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Abstract

This thesis is based on five papers addressing variance reduction in different
ways. The papers have in common that they all present new numerical methods.
Paper I investigates quantitative structure-retention relationships from an
image processing perspective, using an artificial neural network to preprocess
three-dimensional structural descriptions of the studied steroid molecules.

Paper II presents a new method for computing free energies. Free energy is
the quantity that determines chemical equilibria and partition coefficients. The
proposed method may be used for estimating, e.g., chromatographic retention
without performing experiments.

Two papers (IIT and IV) deal with correcting deviations from bilinearity by
so-called peak alignment. Bilinearity is a theoretical assumption about the distri-
bution of instrumental data that is often violated by measured data. Deviations
from bilinearity lead to increased variance, both in the data and in inferences
from the data, unless invariance to the deviations is built into the model, e.g.,
by the use of the method proposed in III and extended in IV.

Paper V addresses a generic problem in classification; namely, how to measure
the goodness of different data representations, so that the best classifier may be
constructed.

Variance reduction is one of the pillars on which analytical chemistry rests.
This thesis considers two aspects on variance reduction: before and after exper-
iments are performed. Before experimenting, theoretical predictions of experi-
mental outcomes may be used to direct which experiments to perform, and how
to perform them (papers I and II). After experiments are performed, the vari-
ance of inferences from the measured data are affected by the method of data
analysis (papers I1I-V).

Key words: chemometrics, pulse-coupled neural networks, peak alignment,
class separability, molecular dynamics, Monte Carlo, expanded ensembles, free
energy.
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Preface

This thesis is based on work carried out as a PhD student between February 2000
and October 2004 at the Department of Analytical Chemistry, Stockholm Univer-
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Pre-processing of three-way data by pulse-coupled neural networks—an
imaging approach
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Determination of solvation free energies by adaptive expanded ensemble
molecular dynamics

K. M. Aberg, A. P. Lyubartsev, S. P. Jacobsson, and A. Laaksonen

J. Chem. Phys. 120, 3770-3776 (2004).

Peak alignment using reduced set mapping
R. J. O. Torgrip, M. Aberg, B. Karlberg, and S. P. Jacobsson
J. Chemometrics 17, 573-582 (2003).

Extensions to peak alignment using reduced set mapping and classification
of LC-UV data from peptide mapping

K. M. Aberg, R. J. O. Torgrip and S. P. Jacobsson

Submitted to: J. Chemometrics (2004).

A measure of class separation
K. M. Aberg and S. P. Jacobsson
Submitted to: J. Chemometrics (2004).

In Paper I the author was responsible for developing the ideas, implementing
the code, modelling and analyzing the data, and writing the paper. In Paper 1T
the author was responsible for the idea, developing the algorithm, doing the
MD simulations, and writing most of the paper. In Paper III the author was
responsible for everything involving the breadth first search, including the idea,
its implementation, and writing part of the paper. In Paper IV the author was
responsible for the ideas, implementing the code, modelling and analyzing the
data, and writing the paper. In Paper V the author was responsible for the idea,
developing the algorithm, and writing the paper.
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Chapter 1

Introduction

The aim of applied analytical chemistry is to answer a specific question of some
kind. The nature of the question differs—it can be to qualitatively determine
the contents of a sample of biological origin or quantify the amount of a certain
substance in indoor air.

A central concept in analytical chemistry is the so-called analytical chain.
The first link in this chain is the sampling procedure, including a strategy for
sampling and the actual taking of a sample. The subsequent links are defined
as the steps and procedures applied to the sample in order to make the desired
assessment and provide an answer to the question at hand. The answer should
be more than a single figure describing, for instance, the concentration of sugar
in natural juices. It must be delivered with some measure of certainty, or rather
uncertainty, commonly expressed using standard deviations and confidence in-
tervals. The chain is no stronger than its weakest link; the same holds for an
analytical method. If you do not have control over all the steps from sampling to
data evaluation, you cannot say anything about the uncertainty of the answer.
And if you are uncertain about the uncertainty, be assured, it is huge!

Researchers in analytical chemistry do not generally approach the above ques-
tions other than for demonstration purposes, but are more devoted to the task
of developing and refining methods and instruments that the practitioner can
use to get more reliable answers, preferably in shorter a time and with smaller
amounts of sample. Researchers deal with different links of the analytical chain—
sometimes a single link, at other times the complete chain. There exists a multi-
tude of instrumental techniques and methods, most of them developed with one
aim in mind—variance reduction. Bjorklund et al.! provide an excellent exam-
ple of method improvement for variance reduction in the analysis of the fully
brominated di-phenyl ether, deca-BDE, a flame retardant and environmental
pollutant.

The four most common measures of goodness of an analytical method are
the limit of detection (LOD), the repeatability, the reproducibility, and the limit
of quantification (LOQ). The limit of detection (LOD) used to have a simple
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definition—three times the standard deviation of the noise, but now has a more
detailed and intricate definition. ISO%*? and TUPAC* provide LOD definitions
and their similarities and differences are discussed by Currie.® The IUPAC or-
ange book* defines repeatability as the standard deviation for “independent re-
sults obtained with the same method on identical test material, under the same
conditions (same operator, same apparatus, same laboratory and after short in-
tervals of time).” Reproducibility has a similar definition with the difference
that the results are to be obtained under different conditions and the differences
should be specified. LOQ is commonly defined as the level of the desired quantity
where it can be determined with a relative standard deviation of ten percent. It
is all about variance.

Selectivity is another key word in analytical chemistry. Increasing the selec-
tivity of a method or detector means reducing the overlap between the signal
of interest and other signals, which might vary uncontrollably. This, of course,
decreases the uncertainty (variance) in the final answer. But do not pursue min-
imal variance heedlessly, pursue low enough variance: the ultimate goal should
be to answer efficiently with tolerable uncertainty, not as accurately as possible.
To quote a professor at the department: “It’s not about doing things right, it’s
about doing the right things.” Even so, variance reduction retains its impor-
tance. Variance criteria must be met in high throughput analysis as well as in
miniaturization.

Chemometrics is where (analytical) chemistry and statistics meet. The focus
in chemometrics is on the use of more sophisticated mathematical and statistical
models, not just the usual univariate regression and statistics based on the as-
sumption of normally distributed errors. The outspoken aim of chemometrics is
variance reduction. The chemometrician usually tries to minimize the expected
squared prediction error; that is, find the model and the parameters thereof,
which minimize Var(y —y), where y is the quantity of interest and ¢ is the model
estimate. This minimization is about using all the information present in the
measured data.

Another form of variance reduction is to perform as few experiments as pos-
sible. The total variance is roughly proportional to the number of experiments
performed, “Var(Study) oc tr(XX™),” X being the measured data. Design of ex-
periments is concerned with obtaining maximum information from as few samples
as possible. At the next level of abstraction the experiments can be performed in
silico. In other words, by performing relevant computer calculations and draw-
ing conclusions from them, we may reduce even further the number of actual
experiments to include only those we believe important. When doing “relevant
computer calculations” we are treading on the very outskirts of analytical chem-
istry where it intersects with physical chemistry. The objective, however, still
lies within analytical chemistry. The transition between the two disciplines is
smooth, for instance via quantitative structure-activity relationships (QSAR),
considered to be a part of chemometrics. An example of QSAR modelling is
the use of molecular descriptors to predict the binding affinity of ligands to an
enzyme, or the activity of an enzyme in the presence of potential ligands. The



molecular descriptors are often based on quantum chemical calculations, quan-
tum chemistry being a core part of physical chemistry. The disciplines also meet
where we seek detailed physical and/or mechanistic explanations for the response
of a detector, or for the retention mechanisms of a chromatographic media. The
latter problem may be studied by means of statistical mechanics. In statistical
mechanics, variance reduction is a key word. When high-dimensional integrals
are to be evaluated, variance reduction techniques are needed to make the calcu-
lations feasible. The two dominating techniques are Monte Carlo and molecular
dynamics.

My contribution to variance reduction in analytical chemistry lies in data
preprocessing within the field of chemometrics. The thesis includes two fun-
damentally different fields of study: Paper I examines the use of pulse-coupled
neural networks for quantitative structure-retention relationships (QSRR), Pa-
per IIT and Paper IV study the benefits of peak alignment prior to multivariate
modelling with chemometric standard methods. Paper V is related to Paper IV
and deals with the objective function for variance reduction in a classification
context.

Paper II may seem like an outlier next to the other four papers. We started
a QSRR project where chromatographic retention was to be predicted from first
principles rather than from a regression model, which is the usual procedure. So
the step from Paper I was not all that far. However, the project turned out to be
less straightforward and more complicated than we initially thought. Paper II
addresses the first major issue that we came across in our molecular simulations.

The thesis is organized in two theoretical chapters discussing chemometrics
(Chapter 2) and the theory of solvation-free energies (Chapter 3). These chapters
are followed by a discussion of the individual articles (Chapter 4) and some
general conclusions and considerations (Chapter 5).






Chapter 2

Chemometrics

As in all experimental sciences and in analytical chemistry in particular, re-
searchers are dependent on statistical measures for reporting their results. The
field of chemometrics is founded on the border between chemistry and (mathe-
matical) statistics. Chemometrics can be said to encompass all the statistics used
in chemistry. Multivariate statistics is the core of chemometrics, especially exper-
imental design, multivariate optimization, and multivariate regression. Among
the new statistical methods that have seen the light of day within the chemo-
metrics community, partial least squares is the most prominent example. The
statistical methods are often not directly applicable to the measured data. There-
fore, a lot of effort is put into research on data pretreatments, transformations
of the data that will enable the chemometrician to use a standard multivariate
regression method.

An introductory book on the subject is Chemometrics: Data Analysis for the
Laboratory and the Chemical Plant by Brereton.® An excellent book of reference
character covering a wide range of subjects is the Handbook of Chemometrics
and Qualimetrics in two volumes A7 and B.® More specialized books include
Multivariate Calibration by Martens and Naes? and A User’s Guide to Principal
Components by Jackson.'?

The fundamental assumption in modelling is that the measured data consist
of information and noise:

data = information + noise,
the mathematical formulation being;:

x = f(y) +e. (2.1)

On occasions, when the situation is more complicated, the relationship is written
more generally as x = f(y,¢). These equations refer to the measurement process.
As data analysts we are interested in the inverse relationship: how to determine
y (information) given x (data). The rest of this chapter will be devoted to the
issues of multivariate modelling, assuming that Eq. (2.1) holds.

5
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2.1 Bilinear data

In chemometrics a matrix consisting of first-order data, e.g., spectra, from several
samples is almost exclusively represented by variables in columns and samples as
rows. What is perhaps the most common situation nowadays is that the number
of variables exceeds the number of samples; the problem is underdetermined.
When this is the case, multiple linear regression (MLR)* cannot be used directly.
A common and old-fashioned approach is to select a small number of variables
(wavelengths if the measured data are spectrometric) and apply MLR to find
the regression of y on x. By doing this, we dispose of most of our data and the
information contained therein. The chemometric approach is to try to utilize all
of the observed data and to extract the information they contain.

Consider the issue of determining the concentration of k compounds in water
using UV /Vis spectroscopy. Assume further that there is no selective wavelength
for any of the compounds. A natural approach would be to design a set of
m calibration samples with varying amounts of the analytes and measure the
absorbance spectrum, x (at n wavelengths), for each sample. If the Beer-Lambert
law is obeyed, each sample may be described as a sum of the pure component
spectra, s, times their concentration, c:

X; = C4Sq + CpSp + ... + CLSE. (2.2)
This equation may be written for all samples simultaneously in matrix form:
X = CST, (2.3)

where S is a (n x k) matrix of the pure spectra and C is (m X k) contain-
ing the concentrations of all components in all samples. Matrices like X are
called bilinear. In chemometrics it is customary to structure the data matrix,
X, with samples as rows and variables as columns. In other disciplines X may
be structured the other way around. Exploiting the bilinearity of X is a major
concern for the chemometrician, the two main applications being regression and
classification.

2.2 Rank

The number of independent rows or columns in a matrix, X, is called the rank
of the matrix. Any experimentally measured data matrix has full mathematical
rank. This fact is due to instrumental noise. The rank is then equal to the
number of rows or columns, whichever is the smaller. If data free of noise could
be obtained, then the rank would be equal to the number of chemical phenomena
that vary between samples (or possibly the number of phenomena minus one, if

*Multiple linear regression is also known by the names ordinary least squares (OLS) and
inverse least squares (ILS). These are not to be confused with classical least squares (CLS)
which solves the problem X = KY + E, K being, e.g., pure spectra



2.8. Principal components analysis 7

the measured system exhibits closure). An example of closure is when the sum
of all the variables is constant from sample to sample; all the constituents of a
mixture add up to 100%. The number of phenomena is called the chemical rank
and this is important in multivariate regression. For real data, the chemical rank
is determined as the number of large eigenvalues of the XTX. The eigenvalues
tend to fall off rapidly at first and smoothly thereafter. It is a simple task to
say that there are at least [ phenomena present. The true chemical rank can be
more difficult to specify; small effects may be difficult to discern from noise. A
major concern of chemometrics is to estimate the chemical rank.

Instrumental artefacts are common sources of misspecification of the chemical
rank. The most trivial example of this is where there is a time shift that differs
between samples in chromatographic data. The position of a peak varies between
samples and this destroys the bilinear structure of the data. The structure no
longer satisfies Eq. (2.3). A single peak, present in all samples, which could
be described by a single latent variable, were it not for the varying shift, may
need several latent variables to be described equally well. Imagine what this can
do to a full chromatogram with tens, hundreds, or even thousands of peaks. A
deviation from bilinearity increases the apparent rank, and this is degenerative
to multivariate modelling.

2.3 Principal components analysis

The history of the method dates back to the early 19th century. Cauchy is
considered to have been the first to derive principal components analysis (PCA),
which he did as early as 1829.° The next time PCA makes an appearance is
in two papers by Adcock from 1877 and 1878. In the 1877 paper'!' he derives
the one- and two-dimensional subspaces for overdetermined systems of point
measurements in three dimensions. In the following paper'? he uses the term
principal axis when computing the regression line y = ax + b with errors in both
x and y. The solution is optimal in a least squares sense, where the residuals are
measured orthogonal to the regression line. Pearson'® commented on the strange
habit of assuming that only y, the dependent variable, is prone to error, while the
independent variable, x, is free of error, while we know that this is not the case.
Next, he goes on to give a description which is more easily recognized as PCA
than the earlier ones. The method was further developed by Hotelling in 19334
and used in a context similar to the way it is often used today. Examples of the
use of PCA in chemometrics can be found in any textbook, see, e.g., Refs.58
The book by Jackson'? is perhaps the most comprehensive source of information
about PCA.

Consider the matrix X, a data table with m samples and n variables. PCA re-
lates to the second statistical moment of X, which is proportional to XTX. PCA
partitions X into two matrices T and P, which are called scores and loadings
respectively, such that:

X =TP" (2.4)
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The loadings matrix contains the eigenvectors of XTX ordered by their eigen-
values with the largest first and in descending order. If P has the same rank as
X, i.e., P contains the eigenvectors to all non-zero eigenvalues, then T = XP is
a rotation of X. The first loading vector, p;, points in the direction that min-
imizes the orthogonal distances from the samples to their projection onto this
vector. This means that the first column of T captures the largest possible sum
of squares as compared to any other direction in R".

In statistics it is customary to center the variables in the matrix X prior to
using PCA. This makes XX proportional to the variance-covariance matrix.
The first principal axis is then the direction in which the data have the largest
spread. This property of PCA opens up a possibility for data compression and
noise suppression. When only the & first loading vectors are used Ty = XPy is
a projection onto the subspace of R™ with the smallest residual in least squares
sense. The data can be reconstructed as X = TkP;f. Noise suppression is
achieved with little loss of information if k£ equals the chemical rank. Since the
same phenomena are measured m times, m — k samples contribute to the noise
smoothing.

There is a considerable similarity between Eq. (2.3) and Eq. (2.4). With the
same number of components and without mean centering of the variables, the
PCA loadings will span the same space as S. If the X of Eq. (2.3) is decomposed
using PCA, the pure spectra {s;}*_; can be found as linear combinations of the
loadings, {pi}le. This can be written as s; = Pa, where the coefficients a may
be found from the PCA score space T. Imagine the scores inscribed in a pyramid
with k edges with the top of this pyramid at t = ¢ = 0. If there are samples
in which only one component has nonzero concentration, then the coefficients a
are determined by the equations of the edges of the pyramid. The samples may
be consecutive spectra from a liquid chromatographic system coupled to a diode
array detector (LC-DAD). In this context PCA can be used to mathematically
resolve overlapping chromatographic peaks. Once the pure spectra are known,
the concentration profiles of the individual components can easily be computed.
This subject is known as multivariate curve resolution (see for instance Ref.!?).
PCA plays an important part in many other areas or subjects, examples of which
include exploratory data analysis,'® classification, variable decorrelation prior to
the use of neural networks,!” analysis of sensory data,® data compression,'® and
noise reduction,™ to mention a few.

The scores and loadings can be computed using many different algorithms,
of which the power method, eigenvalue decomposition, and singular value de-
composition (based on a generalization of eigenvalues to non-square matrices)
are the most common (see Ref.2? for details). The number of components can
be chosen by examining the eigenvalues or, for instance, considering the residual
error from cross-validation.

In essence, PCA is nothing but a rotation of the coordinate system, though a
very useful one. It is perhaps the most frequently used method in chemometrics.
Every analyst of multivariate data uses it and comes up with new applications all
the time. SciFinder?! returns about 17000 hits for the search words “principal
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components analysis.” This figure is to be compared to the number of answers
to “linear calibration” (21 000), “linear regression” (31000), and “UV-VIS spec-
troscopy” (74 000).

2.4 Shrinkage Regression

Consider the model
y=Xb+e. (2.5)

The formal least squares solution using multiple linear regression (MLR) is
burr = (XTX) !XTy, If the problem is underdetermined, XTX is singu-
lar and there is no unique solution, bar R, but a solution space of baszr-vectors
in which e = 0, i.e., the problem is solved exactly. Since underdetermined regres-
sion problems can always be solved exactly using a linear model,’ yielding non-
sensical results, there is a need for methods that can handle this situation. One
such class of methods is called shrinkage regression methods. The word shrink-
age refers to the fact that ||bsg|| < ||barr| and that Var(bsgr) < Var(barr),
where the subscript SR indicates a shrinkage method. A direct effect of shrink-
age methods is that Var(y) < Var(y); hence the predictions are shrunk towards
the mean, E(y). These methods usually have parameters that need to be deter-
mined; hence an element of model selection enters into the regression modelling
(see Section 2.6 for a discussion of this topic).

2.4.1 Ridge regression and the variance—bias dilemma

The simplest way to stabilize the matrix inverse is to add a constant to the
diagonal. This is the basis of ridge regression. The formal solution for the
regression coefficients is

brr = (XTX + A1) 'X"y, (2.6)

where A is the ridge coefficient. The regression coefficients are biased as a result
of the use of the ridge coefficient. As their variance decrease, however, the model
becomes more stable with respect to the prediction error.

The variance-bias dilemma is a general problem in multivariate regression.
The model bias can only be reduced at the expense of increased model variance
and vice versa. The expected prediction error is the sum of two components:
E((§ — y)?) = (model bias)? + (model variance). The better the assumptions
about the data are, the better a model can be expected to perform. A suitable
transform Z = f(X) prior to the regression may simultaneously reduce the model
bias and the model variance. The transform can be either linear or nonlinear.
The regression model becomes y = Zb.

T An important special case when an underdetermined problem cannot be solved exactly is
when two samples have the exact same location in predictor space, i.e., X; = Xy, while their
responses differ, y; # yi. This will, of course, never occur when x is composed of measured
data.
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2.4.2 Principal component regression

As its name implies, this method is closely related to principal components anal-
ysis. In essence, the method is just multiple linear regression of PCA scores on
y using a suitable number of principal components. The formal solution may be
written as:

bper = P(TTT) ' TTy. (2.7)

New samples are predicted as § = xTbper. In principal components regression
(PCR) the matrix inverse is stabilized in an altogether different way than in
ridge regression. The scores vectors (columns in T) of different components are
orthogonal. The product between two score vectors can be written as t]t; =
0i; i, where d;; is the Kronecker delta and A; the i:th largest eigenvalue of
XTX. PCR uses a truncated inverse where only the scores corresponding to large
eigenvalues are included. The main drawback of PCR is that the largest variation
in X might not correlate with y and therefore the method may require the use of
more latent variables than PLS (described below). More latent variables means
a more complex model, and according to Occam’s razor, or the parsimonious
principle, one should choose the least complex of otherwise comparable models.

24.3 PLS

The acronym PLS stands for partial least squares or, as others prefer to put
it, projection onto latent structures. The interpretation of the acronym is not
unique and varies with the author. The method was first described in the early
1970s by Herman Wold (see, e.g., Ref.2?). Since its appearance, PLS has become
enormously popular; it is used, not only in chemistry, but also in, e.g., econo-
metrics,?? psychometrics,?* and biometrics.?® In practice, PCR is almost never
used due to the excellent performance of PLS. PLS is a latent variable method,
as the second interpretation of the acronym implies. It differs from PCR in the
way the latent variables are chosen. In PCR the latent variables maximize the
explained variance of X, or equivalently: maxy, Var(t), with |p|| = 1, while PLS
maximizes the covariance between the X and y data, maxy, Cov(y, t), subjected
to ||[w|| = 1. There are a number of algorithms that perform PLS regression.
The NIPALS algorithm, as it was introduced in chemometrics by S. Wold and
H. Martens in the early 1980s, is still used today. Its advantages are its speed
and simplicity. However, if there is more than one response variable, it does
not exactly maximize the covariance between X and Y. This was pointed out
in 1993 by de Jong,?® who in the same paper proposed an alternative PLS al-
gorithm that fulfils the covariance criterion. His algorithm is called SIMPLS or
Statistically Inspired Modification of PLS. The differences between NIPALS and
SIMPLS are small from a practical point of view. Furthermore, NIPALS is not as
efficient when the response is multivariate, and this has led to the development
of more efficient PLS algorithms (often SVD based), among which the so-called
kernel-PLS algorithms are worth mentioning. Lindgren and Réinnar?’ reviewed
the various algorithms in 1998. The most efficient algorithm depends on the
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problem: the number of variables compared to the number of samples, whether
Y is multivariate or not, and how the validation is done.

Stepping through the NIPALS algorithm for a univariate response, e.g., the
protein content in samples of minced meat, and a multivariate predictor, in this
case consisting of NIR spectra. The first task is to find the direction, w, in the
predictor space, along which X has maximum covariance with y. This is almost
trivial; the weight vector w is computed as:

w=X"y/[ly" XXy (2.8)
The scores are the values obtained when X is projected onto w:
t =Xw (2.9)
The next step is just as easy: determine the regression coefficient of the model
y =tb as
b=y t/(t"t) (2.10)
The PLS loadings are defined as:
p=X"t/(tTt) (2.11)

Eq. (2.11) looks very similar to Eq. (2.10) and, indeed, p gives us the least squares
reconstruction of X given t. So far everything is intuitive and not difficult at all.
The first PLS component has been found. Next, the data are deflated before the
next component can be computed:

yi=y-—tb (2.12)

X, =X —tp’ (2.13)
The step that makes PLS hard to understand is the deflation of X. One would
expect X to be deflated as X; = X — tw™. It seems natural to subtract what
has already been used from X. The problem with this alternative deflation is
that the scores on the weight vector of the next PLS component do not become
orthogonal to the previous scores. As a result, the second regression coefficient
bs cannot be determined independently of b; and vice versa; hence the algorithm
does not work. Strictly speaking, it is not necessary to update both X and
y for the algorithm to give orthogonal PLS vectors.?” The excellence of PLS
regression has been established by its success in a wide variety of problems.

The relationship between MLR, PLS, and PCR is analyzed and discussed in the
following section.

2.4.4 Continuum regression

Why we get a good predictor from maximizing the covariance between X and y
is perhaps not obvious. By expanding the PLS criterion:

Cov(t,y) = Var(t)Var(y)psy (2.14)

where pgy is the correlation coefficient between ¢ and y, we can identify the
components thereof. Recall that the first latent variable of PCR is the direction
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in which X varies the most. PCR chooses the latent variable based on X only and
this is the same as maximizing Var(t). Multiple linear regression, on the other
hand, is only concerned with explaining the variance in y and this is identical
to maximizing Var(y)ps,. Since MLR is not a latent variable method, only one
score vector can be computed: tyrLr = XBMLR/(B%LRBMLR)UQ. Stone and
Brooks?® parametrized the maximum covariance criterion of PLS [Eq. (2.14)] to
produce a new method—continuum regression, which includes MLR, PLS, and
PCR as special cases.

C = Var(t)*/ A =Var(y) pyy (2.15)

At o = 0 we have MLR, while a = % yields PLS, and PCR is found in the limit
a — 1. The MLR part of Eq. (2.15) is the explained y-variance, i.e., Var(y)py, ~
BTXTXB/(N — 1), assuming that the columns of X are centered. Note that b
can be expressed as wb where the latent variable is defined by the unit length
vector w. Following the same argument, we identify Var(t) ~ tTt/(IN —1).

Two numerical examples will be used to illustrate the differences between the
regression methods. Both examples use simulated data.

Example 1

The first example serves to illustrate the differences between MLR, PLS, and
PCR for an overdetermined problem. The predictor space, x, is three-dimensional
and the samples are independent and multinormal with 3« = diag([1 1 9]). This
means that the three elements of x are independent as well. The number of
samples is 60. The true relationship between x and y is:

y = 3x (2.16)

The “measured” data are, of course, noisy in both x and y, so after the true x’s
are drawn and the true y are computed, white noise is added. Independent and
normal random numbers with standard deviation 0.01 were added to X. The
random vector added to y had a standard deviation of 0.1.

A geometrical interpretation of continuum regression is given in Figure 2.1 (a).
The x-axis shows explained variance along the dimension w. The y-axis shows
explained y variance. The MLR solution is depicted as the black rectangle. It
explains practically all the variance in y, while the explained x variance is low.
The grey rectangle is the one-component PLS solution and the white one near the
bottom of the figure is the one-component PCR solution, which explains most
of the x variance but explains almost nothing of y. The continuum regression
solutions lie on the solid curve.

Figure 2.1 (b) shows predicted vs. measured values of y for the three regres-
sion methods. Since the number of samples are much greater than the number
of variables, we dispense with validation in this example. As to be expected,
MLR is best at predicting y. In order for PLS and PCR to explain more of the
variance in y, we need at least one extra latent variable. The effect of using two



2.4. Shrinkage Regression 13

a b
4
1
o+ 7
sy e
3 + 1+
e% 5 ° o +
= O
> g OQ%‘%@ ® o o
=7 +++’£$* +
++$,+ 1—
£
trace( xT X) measured y

Figure 2.1. The first principal component of example 1. (a) Solutions that max-
imize C' [Eq. (2.15)] lie on the solid curve. Three special cases are: MLR (black
rectangle), PLS (grey rectangle), and PCR (white rectangle). (b) Predicted vs.
measured values of y from MLR (e), PLS (4), and PCR (o).

latent variables is shown in Figure 2.2. The depicted solutions are the ones clos-
est to the average solutions from 1000 simulations. The MLR solution cannot be
improved and stays exactly the same. PLS explains nearly 70% of the X data
and is almost as good at explaining y as MLR. The second component is crucial
for the PCR, predictions. It explains about 50% of the variance in y. The degree
of explanation for PCR does, however, vary considerably between simulations.
The first principal component almost exclusively describes x3, while the second
component can take any direction in the zjxo plane. The observed direction is
determined by small correlations between the random numbers.

Example 2

Our next example shows the relationship between MLR, PLS, and PCR for an
underdetermined problem. The underdetermined situation is likely to occur in
calibration against spectrophotometric measurements. The data are once again
randomly distributed. Each sample contains a mixture of four pure “spectra.”
The concentration of the species in a sample is denoted by x and its spectrum
is denoted by s. Each spectrum has a single Gaussian peak (see Figure 2.3,
solid curves). The distribution of each component is uniform within the ranges
z1 € [0, 0.7], z2 € [0, 0.5], 3 € [0, 0.6], and x4 € [0, 1.2].

We want to quantify is the third compound with the dashed spectrum. The
relationship between x and y is once again described by Eq. (2.16). As before,
white noise is added to S and y. The standard deviation of the noise in s is 0.01,
and in y it is 0.1. There is no selective region in which only the desired signal is
present.
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Figure 2.2. The second principal component, otherwise the same as in Fig-
ure 2.1. (a) Explained variance. (b) Predicted vs. measured y.

Three test sets are created with 15 objects each. The first test set is created
precisely as the calibration data. To the second set of test samples the peak
s5 (dotted) of Figure 2.3 is added. Its intensity is drawn from the uniform
distribution in the range of [0, 1]. The third and last test set contains a peak sg
(dotted) that overlaps with our peak of interest . The intensity of the interfering
peak has a uniform distribution in the range of [0, 0.3]. How will the methods
respond to the extra sources of variance not present in the calibration data?

Since the problem is underdetermined, MLR cannot be used. Instead, PCR
with as many components as samples has been used. This enables XTX to be
inverted while retaining most of the MLR properties of the solution (except the
infinite variance of the regression coefficients). We will still refer to the method
as MLR. For PLS and PCR, the number of latent variables was determined us-
ing fivefold cross-validation and selecting the model with the lowest root mean
squared error of prediction.t Four latent variables were selected for both meth-
ods, as would be expected from knowing how the data set was constructed.
The predicted values in Figure 2.4 (a) are those from the validation set in the
cross-validation. In this figure all three methods seem to give reasonable results.
Surprisingly enough, even MLR performs well, although not as good as PCR
or PLS. The latter two models are about as good as they can be. The test set
predictions are the real test of the methods. The predictions of the first test
set are shown in Figure 2.4 (b), and these are of about the same quality as the
cross-validated predictions. Exposing the methods to the non-overlapping extra
source of variance in test set two is degenerative to the MLR predictions, while

fFrom doing this, the PLS and PCR predictions suffer from some selection bias. However,
being the inventors of the data, we could have chosen the correct number of latent variables
a priori and exactly the same numerical values would have been without bias. Something to
think long and hard about?
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Figure 2.3. Simulated pure spectra used in example 2. Spectra 1—4 are included
in the calibration models for s3. The spectra ss and sg are added to test sets 1
and 2 respectively. The depicted spectral intensities correspond to the maximum
concentrations/intensities in the samples.
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Figure 2.4. Predicted vs. measured values for example 2 using MLR (e), PLS
(4), and PCR (o). (a) Predictions from cross-validation. (b) Predictions from
test set 1.
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Figure 2.5. Predicted vs. measured values for example 2 using MLR (e), PLS
(+), and PCR (o). (a) Predictions from test set 2. (b) Predictions from test set

3.

Figure 2.6. Regression coefficients of example 2 (solid curves) with 95% confi-
dence intervals (dotted). MLR at the top, PLS in the middle, and PCR at the

bottom.
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PLS and PCR stand out by being almost unaffected by this extra peak. The
third test set with peak overlap causes all three methods to overestimate the
content of x3. MLR again displays the worst performance. An explanation of
this behavior can be found by looking at the regression coefficients. These are
depicted in Figure 2.6 as solid curves with the 95 percent confidence interval
indicated by the dotted curves. The b-vector of MLR mostly resembles noise
and the uncertainty in the elements is huge; we cannot even tell the sign of any
of them. PLS has the most stable regression vector, so stable in fact that the
confidence interval can hardly be seen. The regression vector of PCR resembles
that of PLS while being noisier. The predictions of PLS and PCR do not exhibit
any discernible differences, although PLS can be preferred to PCR based on the
stability of its b vector. To sum up, PLS and PCR can handle interferences that
are present in the calibration set. They are affected by other interfering signals,
though only a little if this signal does not overlap with the signal of interest.
MLR, on the other hand, is unstable and is seriously affected by new sources
of variation. If the interfering signal overlaps the signal from our analyte, the
predictions from all three methods will be biased; however, that is only to be
expected.

2.5 Classification

In everyday life we use our senses to classify things all the time. We perceive a
chair as a chair and seldom confuse it with a table, and we can tell classical music
from techno, rock, or pop. All these decisions are based on certain features or
characteristics of the objects or phenomena. Chairs and tables share many char-
acteristics: they usually have four legs and a horizontal surface. The leg of one
chair may be very different from the leg of another. There is a continuous range
of manifestations of characteristics, and these may be represented as integers or
real numbers. The everyday division of objects into groups can be viewed as a
mathematical problem. In chemometrics classification can serve tell whether a
batch of chemicals is pure enough or whether the impurity levels in a drug are
low enough so it can be sold. The mathematical task is to find the boundaries
between the groups. Discrimination between objects based on sensory input can
be highly nonlinear and very tricky to do with computers. A well-studied sub-
ject, where the success is moderate, is the recognition of handwritten letters and
numbers from photos or some other digital representation, such as the touch pad
of a hand-held computer. Difficult pattern recognition problems within chemo-
metrics include, for instance, the classification of rats that have been fed a drug
and those that have not, based on NMR spectra of their urine,?® or discrimi-
nating between apple varieties in apple juices, also based on NMR spectra.3? In
this thesis, only the case of continuous valued representations will be considered.
There, the class boundary is a surface in R™. An object is, or is not, a member
of a class, depending on which side of the class boundary it lies. The surface is
sometimes found easily; it may be an upper limit to the amount of impurities
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in a drug, according to some document—a yes or no situation, is the product
acceptable or not? At other times it is a nontrivial task when we know that the
measured multivariate data belong to one of two or more classes.

2.5.1 Nearest neighbour classification

One intuitive and very efficient classifier is the k nearest neighbour method
(k-NN). The distances between an unknown sample and other known objects
are computed. The class in the majority among the k closest objects determines
the class of the sample. This decision rule may lead to a complex surface of sep-
aration. Among its pros is its simplicity—the method has only one parameter,
the odd integer k, which is usually larger than or equal to 5, yet smaller than
20. An implicit parameter is the distance measure that is used. The Euclidean
distance is a common choice.

2.5.2 Linear discriminant analysis

Linear discriminant analysis®! finds an optimal hyperplane that separates two
multivariate normal classes A and B. The classes are assumed to have an equal
variance-covariance structure and a pooled covariance matrix, X!, is used. The
normal to this hyperplane, n, is found by maximizing the Fisher criterion:

nT(m4 — mp)(my —mp)'n
nTY-In ’

F =

(2.17)

where m 4 is the center of class A. The use of a pooled covariance matrix requires
the classes are not to differ too much in shape. If the classes differ in direction
or spread, this classifier will display problems with nonoptimal performance.®

2.5.3 SIMCA

Linear discriminant analysis is limited to situations where a sample belongs to
exactly one of m classes. Sometimes the problem is such that a sample may
belong to more than one class at the same time, or not belong to any class. If
this is the case, one remedy can be to use the SIMCA method. SIMCA stands for
soft independent modelling of class analogy and was developed by Wold®? 33 in
1976. In this method each class is modelled by a multivariate normal in the score
space from PCA. Two measures are used to determine whether a sample belongs
to a specific class or not. One is the leverage—the Mahalanobis distance3* to
the center of the class, the class boundary being computable as an ellipse using a
multivariate Student’s ¢t-distribution at a suitable level of significance. The other
is the norm of the residual, which must be lower than a critical value from an
F-test, i.e., not significantly larger than the residuals of the calibration samples.
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2.5.4 PLS-DA

When classes cannot be assumed to follow a normal distribution, one may try
to find a hyperplane that is optimal with respect to some other measure, for in-
stance, the separation between two adjacent classes based on the sample distances
to the hyperplane. Partial least squares-discriminant analysis®® 36 (PLS-DA) is
of this kind. For each class, a response vector is formed using ones and zeros
to indicate class membership of each object. A PLS regression model is fitted
to the data, possibly using cross-validation to determine a suitable number of
latent variables. An object is considered to belong to the class with the highest
predicted response. A binary classification requires only one response vector and
the decision plane is defined by PTXb = 0.5.

2.5.5 Nonlinear classifiers

As long as the data has more variables than samples, all classification problems
are linearly separable. However, the classifier will become unstable if it uses more
dimensions than the chemical rank of the data. This situation can arise if the
problem is inherently nonlinear, i.e., the class boundary is curved in a space with
the dimensionality equal to the chemical rank. The LDA and PLS-DA cannot
handle this. If objects truly belong to one and only one class, SIMCA might
not work. One remedy is to transform the data so that they become linearly
separable. Finding a transform that does the job could be prohibitively difficult
if it is to be done by hand.

The simplest nonlinear classifier is the quadratic discriminant.®” It is based
on the assumption that the classes are normal distributed. An object is assigned
to the class which has the highest value of the probability density at the position
of the object. The boundary between two classes is defined as the surface where
the probability densities are equal. This is a quadratic surface and, hence the
name.

Neural networks belong to a flexible class of methods that can be used for
classification and are well suited to nonlinear problems. Just as with PLS, the
data are projected onto a subspace with as many dimensions as the number
of neurons in the hidden layer. An easy introduction to the subject is given by
Zupan and Gasteiger,3® while Haykin3® gives a more comprehensive and detailed
treatment. See also Section 2.7.

2.5.6 Class separability measures

The objective when constructing a classifier is to have the classes as well sepa-
rated as possible. The separation is related to the within-class and the between-
class variance. If their ratio (with the between-class variance in the numerator)
is high, the classes are better separated than when the ratio is low. The Fisher
criterion [Eq. (2.17)] is precisely this ratio. The criterion is therefore often used
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to choose between transforms or to optimize the parameters of a transform. An-
other measure of separation is the Bhattacharyya distance.3™40 It is directly
related to the Bayes error of the quadratic classifier. The Bhattacharyya dis-
tance is uncommon within the field of chemometrics, but is more frequently used
in other disciplines that are also concerned with classification problems. It is
defined as:

1 T A 1 ’EA;;EB‘
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The Fisher criterion is limited by the assumption of equal variance-covariance
structure of the classes. If this assumption does not hold, its use is questionable.
The measure is much used anyway because of its robustness. The criterion relates
to a linear classifier, and these tend to be more robust than nonlinear ones. Even
if the covariance matrices are different, LDA usually performs well. A more
complex classifier might not be as forgiving if its postulates about the data were
violated. The quadratic classifier, for instance, is considered to be unstable if the
covariance matrices are estimated from a small number of samples. This means
that the Bhattacharyya distance is not a very good measure to optimize against
if the number of samples is limited. One of its properties is that two classes
can show a considerable amount of separation even if the class means coincide.
Hence using the distance in combination with a linear classifier would be foolish.

SIMCA has a measure of class separation called discriminatory power. This
is computed as the sums of squares of the residuals when samples from class A
are projected onto the model of class B and vice versa. This sum is divided by
the sum of the squared residuals when the samples are projected onto the model
of the class to which they belong:

tr((Xa — XAPPL) (X4 — XAPPL)) + tr(...)

D=
tr((Xa — XAP4PT) (X4 — X4PAPT)) +tr(...)

—1 (2.19)

This measure is good if the dimensionality of the measurement space is con-
siderably higher than the space spanned by the class models. If, for instance,
the classes are two-dimensional in a two-dimensional space—a not completely
unrealistic situation, then the discriminatory power becomes zero. If you are
unlucky, the measure will give an unrealistically small class distance also when
the measurement space have one more dimension than the class models. As the
difference in dimensionality increases, the likeliness of obtaining a misleading
value decreases rapidly.

We have found neither of the described measures completely satisfactory and
in Paper V we therefore present a new measure of class separation. It is closely
related to the mentioned measures as it is based on the assumption of the classes
being normally distributed.
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2.6 Model validation

The problem in regression with more variables than samples is to know when to
stop including more latent variables. The more we include, the better the fit of
the model to the data. When the latent variables are as many as the number
of samples, all regression problems can be solved exactly with a linear model.
In other words, there is a unique solution to the equation y = BT, where B
is the matrix of regression coefficients. This might seem tractable at a glance,
but the solution is unstable with respect to measurement noise. Small changes
in the data will induce large changes in the regression coefficients. The changes
may be so large that the regression coefficients will appear purely random. The
prediction error of a new/unknown sample becomes uncontrollably large.

The problem is called overfitting and the solution is to search for a model
that generalizes well rather than fits the data as closely as possible. The most
important ways of estimating the generalization error of a model, i.e., validating
the model, is to use a test set and cross-validation.*! The bootstrap*? 43 method
can be used to study the stability of the model parameters.

The purpose of validation is twofold. It is used to optimize the hyper-
parameters of the model or to choose between competing models. Hyper-par-
ameters are parameters of a model which are not changed by the model-fitting
procedure, but which still affect the model. The number of latent variables in
PLS regression is an example of a hyper-parameter. The second and most im-
portant purpose is to assess the expected performance of the selected model. To
achieve the two goals, it is recommended and customary to divide the samples
into a calibration set and a test set.

The test set is kept aside and is only used to put the final model to a realistic
test of its generalization error. One recommendation is to use one-fifth of the
samples as the test set. This fraction is not an absolute figure but will depend
on the total number of samples, how many samples that are needed to fit the
model, etc.

The calibration set is used for both fitting model parameters and choosing
between models. Bootstrap methods and cross-validation are common ways to
utilize the data as efficiently as possible.

In cross-validation the data are divided into, say, k, subsets. The model
parameters are fitted using k£ — 1 subsets and the model performance is mea-
sured on the subset that is left out. The procedure is repeated k times until
every subset has been left out once. The performance of the model family with
a certain set of hyper-parameters is simply the average performance over the k
realizations. Additionally, it may be of interest to study how much the model pa-
rameters vary during the cross-validation. The model-selection criterion may be
the generalization performance alone or be based on a combination of the param-
eter stability and the generalization performance. Leave-one-out cross-validation
uses one sample per subset, although for computational or other reasons the sub-
sets may contain almost any number of samples. If the predictors of the data
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set are designed and not random variables, some care must be taken when par-
titioning the data into subsets. Replicates should preferably belong to the same
subset, otherwise the prediction error may become unrealistically low. The data
should also span the domain. If all the withheld samples are in one region of
the predictor space and those used for model fitting in another region, then the
prediction error can be expected to be overestimated.

Bootstrap validation is mostly concerned with computing statistics for model
parameters. The idea is to use the available observations as representing the
whole population of data and draw k sample subsets using sampling with replace-
ment. These are used to fit the model parameters and the parameter statistics
are computed from the k realizations. Used in this way, bootstrap methods do
not provide estimates of the generalization error, although this may correlate
with the magnitude of the variance of the model parameters.

In chemometrics cross-validation is the predominant method of validation. In
statistics bootstrapping is also much used. Another related validation method is
the so-called jackknife.*3

Even if one goes about all of this in order to get as representative and accurate
results as possible, the selected model will still suffer from selection bias. This is
due to the fact that the model is fitted on the same data that are used to select
it. Ideally, the model should be refitted on new samples after the selection and
evaluated with a test set never used before. Chatfield** and Miller*® provides
excellent discussions of model selection and the implications thereof.

The model selection bias stems from the fact that choosing the model with
the lowest cross-validation error might not correspond to the model with the
lowest true generalization error. That is, the generalization error of the selected
model has probably been underestimated and the parameters of the model are
biased due to the model selection step. The greater the number of alternative
models that are considered, the likelier it is that the selected model will suffer
from selection bias. Of course, we cannot solve the problem by choosing the
second or third best model; these are just as likely to suffer from selection bias
and will represent a worse choice. By refitting the model using new data, the
unbiased estimates of the model parameters can be obtained, together with a
better estimate of the model’s true generalization error.

A real problem in data analysis leading to even more biased results is the
difficulty of only using the test set once. It seems really simple but requires a
lot of self-discipline. If the test set results are worse than expected, it may be
very tempting to make a few adjustments to the model and test it again. But
in that case the test set results will no longer be unbiased. Information from
the test set has seeped into the model. By using the test set more than once,
its independence is compromised. The bias in the result will grow larger every
time the test set is used to make corrections to the model. The test set simply
becomes a part of the calibration data and a new test set needs to be obtained
to assess the model performance.
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2.7 Pulse-coupled neural networks

In Paper I, pulse-coupled neural networks (PCNNs) have been used to preprocess
three-dimensional image data into time series. The time series have been used
to model quantitative structure retention relationships. To put PCNNs into
context, a brief description of nerve cells and the development of the neural
networks field of research is appropriate.

In 1906 Santiago Ramén y Cajal was awarded the Nobel Prize in Physiology
or Medicine for the discovery of neurons in brain tissue. He shared the prize
with the Italian physician Camillo Golgi, who more than thirty years earlier, in
1873, had invented a silver staining technique still used today. Silver staining
made it possible to see individual neurons using a microscope. Golgi had also
seen individual brain cells, but the major breakthrough in knowledge of the
organization of the nervous system came about in the late 1880s and the 1890s
with the work of Cajal.46:47

A neuron consists of three main parts: the cell body or soma, the dendrites,
which are connected to the soma and can be likened to the root system of a
tree—heavily branched, and the axon, a long outgrowth from the soma. The
dendrites respond to stimuli from other neurons by synaptic connections. The
stimuli is forwarded as an electrical signal along the cell membrane to the soma.
The axon provides stimuli to other neurons. If the potential difference across the
cell membrane exceeds than a threshold value at the base of the axon (near the
soma), the axon fires. This means that an electrical pulse is sent along the axon
to its synapses, which are either electrical or chemical. The electrical synapses
propagate the signal to other neurons by barrel-shaped proteins called connexons.
In chemical synapses a neurotransmitter is released, e.g., acetylcholine. The
transmitter diffuses across the synaptic cleft to the postsynaptic membrane of a
dendrite, where it binds to a receptor and, thus, the signal has reached a second
neuron, which in turn responds to it.*®

Ever since the discovery of neurons, researchers have been intrigued by the
network structure of the brain and have tried to model its functionality. One
early milestone was when Hebb in 1949 formulated a learning rule for synaptic
connections between neurons.?® The brain is massively parallel and research
into modelling neural networks, more often than not, requires huge numbers of
numerical operations to be performed. Thus, progress in the field has followed
the development of computers. Nowadays, two mainstreams in the research can
be seen: detailed simulations of neurons mimicking biological systems (see, e.g.,
Ref.?) and function approximation by the use of artificial neural networks.??

The biologically realistic simulations are generally slow and not usable for
practical applications. The information flow between neurons is coded in the
frequency with which an axon fires. The neural networks used for function
approximations have neurons (called perceptrons) that are extremely simplified.
As a result of stimuli, these give an immediate real-valued response rather than
an analog pulsed one. The inputs from the dendrites, x, are also real-valued
and modified by a multiplication with a weights, w. At the soma the inputs
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Figure 2.7. (a) A feed forward neural network with one hidden layer. (b) A
one-dimensional PCNN with feedback loops (F & L).

are summed and used as the argument of a transfer function. The perceptron is
described by the function y = p(xTw +bg), where y is the axonal output, and w
and by (a constant) its parameters. The transfer function ¢(-) is often sigmoid,
e.g., arctan. It has been shown that perceptrons can be used to approximate
any function, if connected in one so-called hidden layer and one output layer, see
Figure 2.7 (a).

The pulse-coupled neural network is a third variety that falls between the two
previously described. It is a simplified model of the cat’s visual cortex,?® with
local connections to other neurons. The neurons are stimulated continuously and
respond with a binary output which takes the value one if the internal state of
the neuron goes above a threshold. This firing of the neuron results in inhibitory
feedback, which forces the neuron to a period of inactivity before it can fire
again. The frequency with which a neuron fires is roughly proportional to the
intensity of its stimulus. The network is constructed as a single layer with one
neuron per pixel in the image with which it is stimulated. The output, Y, from
one neuron is fed to its neighbors via a topological link matrix, K. The PCNN
architecture is schematically described in Figure 2.7 (b). There are two types of
input to each neuron: the feeding input F' and the linking input L. These are
so-called leaky integrators, meaning that input is summed over time (integrated)
and current integral value is multiplied by a constant in the range (0, 1) at each
time step (it leaks away). The feeding input of neuron ij receives stimuli, S,
from the pixel with corresponding position and neighboring neurons, while the
linking input only receives stimuli from the neighboring neurons. The two inputs
are combined nonlinearly into the internal state of the neuron, U [Eq. (2.22)],
which is compared to a threshold, T' [Eq. (2.23)]. If the value of the internal
state exceeds the threshold, the output Y of that neuron is set to 1 (the neuron
fires), otherwise it is O (inactive). The equations of a two-dimensional PCNN
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neuron are:
Fij (t) = aFFZ-j (t - 1) + Sij + bF Z Ykl(t - 1)K;€l (2.20)
kl
Lij(t) = apLy(t—1)+brY Yu(t— 1)Ky (2.21)
kl

Uij (t) = Fij (t)(l + CLij (t)) (2.22)

oy = LU 2Ty
Yielt) = { 0, otherwise (223)
Tij (t) = CLTTij(t — 1) + bTY;'j (t) (2.24)
g(t) = > Yi(t) (2.25)

ijk

where the parameters ap, ar, and ap regulate how quickly the neuron forgets and
the parameters bg, by, and by determine the importance of the stimuli from the
neighbors, and ¢ regulates the strength of the linking input effect. The summa-
tions in Eqns. (2.20) and (2.21) run over all elements of the matrix K centered
on neuron ¢j. The generalization into three dimensions is straightforward, an
extra index being added to all the equations.

A property of this neural network is that the time series g(¢) is more or
less invariant to the orientation of objects in an image.®’ Another noteworthy
property of the times series is that it is something of a fingerprint of an image.
It has also been reported that the PCNN is good at image segmentation and
edge detection.’® The network model has generated an interest as an image
preprocessor for automated target recognition in military applications.?® Kinser
et al.®* studied the unified cortical model (a simplified PCNN model) with
chemical data in the form of 173-estradiol represented as a three-dimensional
image. They concluded that there might be a potential use for the network
in quantitative structure-property relationships (QSPR), although this was not
investigated in that paper.

2.8 Peak alignment

Peak alignment is a form of data pretreatment. It can be applied to data which
is bilinear in theory but shows deviations from bilinearity in measured data.
The data should also have pronounced peaks, and typical instrumental tech-
niques like, for instance, gas and liquid chromatography, NMR, and capillary
electrophoresis generate the type of data that we are considering.

Let us revisit example 2 in Section 2.4.4. This time the peak positions are
randomized. Figure 2.8 (a) shows typical peak shifts, while in (b) the degenera-
tive effect of peak shifts on a PCA model of the data is shown. The eigenvalue
structure in the data without shifts indicates a chemical rank of four. With
added peak shifts the eigenvalues fall off smoothly down to the noise level, which
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Figure 2.8. Example 2 revisited: (a) typical peak shifts, (b) effect of peak shifts
on the eigenvalues of XTX, original data (o), data with peak shifts (o).

makes it much more difficult to estimate the chemical rank. Thus, there is a real
need for peak alignment.

A method of peak alignment (called PARS, presented in Paper III and IV)
can be designed as follows: first, we note that the original data representation
is not needed. For the subsequent analysis of the data, after alignment, we will
be interested in the information carried by the peaks. The information in a
single peak can be characterized by the statistics position, height or area, and
possibly one or more shape parameters. A logical conclusion is to compute the
statistics for every peak in a chromatogram, resulting in a more compact data
representation. The representation may use a matrix for each sample with peaks
as rows and statistics as columns. Using this representation, there is a distinct
possibility that the matrices for different samples will have different number
of rows, as the number of peaks may vary between samples. The alignment
problem may now be formulated as a graph problem. Figure 2.9 shows two
chromatograms that are to be aligned. In the lower chromatogram the peaks are
shifted between two and three FWHM (full width at half maximum) to shorter
retention times. Three new peaks are added to complicate matters, by creating
ambiguous solutions. For each peak in one of the chromatograms, we look for
possible matching peaks in the other. In this example, we consider that peaks
for which the difference in position is at most 10 FMWH to be possible matches.
In Figure 2.10, all possible matches are plotted as circles with the positions in
one chromatogram on the z-axis and the positions in the other on the y-axis. A
graph is created by connecting these circles by lines. Any path from the lower left
corner to the upper right corner represents a possible solution to the alignment
problem. The lines between possible matches are called edges. Each edge is
associated with a weight that governs the quality of the solution. The value of
the weight is a complicated issue, but it contains a term that is proportional
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Figure 2.9. Simulated chromatograms: the uppermost is used as the target
by the alignment procedure, the bottom one is the sample to be aligned. The
sample peaks are shifted to retention times 2-3 FWHM lower than in the target.
Three new peaks are also included.

to the required peak displacement. A more thorough description of the edge
weights can be found in Paper IV. The solution to the peak alignment problem
has been reduced to finding an optimal path through the graph. The optimal
path has a minimal sum of edge weights.

An analogy to this problem is finding the quickest route between address A
and address B in a city, when travelling by car. There are a lot of alternative
routes to choose from: some routes are longer but the extra distance may be
compensated for by higher speed limits; other routes are short but have many
traffic lights or may suffer from traffic jams. An edge weight corresponds to
the time it takes to drive between two intersections, at which alternative routes
diverge or converge. Such an intersection corresponds to a possible peak match
in our problem.

The optimal solution is sought using breadth first search (BFS). BFS is one of
two fundamental graph search algorithms, the other one being depth first search.
BF'S is good at solving problems of finding optimal paths through graphs, while
depth first search answers questions about existence: is it possible to get to point
B starting from point A? An introduction to graph theory can, for instance, be
found in Ref.%?

The solution using this method of peak alignment is indicated by the filled
circles in Figure 2.10.
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Figure 2.10. The search graph used by PARS with the optimal path marked
by filled circles.



Chapter 3

Computation of solvation
free energies

Free energy is a thermodynamic quantity that governs the direction of chemical
reactions, physical processes, and chemical equilibria. At constant temperature
and pressure it is called Gibbs free energy, while at constant temperature and
volume it is called Helmholtz free energy. In most practical situations, constant
pressure is simpler to achieve and maintain than a constant volume. Therefore,
our interest has been directed towards Gibbs free energy.

The solvation free energy is the energy required to transfer a molecule from
an ideal gas phase into a bulk solvent (e.g., water or octanol) at constant tem-
perature and pressure. This free energy is known as the Gibbs free energy of
solvation. The free energy can be used to predict the partition of different com-
pounds between octanol and water, i.e., the ratio of the concentration in the
octanol phase and in the aqueous phase at equilibrium. The partition coeffi-
cient, log P, /w, can be computed from the solvation free energies in octanol,
Goctanol, and water, Gwater, 85:°°

1

m (Goctanol - Gwater) (31)

log Po/w =
The partition coefficient may be seen as a very crude model of a chromatographic
system, one phase being polar and the other nonpolar. Once we master how to
predict the partition accurately, or at least consistently, we may transfer the
computational scheme to make purely theoretical predictions of phase equilbiria
for chromatographic separations.

There are many ways of estimating solvation free energies (or the desired
equilibrium constant directly). The procedure in quantitative structure-activity
relationship (QSAR) modelling is to use multivariate linear regression to corre-
late a set of molecular descriptors with an experimentally determined response
(free energy). The molecular descriptors are variables that indicate, for instance,

29
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the presence of a functional group (OH, NOo, NH,, ...) at a specific position
in a molecule, or the number of OH groups attached. Free—Wilson analysis is
based on this type of descriptors. The solvent accessible surface area®”°® is
another well-studied molecular descriptor used in Hansch analysis. Combining
Free-Wilson and Hansch analysis seems to be the more powerful than being con-
fined to a particular type of descriptors.?® A drawback of this class of methods is
their limited generalization ability. The calibration model is often only valid for a
class of compounds with a common substructure, onto which different functional
groups are attached. Also, the need for experimental data is a significant draw-
back. A lot of effort can be wasted creating the calibration model; it might be
more efficient to experiment directly on the substances of interest—if available,
that is.

The limitations of QSAR models can be avoided by computing the solva-
tion free energies from “first principles,” or as closely as is possible. Ideally, we
should use some kind of quantum dynamics to determine the free energy, but the
sheer complexity of such computations is prohibitive with present day comput-
ers. Therefore, a compromise between accuracy and computational feasibility is
necessary. One approximation is to neglect the of quantum properties of matter
and treat it as if it followed Newton’s laws of motion—this was our approach.
The free energy is computed using a special class of molecular simulation meth-
ods. (Computing free energy is considered to be a difficult problem in statistical
mechanics, the reason being that it depends on the volume of the phase space.)
Another approximation is to look upon the solvent as a continuum, defined by
its dielectricity constant, and treat the solute according to quantum mechanics.
Within this approximation, the solvation free energy is determined by the differ-
ence in energy when the solute is in vacuum and when the solute is present in a
cavity in the continuum solvent, plus the work required to create the cavity. The
solute is accurately described, although entropic contributions that the solute
induces in the solvent are neglected.

We have been studying the computation of absolute free energies of solvation
by direct insertion of a solute molecule into a molecular solvent. A more common
approach is to compute the free energies relative to a known (by computation
or experiment) free energy of solvation for a single compound and then use a
coupling parameter to gradually transform that molecule into the desired solute
molecule. The absolute free energy of solvation is computed as the sum of the
known solvation free energy and the computationally observed difference in free
energy for the transformation. This approach is most efficient when studying
a class of molecules whose structures share a common backbone. Absolute free
energy calculations, however, allow maximum flexibility for structural diversity
among the studied molecules.

The rest of this chapter will be devoted to an introduction to statistical
mechanics, models for interactions between atoms, the two dominant simulation
techniques: Monte Carlo and molecular dynamics (MD), and the method of
expanded ensemble molecular dynamics. Expanded ensemble MD is a hybrid
Monte Carlo-MD method that we have used to compute solvation free energies.
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3.1 Statistical mechanics

When matter is regarded from a microscopic point of view while macroscopic
thermodynamic quantities or properties are of interest, statistical mechanics
bridges the gap between the microscopic and macroscopic scales. Statistical
mechanics connects the two extremes via what is known as the partition func-
tion. This is a weighted sum of all possible states of the system. The sum
transforms to an integral, if the system is considered to be classical instead of
quantized. In the classical treatment, the interior states of a system are given
by the positions and momenta of all its particles. Every thermodynamical quan-
tity can be derived from this function. The expression for the partition function
differs somewhat, depending on which ensemble it represents. An ensemble is
the allowed combinations of positions and momenta of particles in the system
under study. The name of an ensemble derives from the state variables that are
kept constant: we can, for instance, study 256 water molecules at 298 K at a
pressure of 1 atm. At least one of the three state variables must be extrinsic,
i.e., determine the size of the system. The canonical ensemble (NVT') has a con-
stant number of particles, constant volume, and constant temperature, while the
isobaric-isothermal ensemble (NPT') has constant pressure instead of volume.
The NTP ensemble is the only ensemble used in Paper II and its quasi-classical
partition function looks like:

Qnpr = / / / exp(—(H(™N,p") + PV)/kpT)dp” dr¥dV, (3.2)

where H is the Hamiltonian of the system with potential energy and kinetic
energy terms for all particles (see Section 3.2). Positions, r, and momenta, p,
together with the volume, V', constitute what is called the phase space. The
value of a property A is determined as

(A)npr = / / / AN, pN, V) exp(—(H(N, p™) + PV)/kpT)dp”™ drVaV.
(3.3)
The excess free energy of solvation, pey, in the NPT ensemble can be calculated
approximately as the energy required to transfer the solute from a noninter-
acting (ideal gas) state to a dissolved state, while the bulk solution is kept at
constant temperature and pressure. For Gibbs free energy, A(-) takes the form:
exp((H(rN,pY) + PV)/ksT).

The integral in eq. (3.3) can be factorized into a product of integrals over
positions and momenta separately. The integral over momenta can be solved
exactly and the result is the ideal gas. The integral over positions is commonly
referred to as the configurational partition function. Approximate analytical
solutions to the configurational partition function can be found for simple pair
potentials and at low density. These analytical solutions represent equations of
state for gases that are more complex and realistic than the ideal gas. Examples
include the van der Waals equation and other similar generalizations.5° For
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condensed liquid phases, it is not possible to find explicit analytical equations of
state. The configurational partition function must be evaluated using numerical
methods—molecular simulation techniques.

The two dominating numerical methods for evaluating the partition function
are Monte Carlo®! and molecular dynamics.5%:53 It is not possible to use simple
interval-based integration schemes due to the high dimensionality of the integral:
six times the number of particles, 6/N. Ideally, N should be a truly macroscopic
number, in the order of Avogadro’s number (~ 10%%), but since such integrals
cannot be evaluated, the usual number of particles is usually somewhere be-
tween 100 and 10°. To mimic bulk behaviour, the system is allowed to interact
with periodic images of itself. This self-interaction is called periodic boundary
conditions, or sometimes toroid boundary conditions because of their geomet-
ric interpretation. If an interval-based integration scheme were to be used with
ten points along each space coordinate, the total number of function evaluations
would be 103V | i.e., at least 103°°. Even with this immense computation the ac-
curacy of the thermodynamic property would be ridiculously low.* Thus, there
is a need for more efficient integration schemes. These are termed importance
sampling techniques. The idea is to concentrate the function evaluations to the
volumes of phase space that contribute the most to the integral. The important
volumes often constitute a very small fraction of the total phase space and high
accuracy can be achieved using as few function evaluations as 10° to 10%. The
efficient computational methods perform variance reduction; a lower standard
error in the results is obtained even though fewer “samples” are needed.

3.2 Forcefields: describing the interaction be-
tween atoms

The Hamiltonian, H, is an energy operator for the total energy of a molecular
system. It is made up of two parts, kinetic and potential energy:

H=T(p)+U(r), (34)
N P}
where the kinetic energy is T' = Ej:l 2n§j

the interactions between atoms and is called the forcefield.

Existing forcefields have been parameterized for somewhat different purposes:
the MM264 and MM3% forcefields are mainly used for “small” molecules, OPLS is
an acronym for Optimized Potential for Liquid Simulation®¢ and as its name im-
plies it is intended for simulation of organic molecules in water, and CHARMM?S”

. The potential energy, U(r) describes

*Since two atoms cannot occupy the same position in space, most of the 103%0 configurations
have infinite energy and do not contribute to the integral. Only (1100000) configurations out
of 1000! have no more than one atom at each space coordinate. This smaller number of
configurations does not make the computations feasible: (1100000) > 9100; it is still a prohibitively
large number.
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Energy

Figure 3.1. The bond harmonic bond potential (solid line) and the Morse
potential (dashed).

and AMBERS®® were developed for the simulation of biological systems with pro-
teins and nucleic acids.
A typical forcefield may look like:

U= Ubonds + Uanglcs + Utorsmns + {yimproper torsions + Unon—bondcd' (35)

The specification of different forcefields may differ in detail but Eq. (3.5) contains
the most important terms. Some forcefields, like MM2 and MMS3, use cross
terms, e.g., between angles and the bonds that constitute the angle; the cross
terms are used to obtain a more accurate description of the internal dynamics of
the molecule and to reproduce the frequencies of its vibrational spectrum.54:6%:69
Cross terms are less important for structural properties.

3.2.1 Bonds

Bond potentials are often modelled as harmonic springs using a second-order
polynomial, up™? = k(ri; — r9)? (see Figure 3.1.) If the harmonic approxi-
mation is insufficient, anharmonicity can be modelled by third- or fourth-order
polynomials, or by the so-called Morse potential.

3.2.2 Angles

Angles between three bound atoms (see Figure 3.2) are also modelled by a second-
degree polynomial, u?;l,f;lc(O —0p)?, where 6 is the current value of the angle and

6o its value at equilibrium. u?;-l,fle determines the stiffness of the angle and its

value depends on the atoms defining the angle. The three atoms define the local

chemical environment by their atomic numbers and hybridization states. The
angle . o .

Uik values are insensitive to atoms further away in a molecule and are therefore

transferable to other molecules with the same three atoms, bound in the same

order.
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Energy

Figure 3.2. Angle bending potential modelled by a second order polynomial.

3.2.3 Torsional angles

Torsions, or dihedrals, are defined as the rotation of a bond where the two
bound atoms have one or more extra bonds to other atoms, see Figure 3.3.
As this potential is inherently periodic, it is modelled by trigonometric func-
tions: > u%’fﬁ cos(ny — o). These potentials are often parameterized from
small model structures where the bond rotation potential is determined by quan-
tum calculation at different angles. The periodicity depends on the substituents
and the hybridization of the central atoms. Ethane, where the carbons are sp3-
hybridized, have a threefold symmetry, n = 3. n-butane might have an extra
term with n = 1 to describe the repulsion when the two methyl groups are in
eclipsed position. Some authors use the term Fourier expansion to implicitly
state the periodicity and use of trigonometric functions for the torsional poten-
tial.

Improper torsions are used to maintain the planar structure of, for example,
phenylic compounds. These are called torsions as they are defined by four atoms
and improper because the atoms are not bound as on a string, as are the atoms of
a regular torsion. How improper torsions are defined differs between forcefields,
but it is common to use a cosine or second-degree polynomial for the functional
form.

3.2.4 Non-bonded interactions

The non-bonded potential is usually a pair potential, although three-body po-
tentials exist. The pair potential is, however, much more tractable due to its
lower complexity. The number of pairs of atoms is proportional to N2, while
the number of three-body combinations are in the order of N3. A three-body
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Figure 3.3. Torsional cosine potentials for n =1 (solid) and n = 3 (dashed).

potential might be needed if polarization effects are significant, although these
potentials are rare in practice. The pair interaction between atoms j and k is
usually a combination of a Lennard—Jones potential and a Coulomb potential,

. 12 . 6 1 .
u?gn—bonded _ 4€jk((ajk> _ (%) ) + % (36)
Tk Tik 471'5() Tjk:

Lennard—Jones potential

The Lennard—Jones potential is empirical in its origin, but the terms can be
interpreted as follows: the rj_ku term is the repulsion when the electron clouds

around each atoms start to overlap, the frj_kG term is the dispersive interaction
due to polarization. €j;, determines the strength of the dispersive attraction, i.e.,
the depth of the potential well, and ;) is a combination of the two atom sizes
(diameters), o, = 3 (0 + o%).

The Coulomb potential and partial atomic charges

The Coulomb potential has two parameters, the partial atomic charges, ¢; and
qr; o is the dielectric constant in vacuo. The potential falls off as =2 and is a
so-called long-range potential, which means that a significant contribution to the
potential energy of the system comes from the periodic images of the simulation
box. If the Coulomb potential is evaluated directly as a pair potential, the
computational complexity is high, O(N?), because of the contribution from the
periodic images. Fortunately, the sum may be partitioned into a short-range
and a long-range part, where the latter may be evaluated in Fourier space with a
complexity of O(N). This technique is called Ewald summation™ 7! and is used
in simulations with charged particles.
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The values of the parameters in the Coulomb potential are often debated.
Since atomic charge is not a quantum mechanical observable or experimentally
observable, there is an element of arbitrariness in their determination. A number
of computational schemes exist that assign partial charges to the atomic centers
of a molecule, e.g., Mulliken charges, charges derived from the electrostatic po-
tential (ESP), and restrained ESP charges (RESP).%° These charges are based
on quantum mechanical calculations.

Mulliken charges comes from population analysis. The electron density in
an orbital is assigned to the atom on which the orbital resides. The electron
density that is associated with overlap population is partitioned equally between
participating atoms. A problem with Mulliken charges is that they tend to
be unstable with respect to the basis set, especially when the latter includes
orbitals with an electron density far from the nucleus (p, d, and f orbitals). The
advantages are that they are easy to compute and are consistent with, what may
be called, “chemical intuition.”

Charges derived from the electrostatic potential are usually less dependent
on the basis set. They are determined by positioning charges on each atom and
minimizing the residual between the charge-induced and the quantum-chemical
electrostatic potential using a least squares fit. The drawbacks are that these
charges are sensitive to, for example, molecular configuration and how the elec-
trostatic potential is sampled. The electrostatic potential is usually sampled
outside the molecule, where other molecules can be expected to be present in
simulation. This gives rise to problems with the numerical stability of the so-
lution, i.e., the set of partial atomic charges; the charge on buried atoms may
be poorly determined. The calculated values become highly dependent on the
molecular configuration and how the electrostatic potential is sampled. To over-
come this limitation, Bayly et al.”? developed the RESP charges where, a hy-
perbolic restraint is used to keep charges closer to zero and lower the statistical
uncertainty for buried atoms. The RESP charges are used in conjunction with
the AMBER forcefield.5®

3.3 Monte Carlo

In Monte Carlo, the partition function is factorized into an ideal gas part and
a configurational part. The objective is to integrate the partition function to
determine the value of a property A. Monte Carlo methods use random numbers
to generate configurations that follow the Boltzmann distribution:

p(r™N, V) o exp(=U (N, V)/kpT). (3.7)

A basic Monte Carlo algorithm consists of the following steps:f

TThis algorithm largely follows the original Monte Carlo algorithm by Metropolis et al.,%"
as described in the book by Frenkel.53
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1. Generate a new configuration (1) by random displacement of one or more
atoms in the previous configuration (0). If the NPT ensemble is simulated,
the volume, V| must also be changed once in a while.

2. Evaluate the energy of the new configuration (Uy).

3. Compare the energies U; and Uy to determine whether the new configu-
ration is accepted or whether the previous configuration is kept. The new
configuration is accepted if Uy < Uy. If Uy > Uy it is accepted with a
probability, peee = exp(—(Uy — Up)/kpT).

4. Compute value of the property (A) of interest.

The steps of the algorithm are repeated M times and the value of the thermo-
dynamic property A is computed as the arithmetic mean: (A) =1/, Zjle Aj.
The uncertainty of the property can be estimated as 64 = (A2) — (A4)2. To get
a representative value of 64, the simulation must have reached equilibrium and
be sufficiently long. A better estimate can be obtained by repeated simulations
from different starting configurations.

Monte Carlo integration of the configurational partition function rests on the
so-called ergodic hypothesis, which declares that all states of the systems must
be reachable from any other state with a finite number of steps. This hypothesis
imposes limitations on the first step of the algorithm. The way in which new
configurations are generated must be compatible with the hypothesis.

To reproduce the correct (Boltzmann) distribution, Monte Carlo algorithms
are often designed to satisfy a condition called detailed balance, whereby the
number of moves from one state A to another state B must be equal to the
number of reverse moves, when N tends to infinity. Detailed balance imposes
restrictions on how new configurations are accepted (step 3). The condition of
detailed balance is sufficient but not necessary; it is too strong. A necessary
condition is that the number of moves from any state to state A should be
counterbalanced by the number of moves from state A (at infinite sampling).
If an algorithm satisfies detailed balance, it follows that it also satisfies the
necessary condition. The reason why detailed balance is used is that violations
of the condition are easy to prove, while it is difficult to ascertain whether an
integration scheme fulfils or violates the necessary condition.

The algorithm above satisfies both the ergodic hypothesis and detailed bal-
ance and is guaranteed to produce the correct distribution of phase space points
at infinite sampling, thereby yielding correct values for every equilibrium prop-
erty. The values are correct in the sense that they depend only on the interactions
in our model.

3.4 Molecular dynamics

Molecular dynamics is the integration of Newton’s equations of motion for atoms
with interactions described by a forcefield. Molecular dynamics is also a form
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of importance sampling to integrate the partition function. The difference from
Monte Carlo is that it samples from the full partition function. The dimension-
ality of the integral doubles, which may seem counterproductive. It appears,
however, that molecular dynamics is a good way of using the momenta to create
new configurations with the correct distribution (Boltzmann). Like Monte Carlo,
molecular dynamics is guaranteed to produce correct results. In addition to the
thermodynamic properties determinable by Monte Carlo, molecular dynamics
can give information about dynamic properties, e.g., diffusion coefficients.
A simple molecular dynamics integration scheme is:*

vt 1) = () + WE JAt+ 2T(n) (A1) (3.8)
pi(t +1) = pi(t) + fi(t) At (3.9)

where f;(t) is the force acting on particle ¢ at time ¢. The force is computed as
f; = —V,U(r"); the gradient is evaluated with respect to the spatial coordinates
of particle i. The time step, At, used with the integration scheme is crucial to
the stability and efficiency of the method. Too long a time step yields unstable
trajectories that impart unphysical behavior to the system. The shorter the time
step, the longer the computational time required to achieve the same accuracy for
the averages, so there is a desire to use the longest time step possible. Hydrogens
have the lowest mass and will thus have the fastest motion and thereby limit the
length of the time step. Three common remedies to this limitation are: the
avoidance of explicit hydrogens, to use of constrained molecules where the bonds
have constant length,” or the employment of the multiple time step algorithm
by Tuckerman et al.”® The OPLS forcefield has so-called united atoms, where
carbon, nitrogen, oxygen, etc. have increased diameter and adjusted charge to
compensate for the exclusion of hydrogens.

3.5 Expanded ensemble molecular dynamics

Expanded ensemble molecular dynamics is a hybrid Monte Carlo—molecular dy-
namics method for computation of solvation free energies. The method uses
Monte Carlo steps to gradually insert and delete a solute from the bulk medium,
while the configurational space is sampled using molecular dynamics. The dif-
ference in free energy between two states of a system can be computed by Monte
Carlo. The free energy difference is computed from the relative probabilities of
finding the system in the two states:

AG =Gy — Gp o — gg (3.10)

To compute solvation free energies, the two states are represented by the
absence of a solute and the presence of a solute. In order to determine the

tFor integration schemes of practical use and discussions about numerical stability and other
issues, reference should be made to the books by Allen®2 and Frenkel.53
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(excess) free energy of solvation, the system must be able to move between these
two states. Direct (Monte Carlo) insertion of a molecule into a dense medium
has a very low probability of being accepted. The low acceptance ratio leads
to low statistical accuracy. Higher acceptance probabilities can be achieved by
introducing a coupling parameter, «, which scales the solute interaction with the
surrounding bulk medium:

Ha _ Hsolvent + Hsolute + Uzolvent/solute (3.11)

. . . solvent /solute .
It is common to use linear scaling, Ug’ " [solute _ . prsolvent/solute  There is no

interaction at a = 0, and the solute interacts fully with the solvent at o = 1.
The partition function is expanded in terms of a set of a-values, ag =0 < a1 <
Lo<apy=1

M
Q= exp(—(Ha (™, pY, am) + PV) /kpT + ny)dp™ dr¥dV,  (3.12)
mX_jo/// p p BT + Nm)dp

where 7, is the balancing factor of the biasing potential. Every so many MD
steps a change of sub-ensemble is attempted according to Monte Carlo rules,
i.e., m — m', where m’ € {m — 1, m+ 1}. The excess free energy is determined
by a random walk along the a-dimension and is computed from the relative
probabilities of finding the system at « =0 and a =1 as:

MHex = —kBT (ln ];—Aj + o — 77]V[> . (313)

The efficiency of the random walk is determined by the acceptance probabilities
for moves between sub-ensembles and by their number. The relative probabili-
ties converge faster if the number of sub-ensembles is low. Increased acceptance
probability also enhances the convergence rate. There is a conflict between in-
creasing the acceptance probability and decreasing the number of sub-ensembles,
since the former increases with an increase in the latter. In practice, one strives
to achieve roughly equal acceptance ratios in the range of 0.3 to 0.5 for all tran-
sitions.

The energy difference, AE = H,, , — Ha,,, together with the difference in
biasing potential, An = 7,, —n,,, determines the acceptance probability as pacc =
exp(—AE/kgT — An). The acceptance of such moves would be infinitesimally
small were it not for the use of the biasing potential. As soon as AFE exceeds a
few kT, the acceptance probability becomes very low.8 However, if the biasing
potential is roughly equal to —(AFE), then the acceptance probability is only
governed by the spread in the distribution of AFE.

Initially, we do not know what values of the balancing factors to use. The
values must be determined by means of simulation. The original scheme for

8 A free energy barrier of 100 kJ/mol or more is not uncommon when a molecule is inserted in
a dense liquid. This barrier corresponds to about 40 kT at 25 °C. The probability of crossing
such a barrier is 4 - 10718 and a crossing will never be observed in practical simulations.
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computing the balancing factors is to use a series of simulations where the factors

are updated gradually until convergence:”> 76

771(:“) = ’7;?) - 1n(Pk/Po)(i)7 (3'14)

where ¢ is the number of the simulation. This works well if transitions are cheap
and one can afford many simulation steps. With larger molecules and the use of
molecular dynamics, simulations tend to equilibrate too slowly and it becomes
difficult to judge whether one needs to insert an extra sub-ensemble where the
acceptance probability is low, or whether it is just the value of the biasing factor
that is off. A solution to the problem of finding balancing factors is presented in
Paper II.



Chapter 4

Discussion

4.1 Paper I: The PCNN as a preprocessor for
QSRR

The main part of the work on this paper was carried out at AstraZeneca in
Sodertélje for my Masters thesis. The scope of the work was to investigate
whether the time series from a three-dimensional pulse-coupled neural network
could be used for modelling quantitative structure-retention relationships. The
main conclusion in Paper I is that it is possible, at least for the set of 24 steroid
structures that were used for the investigation. Previous studies on the PCNN
had not used the time series for regression modelling; it had only been used for
classification. The fact that the time series can be used to classify objects in
images does not necessarily mean that the time series contains information that
is relevant for regression purposes. The extension of the neural network to three
dimensions was trivial: it simply involves adding an extra index to the equations
and implementing them in code. A very similar neural network model called
the unified cortical model (UCM) had been presented to the chemometrics com-
munity about one year earlier.* That paper showed the segmentation ability
of the network as an image processor on images of medical and chemical rele-
vance. It also presented a series of images of the steroid 173-estradiol produced
by a three-dimensional UCM. At the time I was hardly aware of that paper,
mostly because it was in the peer-review process during the entire time span of
my Masters thesis work. Nor did I realize its strengths. The UCM is basically a
simplified version of the PCNN and is obtained by removing the so-called linking
input from the PCNN.

The study was a success from the start. The very first PLS regression model
showed good results from cross-validation and on the test set. After playing
around with the PCNN in two dimensions, learning how its parameters affected
the binary output images, the three-dimensional version was implemented. The
parameters were studied once more, this time on Q-field images of steroids. The

41



42 Chapter 4. Discussion

0.9

038

07

Test set correlation

o 02 04 08 08 _ 10
Q-field resolution (A)

Figure 4.1. The test set correlation for PLS models obtained by varying the
resolution of the Q-field images.

Q-field had previously been used for QSRR studies using the same steroid data
set.”” In that study the regression model had been fitted directly on unfolded
Q-field images using PLS, with the response being the logarithm of the capacity
factor, lgk’, for a particular LC separation. (The capacity factor is directly
related to the chromatographic retention of a compound.) Our PLS regression
models used the PCNN time series to predict lgk’. At the time I was not fully
aware of the implications and details of model selection and used the test set
several times. The results in Paper I are therefore somewhat biased. In my
defense, I would like to stress that the first regression model showed RMSEP
values and test set correlations in parity with those presented in the paper.
Thus, the bias not likely to be so large as to affect the conclusions of the study.

There are a lot of entirely different methods available that can model these
relationships well, see, for instance, Ref.”® The research field is known as QSAR
for quantitative structure-activity relationships. The ‘A’ in QSAR can be re-
placed by almost any other letter, e.g., P for property or R for retention as in
our case. Free-Wilson analysis is based on functional group contributions to
the free energy. Other common molecular descriptors may come from quantum
chemical calculations. The solvent accessible surface area (SASA)®7:58 is one of
the most important descriptors. The Figure 4.1 shows a trend where the test
set predictions become better, the higher the resolution of the grid. At a given
time step, the active neurons describe what can be interpreted almost as an
iso-surface. With higher resolution this surface becomes better described. The
almost-iso-surfaces create “positive” and “negative” analogues of solvent acces-
sible surfaces and the number of active neurons corresponds to the area of the
surface. The time series can be interpreted as a series of different SASA values.
And since SASA is a good descriptor in QSAR, the PCNN time series can be
expected to hold information that can be used for QSRR modelling.

More accurate results could most likely have been obtained with an existing
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method, had prediction accuracy been the target of the study. As this was not
the case, there is an opening for comparing the PCNN method for QSRR with
existing state-of-the-art methods.

4.2 Paper II: Adaptive expanded ensembles

As stated in the introduction, the project started out with a much larger scope:
we intended to determine octanol-water partition coefficients (log P, /) from
expanded ensemble simulations for about thirty or forty drug-related molecules.
The preliminary results reported by Lyubartsev et al.”® were promising. The
project seemed fairly straightforward and it seemed that it would only be a mat-
ter of putting many hours of hard work into it. Naturally, this was not the case.
We ran into problems almost immediately, partly because I was inexperienced in
molecular dynamics simulations in general and expanded ensemble simulations
in particular, and partly due to limitations in the algorithms that we used.

Looking back at the project from a wider perspective I have reached the
conclusions that it is difficult to accurately determine free energies using molec-
ular dynamics and/or Monte Carlo simulations, and that the particle insertion
method that we have used may lead to convergence problems in the simulations
and possibly even bias the results. Nevertheless, I hold Paper II to be perhaps
my best work (with the possible exception being Paper V). The method pre-
sented in Paper II is a considerable improvement, which makes the expanded
ensemble simulations both faster and easier to perform.

The problem that I encountered, when performing the expanded ensemble
simulations, was that the balancing factors never converged to acceptably good
values. This frustrating situation triggered thought processes on how to better
estimate the balancing factors automatically, rather than to manually adjust
them according to the updating scheme described in previous expanded ensemble
papers.” 76

The reason why the original updating scheme is not very good* is that it
disregards most of the information from the simulation when updating the bal-
ancing factors. The main drawback is that the updated value of a balancing
factor is based on very poor statistics if the factor is far from optimal. The con-
vergence rate therefore becomes excruciatingly slow. Another issue that enters
the equation is the values of the insertion parameter. Poor values of the inser-
tion parameters further slow down the convergence of the balancing factors. It
becomes a practical problem to decide whether to insert an extra sub-ensemble
or to just keep on changing the values of the balancing factors; you cannot tell
what the reason for the lack of convergence is—it could be either the balancing
factors or the insertion parameter, or even both. And since you are left guessing
if you are not very experienced, there was a real need to find a better way to
determine the balancing factors.

*In defense of the original updating scheme, it must be said that it did work for almost ten
years—probably due to a combination of skill and the nature of the studied systems.
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Figure 4.2. The balancing factors, 7, as functions of the insertion parameter,
«. Circles show the free energy profile for the dissolution of methane in water,
while diamonds show the same profile for benzylamine in water.

In order to design automatic optimization of the balancing factors, we need
to know where to find the information about the factors. Once you realize
that the information is in the transition energies (easy) and that there is a
fixed distribution of transition energies for given values of the balancing factors
(trickier), the rest consists merely of technicalities that need to be solved, and
these are discussed in the paper.

There are still problems to be solved with expanded ensemble molecular dy-
namics. Figure 4.2 shows what I think is the problem with expanded ensemble
molecular dynamics. The free energy profile is very steep for small values of al-
pha when methane is dissolved in water. This effect becomes much worse when
the solute molecule grows bigger. The derivative of the free energy viewed as a
function of alpha becomes singular at alpha equals zero as it tends to infinity.
The problem derives from the particle insertion method, and we have ideas on
how to correct this problem. This will possibly be addressed in future research.

So far, we have discussed problems specific to expanded ensemble molecular
dynamics. Another issue is the validity of the molecular forcefields for computing
free energies. The bonds, angles, torsion, improper torsions, etc. are probably
good enough. But the use of partial atomic charges is more questionable. It
turns out that the free energies are sensitive to the values of the charges. Atomic
charges are not an observable and they can be (and are) determined many ways,
e.g., by Mulliken or Lowdin population analysis, by partitioning the electron
density according to the atoms in molecules theory, or by the presently pop-
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ular fitting of the electrostatic potential outside the molecules using restraint
optimization. This leads to the conclusion that accurate determination of free
energies is difficult, since the set of partial atomic charges is an important ele-
ment, over which we do not have enough control. I think that there is more work
to be done on the treatment of electrostatics in molecular simulation. In the fu-
ture, I think we will see forcefields with other approximations to electrostatics
than partial atomic charges.

4.3 Papers III and IV: Solutions to the peak
alignment problem

The project on peak alignment started in the autumn 2002 with the development
of peak alignment using reduced set mapping (PARS). Paper III presents PARS
and compares it to dynamic time warping (DTW) and a complexity-reduced
version of DTW. The purpose of this article was to prove the principle that the
algorithm performed as well as could be expected. The performance was eval-
uated by comparing the algorithm with the complexity-reduced DTW and can
be summarized as: PARS gave identical alignment in shorter time. The strong
points in Paper IV are the proposed dendrogram alignment scheme and the fact
that the paper demonstrates how useful PARS can be with chromatographic
data in a classification context. The need for peak alignment is demonstrated in
Section 2.8.

The discussion of Paper III and Paper IV will attend to the complexity of
PARS compared to DTW and the question of target chromatograms/spectra vs.
the dendrogram alignment scheme.

4.3.1 Complexity of PARS and DTW

In terms of computational complexity it was a major breakthrough to formulate
the alignment problem in graph theory. This formulation makes PARS inde-
pendent of the resolution of the data. A typical sample of 600 MHz FT-NMR
data has about 65000 data points. DTW has a complexity of O(n?), with n
being the number of data points. The complexity-reduced DTW has a com-
plexity of O(nw), where w is the window size in data points. If the resolution
of the data is increased, i.e., n is increased while the data otherwise stay the
same, the window size, w, must increase by the same factor as n. Thus, even
the complexity-reduced DTW is O(nw). The complexity of PARS is O(plogp),
where p is the number of peaks in a sample. There are, of course, many more
data points than peaks in a spectrum or chromatogram, so at least an order of
magnitude is gained. p is independent of the resolution. Better instruments or
higher sampling frequencies yield more densely spaced data points of identical
samples and this will make DTW slower. All methods that work with the original
data representation are affected in the same way as DTW.
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The breadth first search in its naive form has a complexity of O(2P). The
trick that makes PARS so fast is to keep record of the solutions and eliminate all
nonoptimal solutions as soon as they are encountered. This elimination improves
the complexity of the breadth first search to O(p). The overall complexity of
PARS is governed by a sorting step in the algorithm, which is O(plogp).

The identical alignments was an expected result. The edge weights in PARS
were designed to mimic DTW. The conclusion is that PARS is a significant
improvement over DTW.

4.3.2 The target question

To align a sample, we need something to align its peaks to: a target. A target
can be one of the spectra or chromatograms in the data set. If there are only
two samples, we can use either as the target, the result being the same. With
more than two samples, the choice of target becomes an intricate problem. It
may affect the results in that peak assignments become different and target-
dependent.

A sample, that is ideal for use as a target should satisfy two criteria: it should
include every peak which occurs in the data set and the position of a peak in
the sample should be the position of that peak averaged over the whole data set.
This ideal target can normally not be found in the data set and we are forced
to chose a less than ideal target from among our samples. A possible choice of
target is the sample with the most peaks. This selection minimizes the violation
of the first criterion. There is a risk, however, that the positions of the peaks in
the target are bad with respect to the second criterion. Another choice of target
may be the sample which is closest to the average over all the samples. But
because the samples are unaligned this choice may be bad. It is not clear what
being closest to the average sample signifies, unless the samples are aligned. A
second reason why this may be a bad choice is that the chosen target will almost
surely violate the first criterion to an unnecessarily extent. It is very unlikely
that a target satisfying the first criterion will be close to the average sample.

Recursive target update (RTU) is a third way to address the target question.
Any sample is chosen as the target. As the name implies, this target is updated
with new peaks during the alignment. After aligning a sample to the target, any
unmatched peaks in the sample are added to the target.

In Paper IV we propose a solution to the question of target selection by cir-
cumventing it. Since pairwise alignment is easy, it is used to create a hierarchical
alignment scheme that we call “dendrogram alignment scheme.” The scheme is
based on the same idea as RTU, but instead of a single alignment, every sample
is aligned to intermediate targets several times before it is considered to be fully
aligned. The foremost property of the dendrogram alignment scheme is that
the solution to the alignment problem becomes unique. However, this desirable
property comes at a cost. To align a data set, O(N?) alignments must be per-
formed, instead of O(N) if a fixed target or RTU is used. (N is the number of
samples in the data set.)
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To conclude, we have reduced the computational complexity of peak align-
ment by introducing PARS in Paper III. In Paper IV we sacrifice computational
complexity to solve an issue of major concern in peak alignment.

4.4 Paper V: A measure of class separation

The first seeds of thought about the study presented in Paper V were planted
during a discussion in spring 2004 on how to put a figure of merit on peak
alignment of 'H-NMR data belonging to two classes.3? The figure should reflect
how well the two classes are separated, so that different algorithms could be
compared. During the discussion several different measures were tried out. None
of them were consistent with the data analyst’s view of good and bad class
separation. The measures infallibly gave an unintuitive ranking for some cases.

In the paper, the measure is defined from an equal probability criterion.
Another possibility is to use equal risk as the criterion to define the measure.
The In|3;]| and In|35| terms vanish from the equation for e(x) if the equal
risk definition is used. Equal risk also makes the measure, M, more similar to
the Fisher criterion, F, more specifically, M € [v'F/2, v/F]. Another property
is that the two Mahalanobis distances, of which the shortest defines the value
of the measure, become equal. This property means that the measure has a
unique definition and we don’t need to fiddle around with choosing the minimum
distance.

The most intriguing thing is that the linear classifier that we present in
the paper could not be found in the literature. I was certain that it would
be described in a book called “Discriminant Analysis and Statistical Pattern
Recognition,®!” but to my surprise, it was not. Reason tells me that somewhere
someone has described the classifier already even though I have not been able
to find it. If it exists, it must be described using a mathematical notation and
with a wording that I cannot understand. Since only the existence and definition
of the new linear discriminant are stated in Paper V, it would be interesting to
study its properties in detail.
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Chapter 5

Conclusions

The scope of this thesis is wide. Based on five papers the thesis spans four
different subjects. The least common denominator of the papers is summarized
in the title of the thesis: variance reduction. The practical work has consisted of
developing new numerical methods in chemometrics and in molecular simulation.

Paper I attempts to achieve variance reduction within the field of quantita-
tive structure-retention relationships by the use of pulse-coupled neural networks
(PCNN) on three-dimensional images of molecules. In this paper variance reduc-
tion is perhaps not really achieved; however, we can conclude that the time series
produced by the PCNN do contain quantitative information related to the capac-
ity factor in chromatography. An interpretation of the values of the individual
data points in the time series is that these are analogous to solvent-accessible
surface areas—a well-reputed molecular descriptor.

In Paper II we reduce the variance of free energy calculations using the
method of expanded ensemble molecular dynamics. This project was successful
and now the free energy calculations are one step closer to being fully auto-
mated—just fire and forget. Not only is the method now easier to use, it also
gives answers with higher accuracy in shorter time.

Peak alignment is all about variance reduction. Variance in the measured
data that is unrelated to the information is removed and, thus, the information
in the data is enhanced. Paper III and Paper IV covers aspects of peak alignment
and introduces a new and efficient method to the field.

Paper V, the final and most theoretical, is concerned with quantifying vari-
ance reduction in a classification context. In classification one wants to minimize
the within-class variation while keeping between-class variation high; the vari-
ance difference determines how well the classes are separated and how good a
classifier is. In this paper, a new and accurate measure of this variance difference
is defined and an algorithm to compute it is presented. Paper IV successfully
uses this new measure.
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