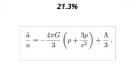
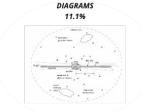

Rearranging Equations to Develop Physics Reasoning

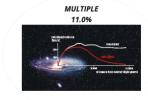
Implications on Physics Teaching and Learning

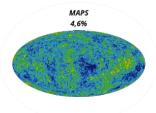
$$\Sigma\Omega_i + \Omega_\kappa = 1$$

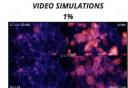


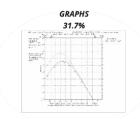
The project

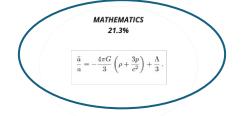

- Semiotic Audit of Astronomy Representations
- Higher Education Courses
- Lecture notes & Textbooks
- Categorization in semiotic systems


GRAPHS



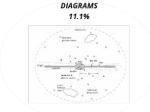

MATHEMATICS

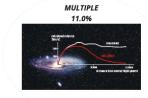


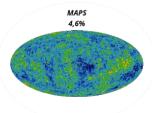


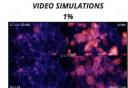


The project


- Semiotic Audit of Astronomy Representations
- Higher Education Courses
- Lecture notes & Textbooks
- Categorization in semiotic systems







IMAGES

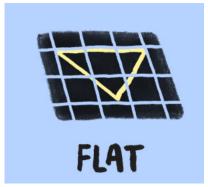
Cosmology Lectures

- Three higher education Cosmology courses.
- Friedmann equation: dynamics and curvature of the universe

The Friedmann Equation in Cosmology

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3c^2} \ \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$$

Cosmology Lectures


- Key relevant aspects:
 - Rate of expansion
 - > Shape of the universe (curvature)
 - > Contents of the universe

The Friedmann Equation in Cosmology

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3c^2} \ \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$$

Cosmology Lectures

- Rearrangement
- Combined forms from all three courses
- Aspects of both:
 - > Mathematical knowledge
 - > Physics Reasoning

Rearrangement of the Friedmann equation

Equation Forms

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3c^2} \ \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$$

2
$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$$

3
$$1 - \Omega(t) = -\frac{\kappa c^2}{R_0^2 a(t)^2 H(t)^2}$$

$$\Sigma \Omega_i + \Omega_\kappa = 1$$

$$\Sigma \Omega_i = 1 - \Omega_{\kappa}$$

Theoretical framework: Symbolic forms

- Symbolic Forms (Sherin, 2001):
- ➤ How students understand physics equations
- > Conceptual schema
- > Symbol template

Cluster	Symbolic form	Symbol Pattern
Competing terms	Competing terms	
	Opposition	
	Balancing	
	Canceling	0=
Terms are amounts	Parts-of-a-whole	[_+ _+]
	Base \pm change	[□± △]
	Whole - part	[ㅁ- ㅁ]
	Same amount	
Dependence	Dependence	[x]
	No Dependence	[]
	Sole Dependence	[x]
Coefficient	Coefficient	[x 🗆]
	Scaling	$[n \square]$
Multiplication	Intensive – extensive	$x \times y$
	Extensive – extensive	$x \times y$
Proportionality	Prop+	$\begin{bmatrix} \dots x \dots \\ \dots \end{bmatrix}$
	Prop-	
	Ratio	$\left[\frac{x}{y}\right]$
	Canceling (b)	$\begin{bmatrix} \dots x \dots \\ \dots x \dots \end{bmatrix}$
Other	Identity	$x = \dots$
	Dying Away	$[e^{-x}\cdots]$

What we did

• Possible symbolic forms for each line.

Line 4

$$\Sigma\Omega_i + \Omega_\kappa = 1$$

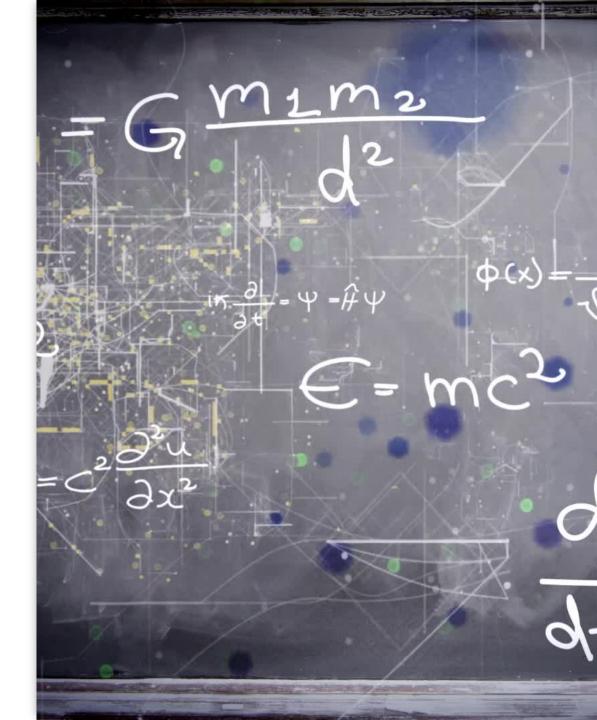
Possible symbolic forms

Symbolic form	Symbol Pattern
Competing terms	□± □± □···
Parts-of-a-whole	[_+ _+]

RQ1: Rearrangement & Symbolic forms

 What aspects of physics reasoning can be identified when we use Sherin's framework of symbolic forms to analyze the line-by-line rearrangement of the Friedmann equation?

Lines	Equation forms	Symbolic forms
1	$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$	Competing Terms, Opposition, Ratio (Multiple), Prop+ (Multiple), Prop- (Multiple), Dependence (Multiple), Coefficient (Multiple)
2	$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$ U C	Competing Terms, Opposition, Ratio (fewer) Prop+ (Multiple), Prop- (Multiple), Dependence (Multiple), Coefficient (Multiple), Identity
3	$1 - \Omega(t) = -\frac{\kappa c^2}{R_0^2 a(t)^2 H(t)^2}$ \mathbf{N}	Ratio (fewer), Dependence (fewer), Coefficient (fewer), Prop+ (fewer), Prop-(fewer)
4	$\Sigma\Omega_i + \Omega_\kappa = 1$	Parts of a Whole, Competing Terms
5	$\Sigma\Omega_i = 1 - \Omega_{\kappa}$	Identity, Dependence


RQ1: Rearrangement & Symbolic forms

- Line to line movement:
- ➤ Lines 1-4: Reduction in the number of symbolic forms
- ➤ Lines 4-5: Shift in the conceptual schema

Lines	Equation forms	Symbolic forms
1	$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$	Competing Terms, Opposition, Ratio (Multiple) Prop+ (Multiple), Prop- (Multiple), Dependence (Multiple), Coefficient (Multiple)
2	$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$	Competing Terms, Opposition, Ratio (fewer) Prop+ (Multiple), Prop- (Multiple), Dependenc (Multiple), Coefficient (Multiple), Identity
3	$1 - \Omega(t) = -\frac{\kappa c^2}{R_0^2 a(t)^2 H(t)^2}$	Ratio (fewer), Dependence (fewer), Coefficient
4	$\Sigma\Omega_i + \Omega_\kappa = 1$	Parts of a Whole, Competing Terms
5	$\Sigma\Omega_i = 1 - \Omega_{\kappa}$	Identity, Dependence

RQ2: Physics reasoning with equations

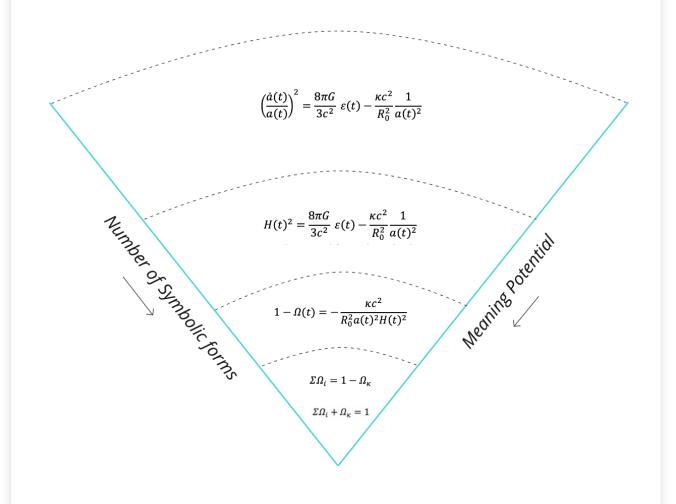
 What does this analysis suggest about the way that physicists rearrange equations in order to reason about physics?

RQ2: Physics reasoning with equations

- Underlying mechanism:
- ➤ Narrowing down of meaning potential.
- Movement between foreground and background
- ➤ Purposefulness

Narrowing down meaning potential

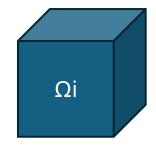
• Symbolic forms \Longrightarrow Meaning potential


Kapodistrias & Airey, 2024

Narrowing down meaning potential

Reduction in the number of symbolic forms

Narrowing down meaning potential




Foreground & Background

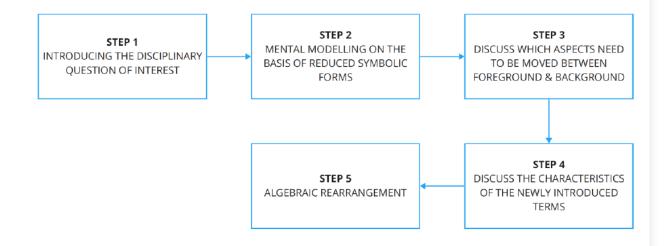
- New terms introduced in each line
- Final forms easier to reason with:
 - If $\Omega = 1$, then $\kappa = 0$ (flat universe).
 - If $\Omega < 1$, then $\kappa > 0$ (open universe).
 - If $\Omega > 1$, then $\kappa < 0$ (closed universe).

Newly introduced terms

Lines	Equation forms	New terms
1	$ \left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} $ $H(t)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} $ $1 - \Omega(t) = -\frac{\kappa c^2}{R_0^2 a(t)^2 H(t)^2} $	
2	$H(t)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$	$H(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)$
3	$1 - \Omega(t) = -\frac{\kappa c^2}{R_0^2 a(t)^2 H(t)^2}$	$H(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)$ $\varepsilon_c(t) = \frac{3c^2H(t)^2}{8\pi G}, \Omega(t) = \frac{\varepsilon(t)}{\varepsilon_c(t)}$
4	$\Sigma\Omega_i + \Omega_\kappa = 1$	$\Sigma\Omega_i = \Omega_m + \Omega_r + \Omega_\Lambda \Omega_\kappa = -\frac{\kappa c^2}{R_0^2 a(t)^2 H(t)^2}$
5	$\Sigma\Omega_i = 1 - \Omega_\kappa$	

Purposefulness

- Directionality
- Direction: disciplinary needs and questions of interest
- " Ω " parameters:
 - > Calculated from observations
 - > Scale invariant
 - Question of interest: relationship between curvature and contents of the universe
- Purposeful


Discussion

- Implications on Physics Teaching & Learning:
- Not being aware of the mechanism:
 - > Focus on the algebraic
 - Not motivating the steps

> Awareness of the mechanism can subtly change teaching practice

Discussion

- Suggested teaching sequence:
- A) Leveraging the purposefulness
- B) Leveraging the narrowing down of meaning potential
- C) Leveraging foreground & background movement

Thank you for listening!

- References
- ➤ B. L. Sherin, *How Students Understand Physics Equations*, Cogn. Instr. **19**, 479 (2001).
- A. Kapodistrias and J. Airey, *Rearranging Equations to Develop Physics Reasoning* Eur. J. Phys. 45, 3 (2024). https://doi.org/10.1088/1361-6404/ad261c