resulting in sentences that were used to fine-
tune the original BERT base model. In contrast, ClinicalBERT-Huang further
fine-tuned the model to predict hospital readmission. Since BERT’s maxi-
mum token length is 512, which may be inadequate for long clinical texts,
ClinicalBERT-Huang divided long texts into multiple sections. The model
then combined predictions from each of these sections to generate a single,
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holistic prediction.
For each care episode, the clinical-text data was initially tokenized (up

to a length of 512 characters for each text) and subsequently used for in-
ference within the ClinicalBERT models. Feature vectors were then created
from the values derived from the last four hidden layers of the ClinicalBERT
model. Two approaches were adopted to create the final text embeddings.
First, an average was calculated from all the layers to generate a feature vector
named short-text-embedding. Alternatively, a feature vector, named long-text-
embedding, was generated by concatenating all the layers.

The fusion of text embeddings and non-text processed features was created
to create a comprehensive, multi-modal representation of the input features.
This combined data, constituting a rich representation of clinical features, was
used as the input for the Recurrent Neural Network-Long Short-Term Memory
(RNN-LSTM) model.

The RNN-LSTM model, designed to remember patterns over time, oper-
ates by leveraging the current features and those from preceding time windows.
This capability enables the model to generate an output in the form of a prob-
ability score, the calculation of which takes into account the temporal aspects
of the input features. This score indicates the likelihood of sepsis based on the
given multi-modal input data.

In every one of the three computational environments assessed—single-
server, Raspberry Pi, and Jetson Nano—the combination of clinical-text and
non-text data, or the multi-modal approach, outstripped the evaluation metrics
of the individual modalities. The multi-modal approach achieved its highest
evaluation metrics with an AUPRC of 96.55%, an AUROC of 99.35%, and an
earliness measure of 4.56 hours.

Specifically, in the single-server configuration, the multi-modal approach
manifested an improvement of 9.25% in AUPRC and 1.04% in AUROC rela-
tive to the non-text modality. In the Raspberry Pi context, these enhancements
were quantified at 11.06% for AUPRC and 0.89% for AUROC. Finally, within
the Jetson Nano framework, the model demonstrated an increase of 4.56% in
AUPRC and 0.39% in AUROC. These findings emphasize the robustness and
superior performance of the multi-modal approach across various computa-
tional settings.

4.2 Securing Medical Data Privacy

Medical data generated or stored within a plethora of medical equipment and
servers are often distributed across various physical locations within a hospi-
tal setting. Given these data’s inherent value and voluminous nature, storing
them in a single repository demands a high degree of caution, primarily when
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viewed from security and privacy perspectives. Therefore, exploring such data
demands stringent security and privacy measures to mitigate the risk of infor-
mation breaches.

4.2.1 Federated Data Aggregation

Federated Learning (FL) [57] provides a potential solution to these security and
privacy issues. FL constitutes a series of distributed ML approaches wherein
the data remains dispersed amongst many individual devices. The training pro-
cess for these data is tailored to each specific device, reinforcing the emphasis
on distributed processing.

Under normal circumstances, a central server oversees the entire training
process. However, the fundamental principle underlying FL mandates that this
central server is strictly prohibited from viewing or accessing the data. This
approach could heighten the level of data privacy.

The core challenge lies in effectively consolidating different locally trained
models to enhance the system’s overall performance. However, FL offers a
feasible and cost-effective solution due to its control over data ownership. Ad-
ditionally, FL enhances privacy by enabling the minimum possible usage or
exposure of data, aligning with the growing emphasis on data protection and
privacy in today’s digital age. Therefore, the application of FL in the context
of managing medical data not only enhances operational efficiency but also
substantially reinforces data security and privacy [155; 156].

As depicted in Figure 4.7, the architectural framework for the FL model
used in Papers I and IV begins with the initial creation of a global model. This
model is initially instantiated with random weights, denoted by Wr, on the
server side. Following this, the server disseminates the global model across
all the client devices.

Once the model has reached the client devices, it undergoes a process of
local training and updating. After this process, each client device sends its
locally trained model, represented by W c

r , back to the server.
Upon receiving the trained models from all the client devices, the server

aggregates these models to create a unified global model, denoted by Wr+1 =

∑c
Sc
S W c

r . In this equation, c represents each client, r signifies the round, which
refers to a complete cycle of creating one aggregated global model. It is ex-
pected to execute multiple rounds to discover the optimal global model. S
stands for the total sample size in the dataset, and Sc is the sample size within
each client device.

The model was initiated with random weights in examining FL systems,
particularly in Paper IV. Future research should consider using pre-trained
weights, especially parameters from the client with the most extensive feature
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Image Source: [4]

Figure 4.7: Architecture of federated learning, illustrated in Paper IV.

set within an uneven dataset.
The approach to aggregating client updates was to weight them based

solely on sample size. However, it is vital to assess the consistency of these
updates. Disparate updates may indicate underlying issues with the data or its
processing at the client level, which needs further investigation.

The approach for global model updates was to iterate for a set number of
epochs without a termination point. It is recommended to conclude commu-
nication rounds based on a well-defined criterion in the future, such as the
validation dataset performance at each client or the evaluation metrics at the
server, to ensure optimal learning efficiency and model convergence.

Two aggregation methods were used in this thesis, specifically: Federated
Averaging and Federated Optimization.

• Federated Averaging Federated Averaging, referred to as FederatedAv-
eraging in [157], is outlined in Figure 4.7. It works by aggregating dif-
ferent locally trained models using a weighted average of all the models.
In Papers I and IV, Federated Averaging was used. In Paper I, a variant
of this method, namely Standard Deviation Based Weighted Averaging,
was also used. This variant comprises calculating the local weights to be
averaged based on each client’s validation metric (accuracy or loss). If
the validation metric surpasses the difference between the average eval-
uation metrics and standard deviation, the weights are taken in the aver-
aging process. If it doesn’t, the weights are disregarded.
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• Federated Optimization Federated Optimization, described as FEDOPT
in [158], updates the global model on the server side by using a global
optimizer. This optimizer is typically gradient-based and functions by
using the average of the local models. Federated Optimization was used
in the study presented in Paper IV.

In Paper I, the study explores a Raspberry Pi-centric FL framework using
Federated Averaging. This framework demonstrates enhanced performance in
lung segmentation tasks, evidenced by a 1.92% increase in the average Dice
score. Conversely, a server-simulated FL framework shows superior effective-
ness in COVID-19 detection, with a notable 6.63% improvement in accuracy.

Further, Paper IV investigates early sepsis detection tasks. Here, Feder-
ated Averaging marginally outperforms Federated Optimization, particularly
in the multi-modal context. using Raspberry Pi, Federated Averaging yields a
1.86% increase in AUPRC and a 0.43% improvement in AUROC compared to
the Federated Optimization. In the context of Jetson Nano usage, Federated
Averaging results in a 3.99% enhancement in AUPRC and a 0.54% increase in
AUROC.

Experimental findings indicate that the FL configuration approximates the
performance of a single-server setup, especially when using a relatively small
number of devices (e.g., five devices for the early sepsis detection task).

This observation emphasizes the criticality of decision-making in the selec-
tion of devices and data allocation within an FL environment. Overfitting is a
common challenge in ML, where a model excessively learns from the training
data, including its noise and details, to the detriment of its ability to generalize
to new, unseen data. Therefore, device selection and data distribution must be
meticulously planned to prevent overfitting.

4.3 Enhancing Practical Usability

In the context of this thesis, a comprehensive exploration of the system-level
aspects of low-end devices was undertaken. This exploration intended to ex-
pand the system’s accessibility and utilization among a broader end-user spec-
trum. The motivation is rooted in the potential of such devices in the healthcare
sector.

To enhance the applicability of the CDSS within the healthcare commu-
nity, a focal point of this thesis is to address the interpretability challenges
associated with the black-box prediction model [159]. This term black-box
refers to a system where the internal workings are not visible or easily under-
standable to the user, often causing trust issues due to this lack of transparency.
In response to these challenges, concerted efforts were made to decipher the
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Image Source: [4]

Figure 4.8: Edge devices used in Paper IV: Raspberry Pi (top) and Jetson Nano
(bottom).

medical significance of the predictions produced by the ML model. Such an
understanding is critical to improve the transparency of the CDSS and increase
its acceptability within the medical community.

4.3.1 Low-End Device Adaptability

In Paper I, the research comprised the application of Raspberry Pi [67] edge de-
vices (configured with Ubuntu 20.10 as GNU/Linux 5.8.0-1024-raspi aarch64)
for FL in the context of COVID-19 detection. Building upon this, Paper IV
expands the scope by using two low-end edge devices for early sepsis detec-
tion within a CDSS. These devices incorporate Raspberry Pi and the Jetson
Nano [160] (configured with Linux-4.9.253-tegra-aarch64 and Ubuntu-18.04-
bionic). Figure 4.8 shows these low-end devices.

In early sepsis detection, Jetson Nano demonstrated superior performance
to Raspberry Pi. Specifically, for the multi-modal case, Jetson Nano exhib-
ited a 16.55% improvement in AUPRC and a 1.40% enhancement in AUROC
relative to Raspberry Pi. The noted improvement could be attributed to the
utilization of fewer devices (three for Jetson Nano vs. ten for Raspberry Pi)
and the inclusion of a GPU (graphics processing unit).
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Image Source: [4]

Figure 4.9: Comparative analysis of CPU utilization across various Raspberry
Pi and Jetson Nano devices as presented in Paper IV.

The findings from these studies emphasized that the performance of these
low-end devices aligned closely with that of server-centric experiments, indi-
cating their potential utility in practical CDSSs.

The scope of the study was not limited to enhancing the model’s perfor-
mance; instead, it pursued a balanced inquiry into the feasibility of application
in real-world settings. This inquiry compared the system-level attributes of
these low-end edge devices.

A detailed analysis of specific system-level parameters was undertaken, en-
compassing ‘CPU (central processing unit) utilization’, ‘disk utilization’, ‘pro-
cess CPU threads in use’, ‘process memory in use (non-swap)’, ‘process mem-
ory available (non-swap)’, ‘system memory utilization’, ‘temperature’, and
‘network traffic’. The objective was to enhance the deployment approaches
of these devices, aiming to uphold the efficiency and practical utility of the
CDSS. This focus on system-level attributes was integral to ensuring that the
deployment of these devices could be optimized for real-world healthcare sce-
narios.

Jetson Nano could be a favourable choice when considering implementa-
tion speed. In contrast, Raspberry Pi demonstrated less memory exhaustion,
provided that the issue of temperature management is sufficiently addressed.
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Exploring the importance of features could be a viable approach to achieving
efficient CPU utilization. By reducing the number of unimportant features,
processing speed could be enhanced, and CPU efficiency could be improved.

In the quest to ensure the practical usability of the CDSS, the system in-
formation from the low-end devices proved to be a valuable asset. Critical
factors such as CPU utilization, process memory, and system memory were
vital to optimizing performance on these low-computational devices. There-
fore, these factors make it essential to fine-tune the training model effectively.
Furthermore, attention must be given to the device’s temperature. Ensuring this
remains within acceptable levels is essential to maintain device effectiveness.
Network traffic is another critical consideration, particularly in a low-power
and lossy network (LLN), a typical scenario for IoMT infrastructures. There-
fore, it is necessary to ensure the effective allocation of network resources.

Figure 4.9 provides one example of the system-level information compar-
ison, where the CPU utilization is compared across different Raspberry Pi and
Jetson Nano devices. This visual representation provides a comparative under-
standing of the performance capacities of these low-end devices.

4.3.2 ‘Medical Significance’: Holistic Investigation of Prediction In-
terpretability

Deep Neural Networks (DNNs) are a powerful tool in ML/DL, showing sub-
stantial predictive capacities. However, they have challenges. One primary
concern surrounding DNNs pertains to the nature of their decision-making pro-
cess, which is often described as lacking interpretability. The complications
inherent in these networks can make it challenging for users to understand the
reasoning behind the model’s predictions.

In addressing this challenge, a spectrum of interpretability methods has
been proposed in recent research studies [161; 162]. Within the field of ML/DL,
these methods seek to elucidate the behaviour of models and enable humans
to grasp the rationale behind specific predictions to some degree. Interpretable
models effectively provide an understanding of their predictions [70; 71]. This
understanding, in turn, aids in assessing critical factors such as ethics, trust,
causality, and fairness [72], allowing stakeholders to evaluate whether the
model’s predictions align with these essential criteria.

Interpretability becomes increasingly vital when considering these factors,
particularly from legal and ethical perspectives. Given this, there is a need
to incorporate interpretability in DL models. Various regulatory frameworks
underline the importance of interpretability in this context. The importance of
interpretability in the predictions of ML/DL models is emphasized by several
key legislations, such as the European Union’s (EU) General Data Protection
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Regulation (GDPR) [73], the EU Artificial Intelligence Act [74], and the US
Algorithmic Accountability Act of 2022 [75].

The value of interpretability extends to models that are trained for medical
diagnoses. For such models, the emphasis on interpretability must be closely
linked to interpreting the medical significance. The concept of medical signifi-
cance encompasses the comprehension of clinical symptoms or disease mech-
anisms and their impact on the normal operations of cells, tissues, organs, or
organ systems [163]. Understanding this medical significance ensures the us-
ability of these models within the healthcare sector, including CDSSs.

By decoding the medical significance of the model’s predictions, practi-
tioners are better equipped to interpret and apply the insights garnered from
the model. This benefit ultimately enhances the model’s utility in supporting
effective and personalized healthcare provision. Hence, the quest for inter-
pretability is essential from a legal and ethical viewpoint and vital to optimiz-
ing the practical value of DL models in the healthcare sector.

As an illustrative example, consider the research conducted in Paper I,
wherein chest radiography data was used to predict COVID-19. Although
the model’s performance proved satisfactory from a technical perspective, its
practical deployment within the healthcare sector could encounter a significant
challenge — interpretability.

Referring to the end-users in this context mainly addresses medical profes-
sionals. For these individuals, the model’s utility extends beyond simple pre-
dictions; they need comprehensive explanations accompanying each predic-
tion. A mere probabilistic threshold is insufficient, as they expect understand-
ings rooted in the domain of medical significance, as previously described.

The need for interpretability is more than just the situations where predic-
tions are accurate. It is equally critical, if not more so when predictions are
incorrect or uncertain. Medical professionals need to understand why a model
made a specific prediction, whether accurate or not, to validate its utility and
understand its limitations.

In the absence of interpretability, a model, regardless of its accuracy, may
not gain acceptance within the medical community. Furthermore, without a
clear understanding of the model’s predictions, healthcare professionals are
less able to use the model as a reliable tool for aiding in diagnostic and ther-
apeutic decisions. Therefore, along with evaluation metrics, a model’s ability
to provide meaningful and medically significant interpretations is instrumental
during its development and deployment.

Two interpretability methodologies were examined in Paper V: Layerwise-
Relevance Propagation (LRP) [79] and Gradient-weighted Class Activation
Mapping (Grad-CAM) [77] to explore this critical issue of interpretability, .
These methods hold potential within the field of CNN models due to their abil-
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ity to generate saliency maps, offering insights into the models’ predictions.
These methods provided a visual analysis of the predictions generated by

a DNN trained on the multi-label and multi-class chest radiography dataset,
CheXpert (refer to Section 2.2.4 for more information). A transfer learning
approach based on a deep CNN architecture was implemented for this task.
Adopting two different interpretability methods provided a balanced and more
detailed explanation, which enhanced the understanding of the practical appli-
cability of a CDSS.

The analysis transcended the exhibition of the most favourable outcomes
to substantiate interpretation. Instead, an extensive investigation was also con-
ducted into cases where incorrect predictions were made despite high predic-
tion scores. This analysis offers a balanced overview of the applicability of
the chosen interpretability methods. It provides insights into the underlying
rationale behind successful predictions and those off the mark, ultimately con-
tributing to a more comprehensive understanding of model behaviour.

LRP is premised on the assumption that dissecting a DL model’s operation
into multiple layers of computational processing is possible. It uses the back-
propagation algorithm to compute the significance attributed to each neuron.
This computation initiates from the final layer, moving backwards to the input
layer whilst navigating through all intermediate layers.

Each neuron’s relevance, denoted by Rl
i , is calculated based on the follow-

ing equation:

Rl
i = ∑

j
R(l,l+1)

i← j = ∑
j

zi j

z j
Rl+1

j (4.3)

The equation 4.3 conveys the relevance Rl
i of a specific neuron situated

within a lower layer, calculated in light of the relevance Rl+1
j assigned to its

associated neuron in the immediately succeeding upper layer. The localized
pre-activations are symbolized as zi j = xiwi j. Here, xi refers to the input of
the neuron, and wi j represents the weight tied to the associated connection.
z j = ∑i zi j +b j is an equation where b j refers to the bias term.

Through its ability to propagate relevance layer by layer, LRP provides an
understanding of each neuron’s importance within the broader network archi-
tecture. This understanding is significant because it allows us to evaluate each
neuron’s part in a network’s decision-making process, thereby contributing to
the understanding of prediction interpretability.

Grad-CAM is instrumental in evaluating the significance of individual neu-
rons within an input by using a feature map. This feature map is created using
the gradient scores propagated back to CNN’s final convolutional layer. By
implementing Grad-CAM, generating a heatmap becomes feasible, drawing
attention to the prominent features within the input.
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Let the class score for a specific class c be denoted by yc. The importance
of each neuron is correlated with yc, and it is determined by calculating the gra-
dient of yc concerning the activation A. This calculation procedure results in an
importance weight αc

k for each feature map k, as represented by the following
equation:

α
c
k =

1
z ∑

i
∑

j

∂yc

∂Ak
i j

(4.4)

Following this, the heatmap generation is achieved through a weighted
combination of the activation maps. To solely select positive contributions, a
ReLU function is incorporated to eliminate negative values. Thus, the Grad-
CAM heatmap, denoted as Lc

Grad−CAM, is defined as follows:

Lc
Grad−CAM = ReLU(∑

k
α

c
k Ak) (4.5)

This computation creates the Grad-CAM heatmap, effectively showing the
key features within the input associated with the class c. This heatmap thus
provides an insightful visualization for prediction interpretability, particularly
in identifying areas of the input that a CNN model finds most influential for its
predictions.

From the observations, it was discerned that for instances where patients
were accurately classified, the model identified disease-related localized ar-
eas as critical features for its decisions. Conversely, in instances of incorrect
classification, the model attributed importance to irrelevant regions within the
data. The generation of heatmaps is executed differently by both LRP and
Grad-CAM, yet each contributes valuable insights into model prediction anal-
ysis.

(a) Input image (b) Support Devices (c) Lung Opacity (d) Pleural Effusion
Image Source: [5]

Figure 4.10: Representative heatmaps illustrating accurate multi-label predic-
tions in conjunction with original images, using the layer-wise relevance propa-
gation (LRP) method as documented in Paper V.

Fig. 4.10 depicts an instance where the top three predicted classes were
accurately determined for illustrative purposes. In this figure, it is evident that
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LRP generates specific heatmaps for each of the three classes.
The first class, Support Devices, signifies the auxiliary presence of medical

devices. In Fig. 4.10b, it is visible that the model has correctly identified the
wire on the patient’s neck area within the heatmap for this category.

The second class, Lung Opacity, denotes a reduction in the ratio of gas to
soft tissue within the lung, a hallmark of certain respiratory conditions such as
COVID-19 [164]. Fig. 4.10c demonstrates that the model correctly identified
this condition within the left lung.

Finally, the class Pleural Effusion refers to the abnormal accumulation of
fluid within the pleural cavity, the fluid-filled space surrounding the lungs. Fig.
4.10d corroborates that the model accurately located this condition within the
left lung.

These figures elucidate how the LRP method can identify specific patho-
logical conditions within patient data, reinforcing its applicability in CDSSs.

The LRP-based heatmaps offer a helpful breakdown of pixel importance,
elucidating the features that influence the model’s prediction. This granular-
ity may benefit a comprehensive analysis, identifying the reasons behind the
model’s prediction and the points of failure. In comparison, the heatmaps
generated via Grad-CAM represent broader areas, which can swiftly signify
whether the model is focusing on the correct regions within an image.

These insights benefit a well-defined problem, such as disease detection,
where pathologies typically manifest within specific areas. The Grad-CAM
method can indicate the areas where the model excels and the regions where
it fails, thereby contributing to the ongoing improvement of the model. In this
manner, the combined application of LRP and Grad-CAM offers a balanced
approach to evaluating the effectiveness and shortcomings of the model pre-
dictions, thereby enabling a more robust interpretation.

There is an absence of a quantitative comparison against annotations made
by medical experts in Paper V. Additionally, the research predominantly used
saliency methods, such as LRP and Grad-CAM, despite other robust inter-
pretability methods.

In Paper VI, the research builds upon the preliminary work of Paper V by
integrating two additional interpretability methods: Local Interpretable Model-
agnostic Explanations (LIME) [76] and Shapley Additive exPlanations (SHAP)
[78] to address this issues mentioned above. These are applied to discern the
medical significance of particular pathology classes through heatmap score vi-
sualization. Acknowledging that the selection of methods is not exhaustive,
a detailed quantitative evaluation is provided by comparing the predictions
with expert annotations, and the analysis is further enriched with qualitative
insights for two specific pathology classes. This qualitative analysis examines
the instances with the highest interpretability scores, those predicted with the
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highest probability score, and instances with multiple labels to ensure a bal-
anced evaluation. This holistic approach hopes to understand the outcomes of
these interpretability methods, offering insights into the rationale behind the
predictions.

The investigation was conducted using the Chexpert dataset. Furthermore,
the CheXlocalize dataset (refer to Section 2.2.5 for more information) was
used as a complementary dataset to Chexpert. In CheXlocalize, annotations
provided by human experts for the ground truth values were used to aid in the
interpretability study.

LIME works on the notion that a model’s local fidelity is more straight-
forward to discern than its global behaviour. It operates by approximating
the model locally to elucidate individual predictions across various data types,
such as images, text, and tabular data.

The essence of LIME is to clarify predictions by examining the immedi-
ate vicinity of the instance in question. It perturbs the instance’s input data to
understand the local decision boundary better. LIME then uses a sparse lin-
ear regression model on this perturbed dataset, often lasso regression [165].
The sparsity of the linear model, aided by regularization, is vital to its inter-
pretability, as it simplifies the model predictions to only the most informative
features.

For weighting the perturbed samples, LIME applies a kernel function [166],
typically a radial basis function, to measure the proximity of each sample to
the instance being explained.

ξ (y) = argming∈GL( f ,g,πx′)+Ω(g) (4.6)

The mathematical framework of LIME (Equation 4.6), intending to deci-
pher the prediction of a specific input x, comprises a trained model f and a
simpler surrogate model g. The vicinity of x is defined by πx′ , with x′ being
the perturbed samples. The complexity penalty of the surrogate model is ex-
pressed as Ω(g). LIME’s objective is to minimize the locality-sensitive loss
function L, which quantifies the discrepancy between the predictions of the
model f and the linear model g within the local vicinity of x.

In SHAP, a model f : X → R is analyzed to interpret the prediction f (x)
for a specific instance x ∈ X . The set of features within x is denoted as M, and
a binary vector z ∈ {0,1}M indicates the presence or absence of each feature.
By excluding features corresponding to 0 in z, a subset h(z) ∈ X is formed.

ϕi(x) = ∑
z∈{0,1}M\{i}

| z |!(M− | z | −1)!
M!

B (4.7)

B = ( f (h(z∪{i}))− f (h(z))) (4.8)
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Shapley values are used to compute attribution scores for each feature.
KernelSHAP [78], which integrates LIME’s local approximation and Shapley
values, is used to approximate these values. It trains a linear model g :RM→R
via weighted least squares regression, where the optimal coefficients corre-
spond to the Shapley values. Data points for this training are sampled from the
space {0,1}M, and the model’s output values are taken as f ◦h.

Image Source: [6]

Figure 4.11: Quantitative analysis of instance-wise intersection over union (IoU)
scores using the Gradient-weighted Class Activation Mapping (Grad-CAM)
method in Paper VI.

In this study, the quantitative evaluation of interpretability methods was
performed through pixel-level segmentation derived from heatmap scores. High
scores on these heatmaps signify areas of interest related to specific patholo-
gies. Binary segmentations were created by thresholding the heatmaps, with
thresholds determined by Otsu’s method [167], which seeks to maximize between-
class variance in pixel intensity.

The effectiveness of these segmentations was measured using the mean
Intersection over Union (IoU) metric [91], comparing the overlap between
model-generated and ground-truth annotations, with scores ranging from 0 (no
overlap) to 1 (perfect alignment). The hit rate metric [91] was also used to
complement IoU and assess the interpretability method’s ability to locate rel-
evant regions, verifying if key points identified by the model fall within the
actual annotated regions.

Figure 4.11 delineates the Intersection over Union (IoU) scores derived
from the Grad-CAM method, juxtaposed with segmentations annotated by
medical professionals. The figure comprises box plots for the ten pathology
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categories, depicting the mean IoU value. A dashed line indicates the aver-
age mean IoU score across all classes, while an adjacent solid line denotes the
median. The data illustrates Grad-CAM’s uniform performance, with the Car-
diomegaly category achieving the highest average IoU of 0.234 and the Lung
Lesion category recording the lowest at zero.

(a) Lung Opacity (b) Support Devices
Image Source: [6]

Figure 4.12: Cases of the Lung Opacity (with a prediction probability of 0.63)
and Support Devices (with a prediction probability of 0.93) classes are accom-
panied by human expert segmentation annotations for ensuing qualitative assess-
ment (Paper VI).

(a) Lung Opacity (b) Support Devices
Image Source: [6]

Figure 4.13: A multi-label case of the Lung Opacity (with a prediction probabil-
ity of 0.58) and Support Devices (with a prediction probability of 0.92) classes
are accompanied by human expert segmentation annotations for ensuing qualita-
tive assessment (Paper VI).

For qualitative example, Figure 4.12a exhibits the selected case from the
Lung Opacity category, and Figure 4.12b displays the case from the Support
Devices category, each marked with segmentation by human experts. Accom-
panying these illustrations are the respective prediction probability scores. Fig-
ure 4.13 represents the specified multi-label case for both the Lung Opacity and
Support Devices categories.
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(a) Ground Truth (b) LIME Segment.
Image Source: [6]

Figure 4.14: Segmentation based on LIME (Local Interpretable Model-agnostic
Explanations) heatmap scores of the Lung Opacity class instance exhibiting the
highest IoU performance (IoU score: 0.38, prediction probability score: 0.42),
juxtaposed with segmentation annotations from human experts for comparative
analysis (Paper VI).

In a similar evaluative context, Figure 4.14 shows the LIME method’s
heatmap segmentation for the Lung Opacity instance with the top IoU score.
LIME successfully captures the lower-left lung area, though it marks a broader
region than the expert’s segmentation, indicating a variance in scope. Despite
this difference, LIME’s capacity to correctly pinpoint the relevant area is note-
worthy, emphasizing its utility in accurately identifying and delineating areas
of interest within the Lung Opacity class.

(a) Ground Truth (b) LIME Segment.
Image Source: [6]

Figure 4.15: Segmentation based on LIME heatmap scores of the Support De-
vices class instance exhibiting the highest IoU performance (IoU score: 0.48,
prediction probability score: 0.86), juxtaposed with segmentation annotations
from human experts for comparative analysis (Paper VI).

Figure 4.15 illustrates the segmentation results from LIME for the Support
Devices class instance that registered the highest IoU score. The visualization
confirms LIME’s precision in pinpointing the upper-right section of the lung.
Nonetheless, the segmentation inferred by LIME does not entirely match the
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area marked by human expert annotation. While the coverage is not exhaus-
tive, the outcome affirms LIME’s competence in effectively marking the speci-
fied lung region in instances categorized under the Support Devices class. This
instance illustrates the practicality of LIME as an interpretability method, with
the caution that additional adjustments are needed to achieve an exact overlap
with expert-drawn segmentations.

(a) Lung Opacity (b) Support Devices
Image Source: [6]

Figure 4.16: Segmentation derived from LIME heatmap scores of the highest
prediction probability for instances within the Lung Opacity (prediction proba-
bility score: 0.63, IoU score: 0.16) and Support Devices (prediction probability
score: 0.93, IoU score: 0.25) classes (Paper VI).

Figure 4.16 presents the LIME-generated heatmap segmentations for in-
stances with the highest prediction probabilities within the Lung Opacity and
Support Devices categories. The comparison yields notable insights when con-
trasted with Figure 4.12, which depicts segmentations annotated by medical
experts. For the Lung Opacity instances, the LIME segmentation captures only
a portion of the targeted areas. In contrast, the Support Devices instances see
a more focused segmentation by LIME in the upper-right section of the lung,
which partially coincides with the expert annotations, particularly on the left
side of the segmented region.

Figure 4.17 illustrates the LIME method’s heatmap segmentation for the
multi-label instance with the highest prediction probability scores within the
Lung Opacity and Support Devices categories. Insightful analysis is provided
by contrasting these visualizations with Figure 4.13, which displays the expert
annotated segmentations for these classes.

For the Lung Opacity category, LIME’s segmentation recognizes parts of
the targeted regions. It also erroneously comprises the left shoulder and an ad-
jacent artefact unrelated to the Lung Opacity pathology, revealing a challenge
in LIME’s specificity.

In the context of the Support Devices category, LIME’s segmentation ex-
tends over a significant area of the left torso, encompassing both the relevant
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(a) Lung Opacity (b) Support Devices
Image Source: [6]

Figure 4.17: Segmentation based on LIME heatmap scores for the multi-label
class instance with the highest prediction probabilities, specifically for Lung
Opacity (prediction probability score: 0.58, IoU score: 0.31) and Support De-
vices (prediction probability score: 0.92, IoU score: 0.08) (Paper VI).

region and an overlying artefact, indicating an area for enhancement in LIME’s
precision in demarcating the targeted zones accurately.

Grad-CAM achieved the most consistent mean IoU scores among all classes,
while SHAP performed erratically, often missing medically significant fea-
tures. LIME’s heatmaps provided the most effective qualitative interpretation
tool, while LRP’s visualizations were less informative, stressing the necessity
for further research to enhance these methods for CDSSs.

Interestingly, the performance of interpretability methods was not aligned
with the conventional AUROC scores or the volume of instances per class,
indicating that traditional evaluation metrics might not adequately reflect the
effectiveness of interpretability in DL model predictions. This lack of corre-
lation between standard evaluation scores such as AUROC and interpretability
metrics such as IoU and hit rate indicates that high model prediction accu-
racy might not necessarily translate to valuable insights from interpretability
methods. This observation calls for a cautious approach to evaluating their
prediction’s clinical relevance or medical significance.
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5. Concluding Remarks

The culmination of this thesis is a holistic observation that emphasizes the
instrumental parts that Machine Learning (ML) and the Internet of Medical
Things (IoMT) play in advancing Clinical Decision Support Systems (CDSSs).

Investigation into the Research Sub-Question 1 (See Section 1.3), spans
Papers I through IV, wherein a suite of contemporary ML/DL models is used
to elevate performance in the field of medical data analysis. In Paper I, a
notable advancement is demonstrated by the finding that performance obtained
by combining semi-supervised learning with transfer learning can significantly
surpass the effectiveness of using semi-supervised learning alone, especially
in multi-task learning scenarios. This fusion could be a potent solution to the
widespread issue of insufficient annotated medical data.

In Paper III, the research explores the impact of time-step selection on
the predictive capabilities of ML models. The findings emphasize the vital
contribution of time-step size in achieving a balance between temporal granu-
larity and the integrity of the dataset, asserting the significance of meticulous
selection of temporal parameters to address the challenges posed by missing
temporal data.

The discussion extends in Paper IV, which examines scenarios of data
missingness, whether missing-at-random or missing-not-at-random. Here, the
utilization of Generative Adversarial Imputation Nets (GAIN) marks a consid-
erable advancement in data imputation, as evidenced by the enhancement of
prediction metrics: the Area Under the Precision-Recall Curve (AUPRC) was
improved by 23.17%, and the Area Under the Receiver Operating Characteris-
tic (AUROC) by 6.89%, relative to alternative imputation methods.

To handle the issue of data heterogeneity, multi-modal approaches dis-
cussed in Papers II and IV have demonstrated superior performance over sin-
gular modality methods in various test scenarios. Cumulatively, the research
illustrates that by effectively addressing the challenges of medical data, such
as annotation scarcity, temporal data missingness, and heterogeneity, one can
achieve marked improvements in CDSSs, such as COVID-19 detection and
early sepsis prediction.

In addressing the Research Sub-Question 2 on the security and privacy
of medical data, Papers I and IV demonstrate the effectiveness of Federated
Learning (FL). The findings indicate that FL can match the performance of
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centralized models with a limited number of devices, stressing the framework’s
potential in sensitive CDSSs such as COVID-19 detection and early sepsis
prediction. However, the research cautions against overfitting due to device
selection and data distribution in FL setups, emphasizing the importance of
effective design to ensure robust model generalization.

The Research Sub-Question 3 focuses on usability enhancements within
CDSS. Papers I, IV, V, and VI investigated this issue. The inquiry is twofold:
adapting low-end devices for CDSSs and investigating the prediction inter-
pretability applicability of ML models.

The research found that low-end devices such as Raspberry Pi and Jetson
Nano can effectively participate in FL networks for CDSSs, such as COVID-19
and early sepsis detection. Papers I and IV demonstrated this finding. These
studies emphasize the potential for such devices in real-world CDSSs, with
system-level considerations such as CPU and memory usage playing a vital
part in model training and feature creation.

Papers V and VI explore the interpretability of ML models’ predictions,
emphasizing the discrepancy between quantitative and qualitative evaluations.
Unlike other studies focusing only on selective best-case prediction scenarios
for their selected interpretability methods, this research thoroughly compares
them. It presents a broad analysis, acknowledging the constraints of contempo-
rary holistic evaluations while emphasizing the theoretical dimensions of these
interpretability methods. This approach is mainly focused on understanding
the varying explanations they produce. The goal is not to benchmark but to
deepen the understanding of interpretability methods and their practical im-
plications in medical diagnostics and predictions, hoping to contribute to the
field’s advancement and reliability.

While Papers I and IV investigate FL, they diverge on an important method-
ological point. Paper I explores the potential of multi-task learning from a sin-
gular data modality, positing that this approach could be highly beneficial due
to the synergistic nature of various CDSSs. This focus on a unique data source
intends to leverage the interrelatedness of different medical tasks to enhance
learning efficiency and predictive performance.

On the other hand, Paper IV takes a comprehensive approach to data het-
erogeneity by using multimodality methods across different data sources. This
approach addresses the complications arising from the varied nature of medi-
cal data, which can stem from various sources and formats. The study seeks
to create a more robust and adaptive framework by integrating these multiple
modalities.

The juxtaposition of multi-task learning with multimodality approaches
presents a compelling avenue for constructing advanced CDSSs. When these
two key elements are combined, they hold the potential to forge systems that
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are not only more efficient in processing and analyzing medical data but also
more effective in real-world CDSSs. This integrated methodology could pave
the way for CDSSs that are versatile, powerful and capable of delivering in-
sights across various aspects of healthcare.

The shift from traditional to patient-centric healthcare systems has empha-
sized the necessity for personalized and engaged care. Enhanced generation of
medical data and its subsequent utilization for better healthcare outcomes has
propelled this transition. The applicability of IoMT has supported this shift,
providing a platform for data collection, analysis, and transmission across net-
works to aid healthcare providers in effective and efficient care delivery. The
relevance of IoMT became more prominent during the COVID-19 pandemic,
demonstrating its potential to contribute to remote patient monitoring, reduce
in-person visits, and minimize disease spread.

The fusion of CDSSs, particularly ML-powered ones, with IoMT can en-
hance healthcare, enabling real-time decision-making support and elevating
patient outcomes. The ability of ML to dissect large, complicated datasets, un-
cover elusive patterns and relationships, and offer valuable new insights could
enhance overall clinical decision-making. Further, the ML model’s learning
capacity from multi-modal data and adaptability to evolving circumstances
heightens their predictive accuracy.

This thesis demonstrates the necessity of integrating CDSSs with IoMT
and applying ML in this context, emphasizing enhancing predictive abilities,
reinforcing security and privacy measures, and enhancing accessibility and ac-
ceptance for all stakeholders. These interconnected objectives need collective
action to exploit the potential of integrating ML and IoMT within CDSSs.

By examining advancements in predictive performance, ensuring medical
data security and privacy, and enhancing the usability and interpretability of
ML models’ predictions, a pathway is paved towards an improved CDSS. It is
characterized by timely, personalized, and efficient care, ultimately boosting
patient outcomes and advancing global patient-centric healthcare systems.

This thesis stresses various prominent issues, the resolution of which could
benefit all medical stakeholders. The proposed CDSSs are non-invasive, se-
cure, rapid, and cost-effective compared to others. They could be deployed
remotely with minimal human contact, making them effective in a pandemic.
However, their security and privacy need further enhancement for maximum
outreach and acceptance. Using versatile medical sensors, economical edge
devices, and multi-modal ML models could help achieve the objective of de-
veloping remote IoMT-based real-time CDSSs such as COVID-19 and early
sepsis detection.

This proposed CDSS is characterized by its multi-modal architecture, which
confers various benefits such as increased robustness and modularity. The
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CDSS’s design enables its components to collect data independently, enhanc-
ing overall robustness and ensuring fault tolerance. Furthermore, the ML
model inference augments the predictive capability of the CDSS, allowing for
accurate detection even in the presence of data-modality inconsistencies. This
attribute significantly boosts the CDSS’s adaptability, making it suitable for
remote deployment scenarios.

It could be possible to expand the functionality of the CDSS through the in-
tegration of wearable sensors for monitoring vital signs [168] and through the
collection of symptoms and other relevant data via the patient’s smartphone.
It can also securely incorporate additional information from the patient’s elec-
tronic health records, such as prescribed medications, clinical notes, and lab-
oratory test results. For remote data acquisition, using devices such as Rasp-
berry Pi equipped with thermal camera sensors could be possible. These edge
devices, including Raspberry Pi and Jetson Nano, provide remote ML training
and subsequent predictions. Adopting federated or swarm learning methods
[169] can enable the secure integration of various devices and training models.
This comprehensive approach emphasizes the CDSS’s versatility and capacity
to enhance diagnostic accuracy and predictive performance, paving the way
for an improved version.

Three key factors need thorough consideration to achieve robust and infor-
mative outcomes for CDSSs such as COVID-19 or early sepsis detection using
ML: the used data, the prediction model, and the interpretability method.

Recognizing the interpretability method’s inherent dependency on the un-
derlying model is necessary, making model alignment with real-world scenar-
ios essential. Improving the model’s capacity to mimic real-world phenomena
enhances both the transferability and the reliability of interpreting its predic-
tions. Incorporating multi-modal data, including chest radiographs, patient
history, clinical notes, and laboratory tests, is significantly beneficial in this
context. This approach could enhance the interpretability of predictions since
the explanations of ML predictions across individual data modalities may mu-
tually reinforce, ultimately resulting in a more comprehensive explanation.

The infusion of domain knowledge into the ML model architecture is valu-
able. It could be possible to achieve this through integrating multi-modal data
and exploring different model architectures. The effectiveness of CNNs in
processing image data is well-established. However, recent developments in
Vision Transformers [170; 171] have shown significant promise and merit ad-
ditional exploration [172]. The potential benefits of multi-modal approaches
are also evident. When fine-tuned on medical datasets, models such as Clini-
calBERT and variations of ImageBERT [173] can be tailored to specific diag-
nostic tasks, leveraging the advantages of integrating multiple data modalities.

Finally, enhancing and implementing interpretability methods should in-
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corporate causality considerations (where feasible), feature dependence, and
a thorough comprehension of medical data. This emphasis on comprehension
is particularly significant in contexts such as chest radiographs, where key re-
gions often overlap and are situated nearby. Thus, the chosen interpretability
methods must be capable of capturing these details in interpreting ML-based
CDSS predictions derived from these radiographs.

The insights revealed in this thesis aspire to be a significant resource for
researchers, practitioners, and stakeholders working to broaden understanding
in this critical field. Recognizing that significant efforts are needed in this
area, further investigation and enhancement are encouraged to propel progress
in this sector.
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