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Abstract

Predicting the three-dimensional (3D) structure pobteins is a central
problem in biology. These computationally predic&l protein structures
have been successfully applied in many fields ofadicine, e.g. family
assignments and drug discovery. The accurate deteaf remotely

homologous templates is critical for the succesghddiction of the 3D

structure of proteins. Also, the prediction of atimensional (1D) protein
structures such as secondary structures and shiapgssare useful for
predicting the 3D structure of proteins and impatrt®@r understanding the
sequence-structure relationship. In addition, tresligtion of the functional
sites of proteins, such as metal-binding sites, oah only reveal the
important function of proteins (even in the abseotéhe 3D structure) but
also facilitate the prediction of the 3D structure.

Here, three novel methods in the field of proteéincture prediction are
presented: PREDZINC, a method for predicting zimgding sites in
proteins; FraglD, a method for predicting the lidcdtre of proteins; and
FragMatch, a method for detecting remotely homalsgproteins. These
methods compete satisfactorily with the best methm@viously published
and contribute to the task of protein structuredjmtéon.
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Abbreviations

1D
3D
CASP
CATH

CH
CHDE
CSA
DSSP
HMM
HSSP
NMR
PDB
PSSM

Q3

ROC
S3

S8
SCOP
SOV

SSE
SVM

VIII

One-dimensional

Three-dimensional

Critical Assessment of protein Structure Rtémt
A hierarchical classification of protein domai
structures, which clusters proteins at four major
levels, Class (C), Architecture (A), Topology (T)
and Homologous superfamily (H).

Cysteine or histidine

Cysteine, histidine, aspartate or glutamate
Catalytic Site Atlas

Definition of the secondary structure of prste
Hidden Markov Model

Homology-derived structures of proteins
Nuclear Magnetic Resonance

Protein Data Bank

Position Specific Substitution Matrix

Overall per-residue accuracy for three-state
secondary structure prediction

Receiver Operating Characteristic

Overall per-residue accuracy for three-statpesha
string prediction

Overall per-residue accuracy for eight-statpsha
string prediction

Structural Classification of Proteins

Segment Overlap measure

Secondary Structure Element

Support Vector Machine
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1 Introduction

Proteins are essential to life. In bodies, protdmld into certain three-
dimensional (3D) structures, called the native cdtmes. The functions of
proteins rely on their native structures. Determgnihe 3D structure of
proteins has become a major task for modern bicébgiesearch. Protein
structures are determined experimentally by X-raystallography, NMR
spectroscopy and cryo-electro microscopy (cryo-EM$ince the
determination of the first protein structure, myagh, by Kendrew and his
colleagues 50 years ago (Kendreet al, 1958), the number of
experimentally solved protein structures depositethe Protein Data Bank
(PDB, www.pdb.org/pdp(Bermanet al, 2000) has reached 56 951 (as of
Nov. 18, 2009; there are also 4626 other biologin@cromolecular
structures such as DNA in the PDB) and this nunibstill doubling about
every three years. However, this exciting number lsa disappointing for
the biologists who need 3D models of proteins girthesearch. As of Nov.
2009, there are ~9.7 million protein sequences sigggb in the
UniProtKB/TrEMBL database (The-UniProt-Consortiu2009). The chance
of a protein sequence to have a solved structwaiapped to 0.6% (56951
/ 9700000 * 100%) by Nov. 2009; while this numbexsw2.1% in Dec. 2004
and 1.6% in Dec. 2007. It has to be noticed thatymentries deposited in
the PDB are the same proteins but have been saiveidferent conditions
(e.g. different concentrations and different terapaes) for various
scientific purposes. For example, 1171 entriehanRDB are structures of
lysozyme. When taking this into account, the chasfae protein sequence to
have a solved structure is even lower. To narroe gap between the
number of solved sequences and the number of salvadtures, efficient
and accurate computational prediction methods igtdyhdemanded.

Since Anfinsen beautifully demonstrated that bovipancreatic
ribonuclease could regain its native 3D structdter ainfolding (Anfinsen,
1973), it has been believed that the 3D struct@inerateins are determined
by their amino acid sequences. Numerous methods leen developed for
predicting protein structures from amino acid seges in the past decades.
Progress in predicting 3D structures of proteimsnframino acids has been
shown in the Critical Assessment of protein StrretRrediction (CASP) in
recent years (Moulet al, 2003; Moultet al, 2005; Moultet al, 2007;
Moult et al, 2009). CASP is a world-wide competition of 3D taio
structure predictions held every two years. As age by CASP, the
accuracy of the predicted structure model mairligseon the successfulness
of the detection of structurally similar templatitds generally accepted that
proteins with similar amino acid sequences arectirally similar. Although
exceptions that two proteins (constructed by mdmarisg 88% sequence



identity but with totally different fold have aldeen observed (Alexandet
al., 2007), for natural proteins, it is still safeday that if two proteins share
> 30% sequence identity, they are structurally lsimiHowever, to detect
the homology between proteins sharing less than &§aence identity is a
challenge. Therefore, methods which can accuratdyect remotely
homologous templates become essential. The accwhdhe predicted
structural models usingle novo prediction methods, i.e. predicting 3D
structures without any structural template, isl $&it away from practical
requirements. Protein structures in reduced formg, protein secondary
structures (represented by H: helix, S: sheet ancgftlom coil) and shape
strings (see Figur# for definition) can be predicted at high accura8ych
predicted one-dimensional (1D) structures can &a#ses prediction of 3D
structures.

Many proteins need to interact with other molecwesons in order to
function properly. Metals are among the most commmuatecules or ions
that interact with proteins. Metal ions are predanabout one third of the
proteins deposited in the PDB and they play a targé roles in many
biological processes, from structure stabilizatimenzyme catalysis. Zinc is
the second (only after iron) most abundant trassitmetal found in
eukaryotic organisms (Coleman, 1992). The functibainc in proteins can
generally be divided into two categories: strudtuaad catalytic. An
example for the former is that zinc-fingers whidmprise the largest class
of transcription factors in the human genome amacsirally stable only in
the presence of zinc (Tuplet al, 2001). An example for the latter is that
zinc ions serve as powerful electrophilic catalystsnany hydrolases and
lyases (McCalkt al, 2000).

A protein might not be of great biological interastess its function has
been annotated. The identification and localizabbrzinc-binding sites (if
they exist) is not only important for functionalrestation of many proteins
but also helpful to the prediction of 3D proteimustures. The accurate
prediction of zinc-binding residues in sequences ba used directly to
screen zinc-binding proteins in genomes. The ptediczinc-binding
proteins can also be used to complement the cumezitlloprotein or
catalytic site database, e.g. MDB (Metalloproteiatdbase and Browser,
metallo.scripps.edy/and CSA (Catalytic Site Atlas, http://www.ebiiaid.
thornton-srv/databases/C3AIn addition, the accurate prediction of zinc-
binding proteins might be used to select proteirzyeres capable of
catalyzing inorganic reactions and mediating themédion of crystals,
which is fundamental in material synthesis (Feldh@nd Eaton, 2007).
Advances in DNA/protein sequencing techniques &mel much slower
traditional function annotation methods have led a® increasing gap
between the number of functionally uncharacterigestein sequences and




that of well-annotated protein structures. Fastamomatic annotation tools
based on computational biology are required.

Here, three methods in the field of protein struetprediction are
described: (1) FraglD: a method for predicting lEbtgin structures,
including secondary structures and shape strirB)st-fagMatch: a method
for detecting remote homologues; and (3) PREDZINC:method for
predicting zinc-binding sites of proteins from amiracid sequences,
including the prediction of (i) whether a proteinzinc-binding or not and (i)
residues that bind to zinc. Aside from the abowedhmethods, different
methods for describing and comparing protein stimast are reviewed, with
the emphasis on those methods that represent mretaictures as 1D
geometrical strings, especially shape strings.
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Figure 1: The definitions of eight-state (S, R, U, V, K, Rand G) shape strings on
the Ramachandran plot (Is@h al, 2005). The typical shapes farhelices and3-
sheets are A and S respectively. Shape R represenss-called polyproline type Il
structure. Shape K is often found at ends of helmein 3, helices. T denotes the
turn region and G is special for glycine. Thredestshape strings are obtained by
mapping S, R, Uand Vto S, K and A to H, T ando@t The Ramachandran plot
shown here is a montage from two plots; the left paows the Ramachandran plot
for all amino acids found in random coil, while tkedt half of the figure is that
found for all glycine residues. Both are taken freimvmdller et al. (2002). [From
Fig. 1 in Papet ]

1.1 Background: 3D protein structure prediction

Predicting the 3D structure of proteins from theainino acid sequences has
been a major interest for researchers in variossiglines for many years



(Lewis and Scheraga, 1971). The purposes of praeircture prediction
vary from the high intellectual challenge of eluatidg the protein folding
process, to diverse applications that might beiplessnce the accurate 3D
structure of proteins can be predicted.

Protein structure prediction is usually dividedoinhree categoriesib
initio (or de nong prediction, fold recognition (or threading) anontlogy
modelling, based on to which extent the homolodgrimation in sequence
and structure databases has been used to corsieustructural modelAb
initio prediction refers to the prediction of proteinustures where neither
homologues nor fold templates can be found in AB.An its purest form,
ab initio prediction predicts protein structures based elgtion physical and
chemical laws, e.g. simulation of folding processig molecular dynamics.
However, it often applies to the prediction usinglyolocal structure
information or starting from a secondary structprediction. In CASP
(Moult et al, 2009) it almost always refers to the latter. Fraddognition
means the prediction of protein structures for Wwhamly templates that
might have similar folds but without obvious hongos to the target can
be detected in the PDB. Finally, when a close hoga to the target
protein can be identified in the PDB, the predictie often referred to as
homology modelling.

To date the most accurate protein structure priedichethods are still
based on homology modelling, although significamigpess has been made
in fold recognition andb initio prediction, according to the results revealed
in recent CASP experiments. The boundary betwesesetthree categories is
becoming increasingly unclear (Zhang, 2008); nowsdsen the prediction
tasks classified ade novoprediction are usually based on available 3D
fragmental structures. However, the accuracy afedipted model is mainly
determined by the availability of templates. Forotpins with close
homologous templates, the predicted 3D proteircgiras can be as close as
1-2A root mean square deviation (RMSD) to theiriveatstructures. For
proteins having only distantly related templatesha PDB, the predicted
structures can be as close as 2-6A to their natiwetures. The errors are
mainly caused by incorrectly predicted loop regi@ieuchet al, 2007). For
proteins without any homologous templates, sucokgsfedictions have
only been reported for small proteins, with lessnti00 residues (Zhang,
2008). The best predicted models can be as close8#s to the native
structures. The relationship among the algorithacsuracy and biological
usefulness of protein structure predictions austiated in Figur@.

Although there is only one final goal for proteimusture prediction,
that is, predicting 3D structures from amino acdjiences, sub-problems
such as protein secondary structure predictionteprdoackbone dihedral
angle prediction, homology detection, binding-grediction and protein-



protein interaction prediction are also of greaterest. Some of these
problems are inevitable steps in 3D protein stmactprediction. Two
examples are protein secondary structure predicfammab initio 3D
structure prediction (Bonneau and Baker, 2001) tmrdology detection for
homology modelling. Others, e.g. binding-site pcedn and protein-protein
interaction prediction, are not directly used in 8@ucture prediction, but
will be of great help to the 3D structure predintibthey can be accurately
predicted. In addition, the prediction of bindirites and protein-protein
interactions can immediately be applied in funcilcennotation and protein
design, even without the knowledge of the full 3ftusture (Laurie and
Jackson, 2006).

Structural Examples of
prediction biological
methods usefulness

Close Drug design
homologous Drug screening
modeling Ligand docking
Molecular replacement
Threading
ﬁ;:qlf;:gnfm Mutagenesis design
modeling Detection of
9 enzyme active sites
disease substitutions
alternative splicing
Free

. Domain boundary
modeling Topology recognition
Family assignment

RMSD (A)
TM-score 3

Current Opinion in Structural Biology

TM-score: Template modelling (TM) score, a scorfagction for assessing the quality of
protein structure templates and predicted structealel (Zhang and Skolnick, 2004).

Figure 2: Approximate relationship among the algorithms,uaacy and biological
usefulness of protein structure predictions. [Rdpoed from Zhang, (2009) with
permission]

1.2 Predicting 1D protein structures

Predicting the secondary structure of proteinsityag been considered as an
important stage for 3D structure prediction. Sittee first protein structures
were solved by X-ray crystallography, attempts hbgen made to predict



the secondary structure of proteinsodselix, B-sheet and random coil from
their amino acid sequences. Chou and Fasman (1pibheered the
secondary structure prediction based on simplésstat of the probabilities
of each individual amino acid appearing at eacthetthree states, namely H
(helix), S (sheet) and R (random caoil). AlthoughoGrand Fasman claimed
nearly 80% Q3 (overall three-state per-residue raogy) in their original
work when tested on 19 proteins available at timag¢,tit has been proved
that the Chou and Fasman method predicts proteondary structures only
at 50-60% accuracy (Kabsch and Sander, 1983b)oVéeoptimistic results
reported in the original work of Chou and Fasmarmdssed by the very
small and non-representative dataset they usedi¢dine limited number of
protein structures that were solved at that timdpreover, Chou and
Fassman failed to separate the training set antbsitset. Later on, by using
the propensities for segments of 3-51 adjacentiuesi the Q3 accuracy of
the secondary structure prediction was improveadse to above 60%
(Deleage and Roux, 1987; Holley and Karplus, 198%ller et al, 1990;
Muggletonet al, 1992; Presnekt al, 1992). The breakthrough of the third-
generation secondary structure prediction was mage using the
evolutionary information and advanced algorithmeshsas neural networks:
Q3 was improved to over 70% (Rost and Sander, 1998 evolutionary
information was derived from the divergence of amiacids among
homologous proteins to the protein to be predict®¥dh the emergence of
new sequence database searching tools such asnHMdekov Models
(HMM) (Eddy, 1998) and PSI-BLAST (Altschdt al, 1997), large-scale
real-time database searching became feasible. Qaestly, reliable profiles
(see Figure25 in Appendix 3 for an example) built from large seqce
families became achievable. By using PSI-BLAST tdldbprofiles, David
Jones made a big step forward in secondary steugirgdiction: a Q3 of
76.5% was obtained when tested on 187 unique f@ldses, 1999b).
Recently developed methods (Wood and Hirst, 20Gst; ahd Zhou, 2007;
Homaeianet al, 2007) are almost without exception based on semue
profiles generated by PSI-BLAST. The Q3 for thossthuds is approaching
80% and slightly better result may be obtaineddoylaining several of these
methods (Chengt al, 2007). Roset al. proposed that the upper limit of the
secondary structure prediction is 88% Q3 by anatyzihe structural
divergence among homologous proteins (Radsl, 1994). The accuracy of
recently developed secondary structure predicti@houds is approaching
this proposed upper limit but there is still a lomgy to go, since every 1%
step forward is becoming more difficult as it ipapaching the upper limit.

The accurate prediction of secondary structure oaprove the
sensitivity of threading methods (Jones, 1999a) ianctitical to manyde
novo structure prediction methods (Bradley al, 2003). However, for on
average ~40% of all residues in random coils, tlessical secondary



structure representation carries no structuralrmétion. On the other hand,
the backbone protein structure is precisely deedriy a series of torsion
angle pairs ¢, y), one pair for each residue, due to the planaftyhe
peptide bond. The torsion angle pairs of nativeginostructures are actually
clustered into distinct regions. Therefore the bacie protein structure can
be rather accurately described by a 1D string afl®is representing the
clustered regions a/y torsion angle pairs, called shape strings (lsbal,
2005) (see Figuré for definition). Shape strings describe the comiations
of residues in regular secondary structure elem@8E), e.g. shape A
corresponds to the regularhelix (centered ap = —61°,y = —41° on the
Ramachandran plot) and shape S corresponds to ahpelar f-sheet
(centered ap = —116°,y = 128° on the Ramachandran plot) (Hovmo#er
al., 2002). Shape strings also classify residuesndam coils into several
states, thus containing much richer conformatidorination. It has been
shown that shape strings can be used for efficéairching for similar
structures in a database (Papéy and the precise backbone structure can be
reconstructed from shape strings (Gatgl, 2005; Isoret al, 2005). Only
recently, attempts to predict also the conformatibtine protein backbone in
segments of random coil have been made. Bysétoffl. predicted 11-state
shape strings with an overall MDA score (Bystreffal, 2000) of 58.8%,
using a Hidden Markov Model. The MDA score is detiras the fraction of
residues that are found in predicted eight-residegments in which no
predictedp/y angles differ by more than 120° from the truedtrice. Kuang
et al. predicted three-state shape strings with overiresidue accuracy
(S3) of 79.5% and for four-state shape strings4%83.using Support Vector
Machines (SVM) (Kuanget al, 2004). Our method, FraglD predicted the
three-state shape strings at 81.7% S3, i.e. 2.2%rkban that of Kuang's
method (Papelt ), using the same shape string definition as inrgisawork.
Note that slightly different definitions on how discretize clustered regions
of ¢/y angle pairs on the Ramachandran plot have beehfasthese works
(see the comparison of different definitions in &apv/, Fig. 6). The
baseline for the three-state shape string prediétidiigher than that for the
three-state secondary structure prediction. Theageeabundances of the
three secondary structure states H, S and R ald63&1.7% and 40.3%
respectively (see Tabkin section 2.3.1). Therefore, a random guess of the
secondary structurgiven the condition that the proportions must be
correct,will yield Q3 = (0.38% + 0.217 + 0.403) = 35.5%. For three-state
shape strings, the average compositions for H (AS&JS+R+U+V) and T
(T+G) are 51.7%, 42.6% and 5.7% respectively (T&pland thus the S3 of
a random guess is (0.51¥ 0.426 + 0.057) = 45.2%. Nevertheless, even
the best result reported for the three-state skapgy prediction is 79.5%
(Kuanget al, 2004), at the same level as the secondary steuptediction.
More accurate methods for predicting shape stramgsequired.



1.3 Detecting remote homologues

The function and structures of unknown sequencasoften be accurately
inferred if one can map the uncharacterized sequéma well-annotated
protein or protein family. This mapping procedueguires the detection of
evolutionary relationship, or homology, betweentgirts. As mentioned at
the beginning of the Introduction, presently tharate of a protein sequence
to have a solved structure is only 0.6%, due tohigegap between the
number of solved sequences and solved structumgever, recent analyses
show that the coverage of existing protein foldsreésented by the solved
3D protein structures in the PDB is close to coniphe(Zhanget al, 2006;
Qi et al, 2007). This means that for any new protein, iiksly to have a
homologue with a solved 3D structure already inRBEdB, and the structure
of this new protein is similar to the solved onaisTpresents a challenge to
computational biologists, that is, to find a methadhich can detect
homologues for a given protein, if it exists. Arduri990, homology
detection methods such as FASTA (Pearson and Lipt#88) and BLAST
(Altschul et al, 1990) were developed using pairwise comparisgoratiein
sequences with sequence and position independestitstion matrices, e.g.
PAM (Dayhoff et al, 1978) and BLOSUM (Henikoff and Henikoff, 1992).
Brenneret al. (1998) once showed that sequence-sequence metholsas
BLAST can detect most homologues with > 30% segeiedentity to a
target sequence. However, structural classificatiohproteins as done in
SCOP and CATH (see section 1.5 for more detailsjvsthat also proteins
sharing very low sequence identities (10-20%) midlybe homologues. For
example, two forms of the protein triosephosphatemierase in the PDB,
1HG3_A (fromPyrococcus woeseiand 1TRE_A (fromEscherichia col,
share only 18% sequence identity but both belonghto SCOP family
triosephosphate isomerase (see Fig. 1 in Pi&ferTo detect the homology
between those proteins sharing low sequence igenét to detect distantly
related homologues, is still a challenge.

By comparing protein sequences to position specfitstitution
matrices (PSSM, also termed as profiles), methagth sas PSI-BLAST
(Altschul et al, 1997), HMMer (Eddy, 1998) and SAM (Karplasal, 1998)
are able to detect more remotely homologous pret@ossieret al (1998)
showed that profile-sequence methods could deteeettimes as many
homologues as the traditional sequence-sequencéod®twhen the
sequence identity was below 30%. Profiles are lyilimultiple sequence
alignments among homologous proteins to the tafgeé¢ Figure25 in
Appendix 3 for an example). PSI-BLAST automated phefile building
together with the large-scale sequence databasehsegin a very efficient
way and is thus widely used by biologists. Evenarsensitive methods, e.g.
PROF_SIM (Yona and Levitt, 2002), PRC (Madera anough, 2002),



COMPASS (Sadreyev and Grishin, 2003) and HHsea®ddi(ig, 2005),
were developed by comparing profiles to profilediich means that the
position specific evolutionary information is usied both the query and the
target sequence. Some of these methods employed Hdkhodel the
sequence profile. Consequently, the sequence-preafiid profile-profile
methods became sequence-HMM methods (e.g. HMMer Sdl) and
HMM-HMM methods (e.g. RPC and HHsearch). These HMddels are
similar to normal sequence profiles but they caontidie position-specific
probabilities for insertions and deletions along #tignment, in addition to
the amino acid frequencies in the columns of theltiphe sequence
alignment (Eddy, 1998). Some recent studies shao #hat improved
sensitivity can be achieved by incorporating predicsecondary structures
into profiles or HMMs (Soding, 2005; Wareg al, 2009). At the same time,
methods using supervised machine learning algositbuth as SVM were
developed for remote homology detection and prodi@inily classification.
Such methods include SVM-pairwise (Liao and Nol@@e03), the Fisher-
kernel (Jaakkolat al, 2000), the mismatch kernel (Leske al, 2004) and
SW-PSSM (Rangwala and Karypis, 2005). By taking #uwantages of
SVM in binary classification, these methods are yverccurate in
distinguishing positive examples (homologues) aagative examples (non-
homologues) when trained on a large dataset camgaiboth positive
examples and negative examples. Therefore, theshkimealearning based
methods are extremely suitable for protein famigssifications, albeit at the
cost of computational time.

1.4 Predicting metal-binding sites in proteins

Due to the abundance and importance of metal-bingites in proteins,

many researchers have endeavoured in developinigodsetfor predicting

these metal-binding sites based on structures dnaaracid sequences
(Gregoryet al, 1993; Nakata, 1995; Andreiet al, 2004; Sodhet al, 2004;

Lin et al, 2005; Schymkowitzt al, 2005; Menchettet al, 2006; Passerini

et al, 2007; Ebert and Altman, 2008). However, evengithee 3D structure,
the detection of binding sites solely from geoneefzriteria in proteins

without bound metal (e.g. apoproteins) is difficidince the residues that
bind to a metal often undergo conformational changgon binding (Babor
et al, 2005). Therefore, structure based metal-bindiregiption methods

often employ sequence profiles (Soéhial, 2004; Ebert and Altman, 2008)
derived from multiple sequence alignments, due h® fact that metal-

binding sites are often highly conserved (Ouzoehial, 1998).

It has been noticed that special sequence patgistsamong functional
metal-binding sites, for example, the C2H2 zingén motif (one of the



most ubiquitous zinc-binding motifs). Such motifiee anow deposited in
databases such as PROSITE (Hedal, 2004), either as sequence patterns
or as matrices. An example is a sequence patterthéozinc finger C2H2
type domain signature, represented agZA4)-Cx(3)-[LIVMFYWC]- x(8)-
H-x(3,5)-H. This pattern means a Cys (cysteine) fodldvoy 2 to 4 residues
of any type, followed by a Cys and then by exa8tlsesidues of any type,
followed by one residue of either lysine, isoleecivaline, methionine,
phenylalanine, tyrosine, tryptophan or cysteindioveed by exactly eight
residues of any type and then a His (histidindp¥eéd by 3 to 5 residues of
any type and finally ended by a histidine. Alteivelly, such information
may also be represented as matrices. These patsgrhsmatrices in
PROSITE are generated from multiple sequence akgisnof homologous
motifs and are very sensitive for identifying mdbaiding sites. However,
the coverage of the PROSITE patterns is low. Take-kinding proteins for
example: when searching in a non-redundant seD& €hains containing
2727 chains, only ~29% of all zinc-binding chai24( chains binding to
biologically important zinc, see TabRin section 2.2.1) can be detected
using the current PROSITE database (version 262[@, 26, 2008) by the
program ‘ps_scan’ (version 1.57) (Gattiket al, 2002), although the
precision is as high as 90%. Note that all these7 23totein chains have
been used to build this version of the PROSITE lieda and thus an over-
fitting might have occurred. The actual accuracytltd PROSITE motif
searching for zinc-binding proteins might be lowean reported here.

Methods for predicting zinc- and other metal-bindisites from
sequence alone have received attention recentlykshéo the large and
increasing number of high-resolution protein swues in the PDB,
advances in the machine learning methods such asaln@etworks
(Lawrence, 1994) and SVM (Vapnik, 2000), as welltlzs availability of
PSI-BLAST (Altschulet al, 1997) which enables the creation of reliable
sequence profiles. The two amino acids most frefpudinding to zinc are
Cys and His (see also Tal8¢ Menchettiet al. (2006) and Passeriet al.
(2007) predicted zinc-binding Cys and His by a Iquadictor and a gated
predictor based on SVM. They observed that residias bind to a zinc
atom tend to be close in sequence. Based on tkenadtion, they selected
preliminary zinc-binding residue candidates witlseami-pattern [CH{(0—
7)[CH] (C is cysteine, H is histidine and CH stafolscysteine or histidine,
x(0-7) stands for a consecutive substring of anynaracid with a length
from O to 7). These selected residue pairs weredattinto feature vectors
by PSSMs and SVM were then applied to distinguisk-binding residues
from non-zinc-binding residues. Their method prasticzinc-binding Cys
and His with 60% precision at 60% recall (see sacs.2 for the description
of precision and recall) based on a five-fold cresldation (Menchettiet
al., 2006) (see section 3.1 for the description oksrealidation). For the
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less common zinc-binding residues Asp and Glu, riggults were less
satisfactory. Passerist al (2006) described a method for predicting metal-
binding Cys and His in a generic way, based on a-di@ge machine
learning approach. The first step was similar te tmethod used in
Menchettiet al (2006), i.e. using SVM to classify feature vestovhich
encode preliminary selected zinc-biding residuedctates. After that, a
three layer bi-directional recurrent neural netw@BRNN) was used to
further distinguish metal-binding and non metaldiiy Cys and His. For
zinc-binding Cys and His, SVM-BRNN predicted witl®% precision at
60% recall. Note that in the works of both Mendhett al. (2006) and
Passeriniet al. (2006), positive examples are proteins containzmg-
binding sites and negative examples are non-metalleins. The exclusion
of non-zinc metalloproteins from the negative ex@spends to simplify the
zinc-binding prediction, which might yield over-aptstic prediction results
as reported in Mencheitit al. (2006) and Passeriet al (2006). Although
these methods are reasonably successful in locatimgbinding sites in
proteins, higher prediction accuracy is required &mcurate functional
annotations of vast amounts of uncharacterizee@preequence data.

1.5 Describing and comparing protein structures

Most protein molecules contain thousands or evers @& thousands of
atoms. Their structures are so complex that perhlibpsonly way to
comprehensively describe them is by listing the cgardinates of all atoms,
as is done in the PDB. Close to half of the atomproteins are hydrogens
(Andersson and Hovmodller, 2000), but for most dtries they are not listed
in the PDB, because they are very hard to detec{-bgy crystallography.
Luckily, most hydrogen atom positions can easilylbduced from geometry.
Using such verbose description of protein strugtut®y listing xyz
coordinates of all atoms in proteins using thousanél real numbers,
although comprehensive, is not only difficult fleethuman brain to grasp,
but also not easy for a computer to carry out |ag@e comparisons.

The existence of ordered regular conformationsrtgins, stabilized
by hydrogen bonds, was predicted already in 19%LI{g et al). These
regular conformations were called secondary strastunamelyo-helices
and p-sheets. Today, the secondary structure is uswlned by the
definition of the secondary structure of proteiDSEP) (Kabsch and Sander,
1983a). Thus, a protein structure can be descriiegly as a set ofi-
helices,B-sheets and with the rest as random coils. Thensicy structure
description of a protein captures the most impadrfiatures of the protein in
a rather concise way, which allows our human btaingrasp the most
essential information of the protein. However, floe remaining part of the
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protein structure, which on average comprises ~40%ll amino acids in
proteins, therandom coilin the secondary structure description carries no
structural information.

As already mentioned, experimental characterizatioproteins is both
time-consuming and expensive and thus it is ndilid&ato study all proteins
in all genomes experimentally. As a consequence, ftimction of an
uncharacterized protein is often inferred from arebterized protein by
sequence/structure comparison methods. Functianfarence based on
sequences only, which often refers to homologydliete, is fundamental in
computational biology due to the massive uncharizet® sequence data as
described above. However, for proteins with seqgeddentity below 25%,
the relationship between them can hardly be infiefrem pairwise sequence
comparison. To improve the homology detection fastaohtly related
proteins, large scale hierarchical structure digssion databases, such as
SCOP (Murzinet al, 1995) and CATH (Class, Architecture, Topology and
Homology superfamily) (Orenget al, 1997), have been built by comparing
all solved protein structures in the PDB.

1.5.1 SCOP (Structural Classification of Proteins)

The SCOP database is a comprehensive classificadforall protein
structures in the PDB according to structural, fiomal and evolutionary
relationships among proteins. The basic classifinatinit in SCOP is the
protein domainand domains are classified hierarchically iotassesfolds
superfamilies families proteins and speciesSmall proteins are usually
comprised of a single domain while domains in lapgeteins are often
classified individually. The classificatiospeciesis used to distinguish the
structures of the same protein from different orgjas.

First, different proteins are grouped into classsduding (1) all alpha,
(2) all beta, (3) alpha and betdf{, a-helices ang-strands are interspersed),
(4) alpha plus betauf-, o-helices ang-strands are largely segregated), (5)
multi-domain, (6) membrane and cell surface prateind peptides and (7)
small proteins. Other classes (e.g. designed pigjteire also defined in the
current SCOP classification. Nevertheless, they raose true classes but
merely temporary holders for PDB entries that aeful to keep together.
Proteins in each class are further clustered wittsfif their major secondary
structures are of the same arrangement. Furthermpmteins are defined to
belong to the same superfamily if they do not havegh sequence identity
but their structural and functional features intica probable common
origin. Finally, proteins are defined to belonghe same family if they meet
at least one of the following two criteria which gip that they share a
common evolutionary origin: (i) their sequence iitgnis > 30%, and (i)
their functions and structures are very similarrevf they do not have a
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high sequence identity. Proteins that are withendame superfamily but not
belonging to the same family are usually regardeceeote homologues. A
topological illustration of the SCOP hierarchic#égsification is shown in
Figure 3. SCOP is curated manually with visual inspectiansl structure
comparisons by human experts. It has become thd gtndard for
homology relationships, e.g. for evaluating rembt@mology detection
methods. However, the accuracy brought from theualamerification of
human experts has to be sacrificed by the relatiosV updating speed. The
latest update of SCOP is June 2009, containing8B000domains which are
clustered in 1195 folds, 1962 superfamilies and23R0nilies. This update
contains 38 221 PDB entries from before Feb. 28920

Globin-like Globin-like
alpha-helical Truncated
@ m ferredoxin hemoglobin
Cupredoxm
Ilke
Prealbumln
Ilke
Triosephospha

beta/alpha-
barrel

Barstar Ilke

M m | Superfamily | | Family |

Figure 3: lllustration of part of the hierarchical classifica of the SCOP database.
There are in total 11 classes (of which 4 are shdwre), 1195 folds, 1962

superfamilies and 3902 families in the current SGfaRabase (version 1.75, June
20009).

Alcohol
dehydrogenase
-like, N-
terminal
domain

1.5.2 CATH (Class, Architecture, Topology and Homologous
superfamily)

CATH is a semi-automated hierarchical classificatimf protein domain
structures, in which, protein structures are chestanto four major levels,
namely Class (C), Architecture (A), Topology (T)darHomologous
superfamily (H), using automated computer progrand supervised by
manual inspections. Proteins are automatically teted into classes
according to their secondary structure content.hiecture is currently
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assigned manually according to the gross oriematiccecondary structures.
Furthermore, proteins are clustered into topologasfolds) according to
their topological connections and numbers of seapndtructure elements.
Finally, proteins with highly similar structuresdafunctions are clustered
into homologous superfamilies. The assignmentdrattures to fold groups
and homologous superfamilies are made by sequemck structure

comparisons. The latest update of the CATH dataisa3ene, 2009, version
3.3, containing 128 688 domains, clustered in 12§®logies and 2386
homologous superfamilies. This update contains Z33RDB entries from

before March 02, 2009.

1.5.3 Comparing protein structures

Structure classifications such as SCOP and CATHigeocomprehensive
descriptions of structural and evolutionary relasioips between all proteins
with known structures. Due to the fact that streesuare more conserved
than sequences (Rost, 1997), very distant evolatjorelationships can be
revealed by structure comparison methods. Apam fitee database building,
structure comparison is often required when seagchi newly determined
structure in the PDB for similar structures, sotthmore functional
annotations can be found. However, comparing protgiructures by
superposing all atoms of one protein onto the o#serigid bodies is very
computationally expensive (even if simplified bypstposing @ atoms
only). Still, it is widely used when subtle strueb changes need to be
detected, for example when a protein loads a ligak all-against-all
comparison of all proteins in the PDB takes momthsomputational time.
Moreover, rigid body superposition methods ofteih tia detect the global
similarity between proteins with large motions suhhinge-bending (see
Fig. 9 in PaperV for an example). Efficient and yet accurate street
comparison methods are required, as more and muoretises become
available in the PDB. Secondary structure basedpeaoison methods
(Orengoet al, 1992; Madegt al, 1995; Kawabata and Nishikawa, 2000; Lu,
2000; Yang and Honig, 2000; Harrisen al, 2003; Krissinel and Henrick,
2004; Vesterstrom and Taylor, 2006) have been doired to facilitate
structure comparison. These methods compare SSkpsotdin structures
first and then carry out a more careful @&lignment between pairs of protein
molecules [for reviews see Gibret al. (1996), Carugo and Pongor (2002)
and Carugo (2006; 2007)]. In structure databaseclsieq, the first step is
vital in rapidly eliminating non-similar structureand identifying the
structurally similar parts between proteins, sirtcis this step that enables
the efficiency of SSE based structure comparisothous. However, these
methods are limited by the inherent drawbacks ef dbcondary structure
description, that is, on average ~40% of aminosaitigorotein structures are
simply classified as random coils (or loop regionkjch carry no structural
information.
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Recent observations of rich and regular structtwaformations in loop
regions (Olivaet al, 1997) inspired researchers to develop structure
comparison methods by representing the backbonetstes of proteins as
1D strings of backbone path in the 3D space @hal, 2006) or shape
strings (Isonet al, 2005). A shape string is a 1D geometrical strvith
each symbol representing a clustered regiogpftorsion angle pairs in the
Ramachandran plot (Ramachandran and Sasisekha@&8). 1Although
these methods have not been fully developed yely thdvantages in
representing the protein structures in loop regiand the rapid database
searching for similar structures have already bsgeown. It is worth to
review these methods to arouse attentions from megearchers. It is also
necessary to discuss the advantages and disadeantdghese methods
compared to rigid body superposition methods anf &&ed methods, and
to point out the future search directions regardshgpe strings. This has
been done in Pap&/ and also in the present summary.
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2 Methods and materials

2.1 Properties of shape strings

2.1.1 Definition of shape strings

A shape string is a one dimensional string compa$aight symbols (i.e. A,
K, S, R, U, V, Tand G, see Figut¢ which correspond to eight clustered
regions of backbone dihedral angles (pAy angles) in the Ramachandran
plot (Ramachandran and Sasisekharan, 1968;dsah 2005).

The planarity of the peptide bond in proteins wated already in 1951
by Paulinget al As a result of this planarity, the backbone comfation in a
polypeptide chain can be described by a pair aicaranglesyp andy, per
residue. Thus, the most compact, yet complete rigisn of the backbone
structure needs just two numbers (strictly spealtiege is also the angle,
but it is almost always 180 degrees) per amino.acid963, Ramachandran
et al. noted that only a few combinations of these taorsingles are possible
in proteins. They predicted three commonly allowegions:og, a, and§p,
for ¢/y-angle pairs in the Ramachandran plot, based oarthlysis of steric
hindrances of short peptides (Figu4a and 4b). Recent studies on the
Ramachandran plot by using high-resolution X-raystallography protein
structures in the PDB, showed that the allowedoregbfe/y-angle pairs in
the observed plot differ from the original Ramadram plot (Kleywegt and
Jones, 1996; Chakrabarti and Pal, 2001; Hovmeélled, 2002; Lovellet al,
2003). The first main difference is thak, o, and -sheet regions are
diagonal in the observed Ramachandran plot (Figand 4d) while in the
original Ramachandran plot the edges of these megioe mostly parallel to
one or both of the or v axes (Figurela and4b). The second is that tifle
region is split into two diagonal lobes: tiffesheet region (left) and the
polyproline Il region (right) (Kleywegt and Jone996; Hovmodlleret al,
2002) (Figure4c). The third is that the two most populated regidois
glycine (Figure4d) are in regions predicted to be only permissiblehe
standard Ramachandran plot. These discrepancias exptained partly in
terms of local electrostatic interaction by Efoal. (2003).

Knowing that the allowed combinations af/y angles in the
Ramachandran plot are highly clustered, we cargmassisymbol to each
cluster in the Ramachandran plot as defined by reigu The backbone
structure of a protein can then be expressed & string of such symbols
(one symbol for each amino acid), i.e. a shapagtiach shape symbol in
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the shape string corresponds to a certain regidrackbone dihedral angles
in the Ramachandran plot. The shape string of dineeprotein carries a
description of the entire 3D backbone structurecdémtrast, the common
secondary structure description with only 3 symplighelix), S (sheet) and
R (random coil), can describe helices and sheeatgrately, but carries no
information about the structure of the other 40%albfresidues that are in
loop regions.
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Figure 4: (a) and (b) are the classical Ramachandran plotsligied by
Ramachandran and Saisekharan (1968), and (c) gndrédobtained from high
resolution X-ray protein structures from the PDBHigvmadélleret al. (2002). (a) is
actually modeled for alanine, but often taken gscgl for all non-glycines except
proline, while (b) is for glycine. (c) is for al@lnon-glycines amino acids and (d) is
for glycine. [Reproduced from Hovmollet al, (2002) with permission]



2.1.2 Statistics on shape strings

Among the eight shapes (Figuty the A shape is the most abundant with
~45% of all residues (Tablg). This is because almost all residuesain
helices are of the A shape and also a significart @f residues in random
coil have the A shape. The second most abundapesfyanbol is S which
accounts for nearly 25% of all residues, since mesidues irg-sheets and
some in random coils are of the S shape. The Reshegounts for 16.4% of
all residues. It corresponds to the so-called polyme Il region, but it is
found also in many slightly distortgdstrands. The name polyproline Il has
historical roots (Adzhubei and Sternberg, 1993)dmés not mean that all or
even most of the residues in this region are peolim fact only 15.8% of the
residues in the polyproline Il region are prolir(ese_http://www.fos.su.se
[~pdbdnay. The K shape (6.5% of all residues) is typicdibyind as a
terminating residue af-helices. The T shape is the left-handed alphahleli
regiono, and is the most common conformation for glycingFe 1) but is
rare for most other amino acids so that in totdy drb% of all residues have
T shape. The shapes U, V and G are less abundéimt] \®-1.4% each, but
they are also very important since they contaimaeixtformation in the loop
regions which is lacking in the standard secondémycture description. The
distribution of shape symbols changes dramatiggillgn the shape symbol
of the preceding amino acid (Taldleand Figureb). For example, while in
total, the A shape accounts for nearly 45% ofesidues, the probability for
a residue with A shape following a residue with ghshape is 80% but after
an amino acid with the S shape, the probabilitybeing the A shape is only
11%.
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Figure 5: Distribution of eight shape symbols for all regdyrepresented by All in
the legend, which gives out the background comjpwositf shape symbols) and
those following a residue with each of the eighlaphsymbols (S, R, U, V, K, A, T
and G in the legend). See also Tablfor detailed percentage values. [From Paper

IV, Fig. 4]

Table 1: Percentages for the eight shape symbols for altlues and for those
following a residue with each of the eight shapelsgls. Complementary to Figure
5. [From PapelV, Table 1]

Second a.a. S (%) R (%) U(%) V(%) K (%) A(%)T (%) G (%)

First a.a.
All 247 16.2 1.3 1.1 6.4 447 451.2
S 54.2 24.7 1.4 1.4 3.2 11.2 2.31.6
R 31.2 27.9 15 1.8 5.1 24.0 7.41.0
U 15.2 33.6 1.3 2.1 4.4 36.5 3.33.7
\% 35.0 23.7 1.6 2.5 7.9 24.6 2.81.9
K 24.8 24.5 2.3 1.4 6.2 18.2 19.23.5
A 5.7 3.1 1.0 0.5 8.4 78.7 2.00.6
T 28.9 35.6 1.6 1.8 6.1 15.0 10.11.0
G 20.8 225 1.8 2.2 17.7 28.4 3.63.1

One of the most prominent advantages of shapegstomer secondary
structures is their ability to describe the dethileonformation in loop
regions. Tabl@ shows the distribution of short turns connecting helices,
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a helix and a strand, a strand and a helix andstvemds. Some shape string
fragments, e.g. RAKTR, appear very often, whichidates the existence of
characteristic conformations also in loop regions.

Table 2: Frequencies of the shape string fragments of ghams or loops (2 to 5
amino acids long), connecting two helices (H*H)helix and a strand (H*S), a
strand and a helix (S*H), and two strands (S*Speetively. For each case, the five
most frequent shape string fragments are listedodgss getting longer, there are of
course more possible shape string fragments, maddey individual shape string
fragment less abundant, as seen by low percentbiges, however, that the shape
string fragment RAKTR is very common between twarstls. See also Fig. 7 in
PaperlV for the structural alignment of 313 protein segteeeach of which
contains two strands connected by the five-long with the shape string RAKTR.
The three-state secondary structure HSR (helivetsdrad random coil) is defined by
mapping the eight-state DSSP (Kabsch and Sand8Ba)efinition to HSR with
the scheme: H, | and P to H, E to S and the reR.tBhape strings are defined
according to Figurd. The existence of the A shape following a helixj. ¢he AS
shape string fragment between two helices, areechhyg differences in definitions
of DSSP and shape strings. The statistics is baseal non-redundant set of PDB
containing 4274 protein chains. [Modified from Papg, Table 2]

H*H H*S S*H S*S
Sizé ShapesCoun %  Shapes Count % Shapes Count % Shapes Count %
2 RR 55118.6 RA 316 149 AS 438 175 TT 1600 38.2
SR 260 88 TR 289 13.7 SR 339 13.6 GK 697 16.7
KR 221 7.4 SA 215 10.2 RR 289 116 AK 251 6.0
AS 170 5.7 TS 209 9.9 KS 226 9.1 GA 184 4.4
RS 162 55 KT 132 6.2 SS 135 54 RT 161 3.9
3 TSR 248 8.4 KTR 410 13.3 SAS 132 6.8 SAK 115 5.6
KRR 165 56 TRA 277 9.0 SKS 67 3.4 RRR 102 4.9
ARR 156 5.3 KTS 264 8.5 RRR 66 3.4 AKG 91 44
TRR 146 49 TSR 190 6.1 RAS 56 2.9 SAA 79 3.8
KSR 112 3.8 ATR 148 4.8 ASR 54 2.8 ASR 74 3.6
4 KTRR 198 84 KTRA 203 7.2 AKRR 37 2.2 AAKT 286 9.1
KTSR 118 50 ATRA 120 4.3 RRSR 34 2.0 AAAT 282 9.0
ATRR 95 4.0 KTSR 110 3.9 SRRR 22 13 ASAK 144 46
KTSS 56 24 KTRK 93 33 SAAR 21 13 RRTR 137 44
KTRS 49 2.1 KTRR 88 3.1 RRRR 20 1.2 AKTR 131 4.2
5 KTASR 60 35 RRRTR 38 19 RAKRR 33 2.1 RAKTR 492 18.3
ATASR 33 19 KTASA 38 19 RAARR 26 1.6 RAATR 153 5.7
TSRRR 28 1.6 ATASA 32 1.6 RRTRR 23 14 RAKTS 97 3.6
UAARR 18 1.1 RSRTR 30 15 SSAAS 15 0.9 SAKTR 76 2.8
KTKSR 18 1.1 KTRAS 19 1.0 RRTRS 11 0.7 AAATR 67 25

Size of the turn in between two secondary structlements
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2.2 Predicting zinc-binding sites in proteins
2.2.1 Statistics and properties of zinc-binding sites ifproteins

Most Zn atoms in proteins (78%, see TaB)ebind to 3 or 4 amino acid
residues (called Zn3 and Zn4; Znm refers to Zn atawordinated by m
amino acid residues), that is, 90% of all zinc-ibmgdCys (cysteine), His
(histidine), Asp (apartate) and Glu (glutamate) Zzm8 or Zn4 binding. Zinc
atoms that bind to 4 residues and have no bounerwatlecules are mostly
structural, while those binding to 3 residues ageegally catalytic (Auld,
2001). Figures shows an example of a protein, alcohol dehydroggsnaith
the PDB code 20HX (Al-Karadagkt al, 1994), which contains both a Zn3
and a Zn4 binding site. Many Zn3 and Zn4 atoms laher metal atoms
nearby, bridged by a side-chain atom or a watereoubé. These bridging
metal atoms work together to ensure the proteiotfon. Such Zn atoms are
called co-catalytic zinc, according to Auld (200Zn atoms that bind to
only one or two residues are generally locatedhensurfaces of proteins.
They are most probably bound to proteins duringtetiization (McPherson,
1999) but have no biological function. We focuseetehon predicting
biologically important zinc-binding sites, i.e.sttural (Zn4), catalytic (Zn3)
and co-catalytic zinc-binding sites. Inter-chain &oms, e.g. Zn atoms that
bind to two residues in one chain and one residuanother chain, and one
Zn5 atom were also included. There were in tot&l @®logically bound Zn
atoms, binding to 531 Cys, 325 His, 92 Asp and &l (Gable3).

Cys174
Zn401

Cys46

Figure 6: An example of a zinc-binding protein: liver alcbld@hydrogenase [PDB
code 20HX in (Al-Karadaghi, Cedergren and HovmglE994)]. Zn401 binds to
three amino acid residues and is catalytic, whedgak0?2 is fully coordinated by
four cysteines and plays a structural role. [Fromgupplementary data of Papler
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Table 3: Number of residues bound to each type of Zn afbime. statistics are based
on a non-redundant set of PDB retrieved by the Weffot (Mika and Rost, 2003)
program with HSSP (homology derived secondary tirecof proteins) distance
(see Appendix 1 for definition of HSSP distance} s zero. This dataset
(containing 2727 chains with 564 444 residueshéssame as that used by Passerini
et al. (2006) for testing the metal-binding site predintiAmong these 2727 chains,
1136 residues were identified binding to 375 zitares. These 1136 residues were
distributed in 235 chains (see Papdor details about how zinc-binding residues
were identified). The statistics for zinc-bindiniges below are also based on this
dataset. [Modified from Table 1 in Papér

Cys His Asp Glu Others Subtotal No. of Zn No. of chains
atoms

Zn2? 1 10 9 10 3 33 34 19
Zn2 3 32 15 26 7 83 45 37
znZF 25 134 54 30 7 250 89 73
Zn4 499 190 41 24 15 769 205 148
Zn5 7 1 0 0 2 10 2 2
Co-cat Zf 46 59 38 22 10 175 67 35
Subtotal 535 366 116 85 24 1136 375 235
Subtotal 531 325 92 51 24 1023 295 210

#Znl, Zn2, Zn3, Zn4 and Zn5 are Zn atoms bindind. t@, 3, 4 and 5 amino acid residues,
respectivelyCo-catalytic Zn: Zn atoms that bind to 3, 4 or 5ronicids and are bridged to
another metal atom(s) via side chain atoms or watdecules Subtotal for Zn3, Zn4, Zn5
and co-catalytic Zn.

2.2.1.1 Distribution of zinc-atoms per chain

Most zinc-binding protein chains (88%) contain onlye or two Zn atoms
(Figure7). This is the case for other metals as well, aigioa few metal-
binding proteins are very metal-rich. For exame, protein cyanobacterial
photosystem | with the PDB code 1JBO0 contains 37alitgns (embedded in
ligands Alpha chlorophyll a) and two Fe atoms (eduwmsl in ligands
Iron/sulfur cluster) in a single polypeptide chéime A chain) (Jordaet al,
2001).

Figure 7: Percentages of
chains having 0 Zn atoms, 1
Zn atom, 2 Zn atoms, 3 Zn
atoms, 4 Zn atoms and over
" 4 Zn atoms, based on the
dataset mentioned above
which contains 2727 chains.

=2z [Unpublished results]
0%
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2.2.1.2 Distances between zinc-binding residues along the
sequence

A protein chain is usually composed of hundredamino acids, all linearly
connected by peptide bonds. The average lengthnofbending chains is
219 amino acids (very close to the average lenfytl @727 unique chains
in our dataset, which is 206). Zinc-binding resislaee usually rather closely
located in sequence. For most zinc-binding sitkshe 3 or 4 zinc-binding
residues are located within 100 residues in sequéfigure8). About 50%
of the zinc-binding residues are separated bythess 10 residues. For Zn4,
the closest zinc-binding residues are most fredya®parated by 2 amino
acids and for Zn3, 1 or 3. The average distancesdicent zinc-binding
residues which bind to the same Zn atom are 3Zri@rand 22 for Zn4. For
most zinc-binding residue groups (residues bindmghe same Zn atom),
there is at least one pair of residues closer tammino acids, although
other residues might be distantly separated. Tlezage distance for the
closest pair of each zinc-binding residue groupli$or Zn3 and 4 for Zn4.
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Figure 8: Distance between zinc-binding residues in sequef@jeDistribution of
the distance of adjacent zinc-binding residues ibjndo the same Zn atom. (b)
Distribution of the distance in sequence from tinst fzinc-binding residue to the
following ones that bind to the same Zn atom. (Stiibution of the distance for the
closest residue pair in each zinc-binding residwelg (residues binding to the same
Zn atom). [Unpublished results]
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2.2.1.3 Amino acids at zinc-binding sites and their
neighbouring sites

The four residues Cys, His, Asp and Glu constitt®8% of all residues
bound to zinc for Zn3 and Zn4 (Tal@® His dominates for Zn3 (54% His,
22% Asp, 10% Cys and 12% Glu) and Cys for Zn4 (6598, 25% His,
5.3% Asp and 3.1% Glu). FiguBshows clearly the dominance of CHDE
(Cys, His, Asp or Glu) at zinc-binding sites. Irarkt contrast to this, the
residues immediately adjacent to the zinc-bindiitgssshow a frequency
pattern quite close to the overall frequencies iotgins. It probably
indicates that the type of amino acids adjacertirio-binding sites has no
critical influence on the metal-binding domain. Jhibservation might be
important for protein engineering such as the staflyzinc-binding site
mutations (Windsoret al, 1994). Note also in Figur® that His is
predominant in Zn3 (catalytic zinc) binding sitedile Cys is preferred in
Zn4 (structural zinc) binding sites. This dramatiiference in the preference
of the ligand residues for Zn3 and Zn4 bindingssiteight be employed to
distinguish them from each other in prediction.
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Figure 9: Amino acid content composition at zinc-binding sitend their four
nearest adjacent residue positions for (a) Zn3(Ahd&n4. The background amino
acid content composition was estimated by averatfiegamino acid compositions
in all 2727 protein chains in the dataset mentioaledve. If a residue within one of
the four nearest adjacent residue positions toelzinding site also binds to zinc, it
was not included in calculating the amino acid eahtomposition on that position.
[Unpublished results]
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2.2.1.4 Conservation level at zinc-binding sites

Ouzouniset al. (1998) showed that ligand binding residues arehlpig
conserved (see Paperfor definition of the conservation level). This is
certainly true for zinc-binding residues. For Zn®lan4, the conservation
level of zinc-binding residues is much higher ththe background level
(Figure 10). However, for Znl and Zn2, their conservationelsvare not
significantly different from the background. Thigpably indicates that zinc
atoms at these sites are not biologically esserfli@hore detailed analysis
on the Zn3 and Zn4 binding sites and their adjacesitlues shows that the
conservation levels of residues at zinc-bindingssdre dramatically higher
than those of their adjacent residues (see the pésks in Figurdl).
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Figure 10: Conservation levels (ranging from 0 to 1) abdwe lbackground level for
residues bound to zinc according to the types aflihg sites. The background
conservation level for CHDE is 0.48-0.62. It wadireated by averaging the
conservation levels of all amino acids of each tfgreall the 2727 unique chains
described above. The conservation level is definétapen. [Unpublished results]
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2.2.2 Method description for PREDZINC

The zinc-binding prediction method consists of atMSbased predictor and
a homology-based predictor. In this study, onlyrfigypes of amino acids, i.e.
Cys, His, Asp and Glu were predicted, since thesed&mino acids comprise
~98% of all residues binding to Zn3 and Zn4. Fe 8VM based predictor,
CHDEs were selected in both the training set aredtédst set and were
encoded into single-site vectors and pair-basetbke¢see Appendix 2 for
methods to encode single-site vectors and pairebasectors) which
represented a window of residues centered at edebted CHDE or a pair
of selected CHDE respectively. The optimized models learned by
training the SVM on the training set and this moaak then used by SVM
to make the prediction on the test set. The publalailable Gist SVM
package (version 2.1.1) (Pavlidis al, 2004), was used to implement SVM.
The kernel was set as radial basis and all othesinpeters kept at their
default values. SVM predictions on individually eeted residues were
obtained by combining the predictions using sirggtes vectors and pair-
based vectors with a gating network defined by

P(v, =1 f(x))=P(Y, =1] f () +{1-P(¥, =2l fQ}IP(Y, =11 F(x) (1)

wherex is the SVM input of each test instané€x) denotes the margin of
the test instance P (Y<=1| f (X)), P (Yp= 1 |f (X)) andP (Y¢= 1 [f (X)) are
the probabilities of zinc-binding predictions usisipgle-site vectors, pair-
based vectors and the gating network, respectitaythe homology-based
predictor, each target chain in the test set wasched in the training set for
remote homologues using a segment matching metheml the description
of the homology detection method FragMatch). Homgplbased predictions
of zinc-binding residues were made by mapping #lected CHDE residue
groups in the target chain to the binding sitesd@tected homologues.
Finally, SVM predictions and homology-based predits were combined to
reach a consensus. The whole prediction procedullestrated in Figurd2.
Details about SVM based predictor and homology dbageedictor are
described in Papér

26



[ Given an amino acid sequence ]
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Are there Cys, His,
Asp or Glu (CHDE)
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v

v

v

« Select all CHDE

« Single-site feature
vector encoding

* SVM prediction

» Select CHDE pairs

* Pair-based feature
vector encoding

* SVM prediction

Detecting remote
homologues by the
profile-based segment
matching method

A 4

SVM predictions combining
from single-site vectors and
pair-based vectors

Making predictions on CHDES by
mapping the residue groups to
the predicted homologues

v

Consensus predictions of
SVM predictors and
homology-based predictor

Are there residues predicted with
zinc-binding score > threshold
A 4

The protein chain is not Report the predicted zinc-
zinc-binding binding residues J‘

Figure 12: Flowchart for PREDZINC. SVM predictions and homaldmased
predictions are combined into the final consengesliption. [Modified from Fig. 1
in Paper ]

— No

Yes

2.2.2.1  Support Vector Machines (SVM)

SVM (Vapnik, 2000) is a supervised learning aldoritwhich is efficient in
recognizing subtle patterns in large-scale and t¢exngatasets. They have
been widely used in different areas of computatitmalogy (Byvatov and
Schneider, 2003; Noble, 2004). SVM discriminates thifferent classes of
feature vectors (n-dimensional vectors with nun@rivalues which
represent properties of the example) by first magpie input vectors into a
higher dimensional feature space using a kernedtiimum and then doing a
linear separation there. A simple case is a biclysification problem on a
two-dimensional (2D) space where two sets of degsigre and round) need
to be separated (Figut). Square dots belong to class A, labelled as -1,
while round dots belong to class B, labelled as Htiere are in principle
numerous hyperplanes (lines in 2D space) to sapdnatse two classes of
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dots. As shown in Figuré3a hyperplane H1, H2 and H3 are successful
classifications since they all separate two clas$e®ts correctly. However,
H4 is an unsuccessful hyperplane since it mis-iflasssome square dots.
Two questions are: (i) which one of the three sssftg hyperplanes, H1, H2
and H3 is the best and (ii) does an optimal hypemlexist and how can it
be found? In mathematics, a hyperplane can be ssguieas

f(x)=(wix)+b=0 2

wherew is the vector normal to the hyperplards a dot on the hyperplane
andb is signed distance from the origin to the hypearpléFigurel3b). With
this definition, all dots above the hyperplane hbge > 0 and those below
the hyperplane havé (x) < 0. Therefore, in our example, a successful
hyperplane should have negativ) values for all square dots and positive
values for the round dots.

(@ va

Class B (+1)

® vy a

[ f.(x) =(wix)+b=1
m fx)=(w)+b=0 m B [0=W+b=0
Class A (-1) Class A (-1) "X =(wix)+b=-1

»

X X

Figure 13: lllustration of binary classification on 2D spade) four hyperplanes
that separate two classes of dots (square and yaim@D space. H1, H2 and H3
separate these two classes of dots correctly (afhaH2 is the best since it has the
maximum margin of the three) while H4 does not, tl® mathematical expression
of a hyperplane, and (c) the separation hyperpkme its two parallel margin
hyperplanes which hit the nearest dots on eacls ttethe separation hyperplane.
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For an ideal separation hyperplane, we would expgeobt only to
classify the visible dots (i.e. dots in the tramniget) but also the potentially
added dots (i.e. dots in the test set) correcthis Tequires the remaining
space between the hyperplane and the nearest didss A and class B
maximized so that as many dots as possible camldedawithout breaking
the correct separation. In mathematics, this dgtuadquires that the
separation hyperplane should be as far away frend#ta of both classes as
possible, or in another way, that the margin asvshim Figurel3c should
be maximized. The margim can be calculated as

m=_2_ .
] )

wherew is the vector normal to the hyperplane as describefdre. In
reality, non-linear classification with differentetnel functions has been
used. Please refer to the work of Cristianini ahdv&-Taylor (2000) and
Vapnik (2000) for more descriptions on SVM.

In this study, a feature vector represents the exwasivity and
physicochemical properties of selected amino awilkh are either zinc-
binding or not. The publicly available Gist SVM page [version 2.1.1,
(Pavlidis et al, 2004)] with the standard radial basis kernel feg form
exfd(-D(x,y)?)/(2w?)] was used to implement SVM.

2.3 Predicting the 1D structure of proteins

2.3.1 Data description

The dataset used in this study was a non-redursgardf protein chains in
the PDB (as of June 2007) culled at 30% sequerergiig by the PISCES
server (Wang and Dunbrack, 2003), containing 5868ins (1 480 756
amino acids). The three-state secondary structdrdélix, S: sheet and R:
random coil) of proteins was defined by convertthg eight-state DSSP
(Kabsch and Sander, 1983a) definition with thesitas scheme: H, G and |
to H, B and E to S and the rest to R. The eightsthape string was defined
according to Figurel. The three-state shape string was transformed from
eight-state shape string with the following sche®eR, U and V to S, K
and Ato H, T and G to T. The relation between shstpings and secondary
structures from DSSP is shown in Tadland Tableb.
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Table 4: The relationship between the eight-state DSSP itiefirand eight-state
shape string definition. All numbers are given @rgentages. [From supplementary
Table 1 in Papelt ]

DSSP B E G H I S T R Sum
Shape

S 0.55 16.54 0.00 0.00 0.00 2.01 0.05 5.21 24.37
R 0.48 4.10 0.04 0.00 0.00 1.63 0.96 8.86 16.07
U 0.04 0.23 0.02 0.01 0.00 0.26 0.09 0.69 1.33
\Y 0.02 0.21 0.00 0.00 0.00 0.23 0.07 0.61 1.15
K 0.01 0.18 0.80 0.63 0.00 091 264 1.16 6.33
A 0.00 0.48 2.87 33.94 0.02 228 4.71 0.91 45.20
T 0.00 0.10 0.10 0.01 0.00 0.87 259 0.71 4.38
G 0.02 0.10 0.06 0.04 0.00 0.32 0.24 0.38 1.16
Sum 1.12 21.94 3.89 34.64 0.02 8.51 11.34 18.54 100

Table 5: The relationship between the three-state DSShitiefi and the three-
state shape string definition. All numbers are giirepercentages. Almost all amino
acids in helices or sheets according to the DSSP thee H or S shape, respectively,
but the reverse is not true. As many as half ofaiméno acids with the S shape are
actually found in stretches of random coils. [Froable 3 in Papelt ]

DSSP

Helix Sheet Random coil Sum
Shape
Shape H (A+K) 37.8 0.7 13.2 51.7
Shape S (S+R+U+V) 0.1 20.8 21.7 42.6
Shape T (T+G) 0.2 0.2 5.3 5.7
Sum 38.1 21.7 40.3 100

2.3.2 Method description for FraglD

Given a protein sequence to be predicted, a slidingow of N-residue (N
varies from 7 to 15, typically 9) long fragment kwiheir respective profiles
(see Appendix 3 for how profiles are obtained)hi$ target sequence, was
searched among all N-residue segments in the ngaset. At each position
of a target sequence, the 100 segments with thesiigprofile-profile scores
were kept, together with their accompanying PDBirchias and positions in
the sequence. The profile-profile score between ¢ampared N-residue
segments was defined as

Scorqa!ﬁ) = i(i (ani |og(ﬁni /P|) + ﬁni Iog(ani / R))j (4)

n=1\i=1

where a and B are profiles for the two compared N-residue sedmen
respectively, N is the window size and P is thekgemund frequency for the
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20 standard amino acids. In this study, N was a&. tThis profile-profile

score was derived from the PICASSOS3 score (Mitteletaal, 2003). After

that, the above selected top 100 segments withhitpeest profile-profile

scores were further sorted by the weighted prgiiitefile score and only the
top 10 were kept after re-sorting. The weightedfilgr@rofile score was
defined as

Score(a, B) = i{Pinfon * (Z (ay 10g(B, 1 R) + B, log(a, /R»]} )

n=1

where hfo, is the information score which was defined as

20 20
Pinfon = (1_Z(Xni * Xni) * (1_2 Xni * Xni) (6)
i=1 i=1
whereX,, =(q,/p)/Y o (@./p), i =1, 2, 3, ..., 20,gs denotes the

probability for amino acid at positionj in the profile,p; is the background
frequency for amino acid Equation (6) is empirical; the closer the profde
to the background composition, the larger thg $tore is. This score ranges
from 0 to 0.90. Score2 [defined by Equation (5)]svassigned to each of
these selected segments.

Not all of these 10 selected N-residue segmente weed to predict the
local structure of the query segment, nor were thesd with equal weights.
Although the dataset was culled at30% (or 25% or 20%) sequence
identity, homologues to the target chain may stdist in the training set.
These remotely homologous proteins can be accyraietdicted by
FragMatch (see description of the method FragMatdte number of
segments which were actually used for secondangtsire and shape string
prediction depended on whether presumed homologreesletected or not
for the target chain. If a homologue to the targ®din was predicted, only
the top 5 segments were used for predicting thenskery structure, since
the conformation of the selected segments wasveeli¢co be closer to the
native conformation of the target protein to bedmted at that position.
Otherwise the top 10 were used. Among these 5 osetfinents actually
used for local structure prediction, some may bgldo the predicted
homologues. Their scores [i.e. Score2 defined byakgn (5)] were
multiplied by a factor between 1 and 3 based orhtitaology score which
represented the confidence of the predicted horelag

The probability for a residue of the target appepat each state (H, S
or R for three-state secondary structures and &J,Rj, K, A, G or T for
eight-state shape strings) was predicted as theofumeighted scores of all
matched segments with the state of the residuenalicat that position
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equaling that state. As mentioned above, if thezeevihomologues detected
for the target chain, the top 5 candidate fragmémtseach position were
used for prediction; otherwise the top 10 were uSétce a residue in an N-
residue target segment may be aligned to at mpstsBions of a candidate
segment, there were in total at most either 45 (brc&ndidate segments
aligned to a target segment depending on whetlege tvere homologues
predicted for this target chain or not (see Figidefor an example). The
state with the highest probability was predictedh&ssecondary structure or
shape string state for that residue. In case ddlgoebability, the secondary
structure was predicted in descending order as BydSH, and the shape
string in the order of G, T, V, U, K, S, R and AeWave noted that S was
often under-predicted. In order to remedy thiseampirical 3% probability
score was added to the S state. The thus calcyladedbility for the residue
to be predicted on each state was taken as thecoamfidence of the
prediction. However, the Q3, S3 and S8 were onameeb-10% better than
this raw confidence. We thus normalized this rawficence, such that for a
prediction with a given confidence, one might oerage expect the Q3, S3
and S8 accuracy to be the same as the confideheeralv confidence was
normalized by a linear function: y = ax+b, wheris xhe raw confidence and
y is the normalized confidence. The parameterscatamwere obtained by
first plotting raw confidence against the real @8,S3 or S8, and then
making a linear regression (see Figli&
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Target

PFAQAYDSAIRADVEM

PFAQAYDSAIRADVEM Chain ID

Pod No. Candidate secondary structiscor® Candidate sequence

1 1 HHHHHHHFH------- 2.2  PIMQGWIRN- - - - - -- 1v42X
1 2 HHHHHHHHH--—— 2.2 PGLQALDE:-------- INSLA
1 3 HHHHHH - 1.8 PAIQAAP$ ------- 1RG6UA
1 4 HHHHHRRS -~ 1.0 ELMAAADLf------- 2IW1A
1 5 HHHRRRRS------- 1.0 ELLEEYDW ------- 1S4NA
2 1 -HHHHHHHAA—— 2.2 -IMQGWDRE------- 1v4zXx
2 2 -HHHHHHHH------ 2.2 -GLQALDEEY------- INSLA
2 3 -HHHHHHAH------- 1.8  -AlIQAAPSHS------- 1R6UA
2 4 -HHHHHHHH------- 1.0 -TLQAYDYLC-—---- 1P2XA
2 5 -HHHHHHHH------- 1.0 -MLRAVDHH------- 1YOVA
3 1 —~HHHHHRHHH—— 22 -MQGWDWEL----- 1y42X
3 2 ~HHHHHHHHR - 2.2 -LQALDE|EYL------ INSLA
3 3 ~-HHHHHHRHH------ 1.8  --IQAAPS |FSN------ 1R6UA
3 4 --RRRSSYSSS------ 1.0 --LDGARVAHF------ 2AFBA
3 5 ~-HHRHHHHHH------ 1.0  --LNVFEY/[¥SI------ 1I5PA

4 1 —-HHHHH[HHHH— 22 ——QGWDWHELF—- 142X
4 2 ---HHHHH|HHRR----- 2.2  ---QALDE |[BYLK---- IN3LA
4 3 ~--HHHHH|RHHH----- 1.8 -—-QAAPS |ASNS----- 1R6UA
4 4 —-SSSSS |§5SS--- 1.0 -—-AGWDW [SAN----- 2ICHA
4 5 ---HHHHH|HHHH----- 1.0 -—-QAIDL |RHLE----- 1W27A
5 1 ——HHHH [HHHHH-— 22 -——GWDWFELFY-—  1Y42X
5 2 ----HHHH |HHRRR---- 2.2 --ALDE [HYLKV---  1IN3LA
5 3 —-HHHH |HRRRR---- 2.0 -—AADI [LLYNT--  1I6LA

5 4 —-HHHH |RHHHR---- 1.8 -—AAPS |[ASNSF--—-  1R6UA
5 5 —-RRRS |§RRRR---- 1.0 -—AVDL [I[QIDA----  2HXTA
6 1 HHH |HHRRRR- 22 - LDE |EYLKVD-— 1N3LA
6 2 - HHH |[HHHHHH--- 22 - WDW |[FELFYQ---  1Y42X
6 3 - HHH |HRRRRR--- 2.0 - ADI  |LLYNTD--  1I6LA

6 4 - SSS |94SSSSS--- 1.0 - YDH [YHVHTD-- 2GAGA
6 5 - SSS |9SSRRR--- 1.0 - FDV |AVVDAD--- 2AVDA
7 1 HH |HHRRRRS-- 22 DE |EYLKVDA— 1N3LA
7  J—— HH  |[HHHHHHH-- 22 - DW |FELFYQQ-- 1Y42X
7 3 e HH |HRRRRRS-- 20 - DI |LLYNTDI-  1I6LA

7 Y — RR [SSSSSSR-- 1.0 - DT [MLLQANV-- 2FWHA
AR - S— HH  |HHHHHHH-- 1.0 - DI || WLQRDL-- 2HBJA
8 1 H |HHRRRRSS- 22 E |HYLKVDAQ- 1IN3LA
8 y J— H |[HHHRSSSS- 22 - F |YQQGVQMQ-1Y42X
8 3 e H |HRRRRRSS- 2.0 - | |LLYNTDIV- 1I6LA

8  —— S  |9SSSSSSs- 1.0 - F  |HLLOQMDFG- 20BDA
8 5 e S |gsssssss- 1.0 - F  |LLFGADVV- 1EWFA
9 1 HHRRRRSSS 2.2 - HYLKVDAQF 1N3LA
9  J— HHHRSSSSS 22 - YQQGVQMQI1Y42X
P — HRRRRRSSS 2.0 - LLYNTDIVP 1I6LA

R S — HHRRRRSSS 1.0 - FALMFDQRL 2A7KA
A IHHHHRRSSS R — LALACDIRV 1HZDA

3Pos: position of the fragment that contains th&ltesof interestWscore: weighted score of
the candidate fragment

For the central residué to be predicted (shown in bold in the target segm this figure),
we find H in 30 cases, S in10 cases and R in 5 cases

Sum of weighted scores for H = 56.4 (sum of theeslin the column ‘Wscore’ for which the
residue in the center of the fragment is in thestite) [Continues to the nextgdag
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Sum of weighted scores for R = 9.0

Sum of weighted scores for S = 10.0 + (56.4+9.03)¥0.03 = 12.3

Total weighted scores =56.4 + 12.3+9.0=77.7

Probability of H = 56.6 / 77.7 * 100%= 72.6%

Probability of S =12.3/77.7 * 100% = 15.8%

Probability of R=9.0/77.7 * 100% = 11.6%

The secondary structure of the residlis predicted as H with a raw confidence of 0.726.
About 63% of all residues are predicted with higbenfidence than this one and 37% with
lower confidence. Notice how few (only three, shthdegreen) of the used sequences have a
Val at the corresponding position.

Figure 14: An example for predicting the secondary structiitee residue VAL in
the target chain from PDB entry 1H3F:A (amino ad/i®O 176 to MET 192) is to
be predicted. More than one homologue was predittethe target chain and thus
only the top 5 segments at each position were frsegredicting the secondary
structure. [From supplementary Figure 1 in Paper
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Figure 15: (a) Raw confidence versus the actual percentagmméctly predicted
residues for three-state secondary structure, -$tege shape strings and eight-state
shape strings. (b) Normalized confidence versusattteal Q3, S3 and S8. The
normalization functions as shown in the figure (@re obtained by the linear
regression as described in the text. [From suppitsmng Figure 3 in Papeétr]
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Figure 16: Outline of the 1D structure prediction proced{ifeom Fig. 2, Papelt ]

After the prediction was made, the 1D structurehef target sequence
was available with an expected high accuracy. Taeestructural profiles
(see Appendix 3) for the target sequence couldudé foom the predicted
1D structure and then enrich profiles of the targequence by structural
profiles. A second round of prediction was thusriedr out with the same
setting as the first round, but with enriched pesfifor also the target
sequence. The whole prediction procedure is outliire Figure 16. In
principle, this procedure can be iterated many dsuantil it converges.
However, we noted that Q3 dropped already at tind tbund. This is most
probably because the inaccuracy of structural lpofembedded in the
predicted 1D structure accumulates quickly as tteeafion procedure
progresses and thus the gain by using such stalicprofiles is soon
counteracted by the loss caused by the accumuiladéeduracy. Therefore,
the final results were obtained from the seconadou

2.4 Detecting remote homologues

2.4.1 Method description for FragMatch

Given a target protein sequence, a sliding N-res{@uranges from 5 to 17,
typically 9 or 11) fragment of that sequence wasra®ed against all such
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fragments in the database by the profile-profileredefined by Equation (1)
[see Appendix 3 for how profiles were obtained]r Each fragment in the
target sequence, up to 150 candidate fragmentsdiffierence sequences in
the database with highest scores to that targgineat were kept; the PDB
chain identifier (CID) of the candidate sequence/ich each selected high-
scoring fragment belongs was recorded as well (Semre 17 for a
schematic diagram).

: <l
Target: NKYFENVSKIKYEGPKSNNPYSF... PosSeqTarPosSegCanChain ID Scoré
e
81 163 2HXWA 123
1M1QA: GNLKKCPITISSYTLGTEVSFPK... 81 28 2GOMA 121
. ] e—— 81 106 2GOWA 120
LA AR R RN RN NNRRRRRENRRENRRNRNENENNNNNNDNN] 81 224 2036A 120
o 82 298 1WETA 209
g< =4 82 27 1VQOX 208
ssmsnsi (Candidat
2 (Candidate sequences) 82 107 2GOWA 208
3 EENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 82 295 2P4HX 203
]
L 126 41 2GLFA 708
Profile example: 126 317 2BG5A 705
126 297 105KA 703
NUmMAA AV L | PFMK RHG STCYN EW D Q 126 74 2GOWA 697
4F 123207311 111110511411
5E 7131201013 21 7 4 10 0 712 014 4 126 130 2BKWA 697
6N 31 212105 33206 30 113 8 021 8
7V 4191146 1511 10 2 4 11 11 10 1 4
8S 101 1117102 1114 7 40 0 812 014 5 Ilpoaiti i
OK 73 21111140 81 1 360 12 40 1 & Posmon_ofthe target segme?ﬁosmon_of
101 220 650 1 121 10 1 1101110 1 1 the candidate SegmeﬁEragmental pI’OfIIe—
11K 63 32511211561 3 5 60 17100 210 profile score calculated according to the
l2y 1232122011 1111105111 11 gqyation on the left.

Equation for calculating the fragmental profile-fieo
score:

Scord B) = 31 314, Ig(E, / )+, loata, /)

n=1\i

Figure 17: A schematic diagram of the segment matching metfden a target
sequence, a sliding N-residue fragment of that esecgi is searched in the database
for high scoring (defined by the profile-profile asthg equation) candidate
fragments. For each target fragment, up to topHi§b scoring candidate fragments
are kept, as shown in the table to the right. Thlel tines in this table highlight a
frequently appearing candidate chain: 2GOWNate that at some places along the
sequence, but far from all, the most common amaid found in related proteins is
the same as the amino acid at this position (maikeeéd and bold in the profile
example). [From Figure 1 in Papdr]
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Some CID tends to appear frequently if they ardutvmary related to
the target sequence. We made use of this to catrhe homology detection.
For each candidate sequence, if there were caedfdagments from that
sequence appearing in the candidate fragmentlidgt plot was drawn by
plotting the positions of the fragments in the &rgequence against the
positions of the matched fragments in that candidatjuence (see Figur8
for an example).
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< 200
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o )
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° 100 ’ /
,’ . .
50 4 *
0 : : : ‘
0 100 200 300 400 500

Position (1AOCA)

Figure 18: A typical dot plot between a target (LAOCA) andaadidate (2GOWA)
sequence where dots form long and consecutive. lifieis was obtained by using
the protein sequence 1A0CA from the PDB as theetaagd searching in a non
redundant set of PDB (with 5860 chains) cuttingc@0% sequence identity. The
dashed red line shows the location of the predidtethology region between
1A0CA and 2GOWA which actually belong to the xylasemerase-like superfamily
(c.1.15) according to SCOP version 1.73. Note thatsequence identity between
1A0CA and 2GOWA is only 16% (obtained by the pragraeedle’ from EMBOSS
version 3.0.0). At this sequence identity levelist very difficult to detect a
homologue based purely on comparing amino acid esesps. [From Figure 2 in
Paperll ]

More dots on a dot plot means more high-scoringnrents found
between the target sequence and the candidate reeq@ed thus may
indicate a probable homology between these twoesemps. However, only
when these dots form long and consecutive pattétris, really a strong
indication of the homology between these two segeenThis is similar to
the classic dot plot (Maizel and Lenk, 1981) bapecely on amino acids,
but here we used the profile-profile score insteaddhe equivalence of
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amino acids. A homology score was derived for eeahdidate sequence
from the length and linearity of the pattern anéntmormalized by the
sequence length. The algorithm for calculatinghtbmology score from dot
plots has been described in Papeand is also summarized in Figuté.
Generally speaking, a dot plot with more dots eted as long, linear and
consecutive lines results in a higher homologyecor

Algorithm for calculating the homology score from a dot plot
Step 1: Initializing the score on the dot plot:
For each diagonal on the dot plot
1. Set the score of each dot as the number of congealdts
2. Record the position of the diagonal with the top ldfAgest
consecutive dot segments
Step 2: Calculating the score of each diagonal
For each diagonal with the top 10 longest conseeutiot segments

1. The diagonal score is calculated as the sum oftbees of all
dots on the diagonal and the scores of all dotghenother
diagonals divided by the distance to that diagonal

2. Divide the diagonal score by the average lengthhef target
sequence and candidate sequence
Step 3: Calculating the homology score of the candidate

1. The homology score of the candidate is set as igbeht
diagonal score

Figure 19: Algorithm for calculating the homology score framot plots. [From
Figure 3 in Papell ]

If several related target sequences were availatde when a protein
family was used to classify all proteins in a geromach individual target
sequence was first searched in the database, pngdaicanking in the same
way as for a single target sequence. These rankifgdifferent target
sequences were then combined into a consensusiganki

n 1/p

Z(aj,i)p
Ci = lef (7)
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where Gis the consensus homology score for candidateesegl o;; is the
homology score for sequencén rankingj, p is the power to raise the large
homology scores in consensus anid the number of rankingp.was set to
2 when combining rankings obtained by positive gxias

If a large training set with both positive and niaga examples was
available, more suitable parameters of the fragmeatthing method could
be learned for the specific datasets. Liao and N¢P@03) showed that
additional accuracy could be obtained by modelimg difference between
positive and negative examples. For the methodNrasch, when negative
examples were available, these negative examples algo searched in the
test set and a ranking of homology scores was ragdafor each negative
example. These rankings searched by negative eramgre first combined
by Equation (7) and then the negative consenslingmwas combined with
the positive consensus ranking by

C .
| < >
ec = | if G <50 andN, 260

C, else

(8)

where FGis the final consensus homology scorgjsGhe consensus score
for rankings searched by positive examplesjs the consensus score for
rankings searched by negative examples @il the power folN,. g was
empirically set to 0.6.

2.4.2 Dataset for evaluating FragMatch

To evaluate the power of FragMatch for remote hagppldetection with a
single target sequence, two datasets, one withp8@3 of SCOP family
level domain sequences and the other with 480 pAIBCOP superfamily
level domain sequences, were created. The formetaics 1606 domain
sequences each of which has another sequence withsame family while
all others are not within the same superfamily. Tater contains 960
domain sequences each of which has another sequedtiia the same
superfamily but not the same family while all othare not within the same
superfamily. These two datasets were derived fr@@07SCOP domain
sequences retrieved from the Astral Database (Cimdacet al, 2004)
(version 1.73, Nov. 2007) cutting &t30% sequence identity level. For each
domain sequence in the dataset, FragMatch triesdeatify its only
homologue (either at superfamily level or familyd8 among the rest of
sequences in the dataset.

To test the method for protein family classificatia well-benchmarked
database retrieved from Astral Database (versi@8)1by an E-value
threshold of 10E-25 was used. This dataset contfiB domain sequences,
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grouped into 1938 families and 1001 superfamilkes. the reliability of the
evaluation, only families containing at least 5 ilgrmembers and 10 super
family members outside of the family were select€dis resulted in 54
families (see Table). For each family, the protein domains within the
family were considered positive test examples, #Hr protein domains
outside the family but within the same superfamwgre taken as positive
training examples. Negative examples were takem flautside of the
positive sequences' fold, and were randomly spld training and test sets
in the same ratio as the positive examples.

Table 6: List of 54 families for which each one containdestst 5 family members

and 10 super family members outside of the family4B52 domain sequences
derived from SCOP version 1.53. [Reproduced frormoLand Noble, (2003) with

permission]

No. of sequences No. of sequences
Positive Set Negative Set Positive Set Negatate S

SCOP IDTraining Test Training Test SCOP IDTraining Test Training Test
12711 12 6 2890 1444 29.14 21 10 2928 1393
1.27.1.2 10 8 2408 1926 3.1.8.1 19 8 3002 1263
1.36.1.2 29 7 3477 839 3.1.83 17 10 2686 1579
1.36.1.5 10 26 1199 3117 3.2.1.2 37 16 3002 1297
1411 26 23 2256 1994 3.2.1.3 44 9 3569 730
1412 41 8 3557 693 3.2.14 46 7 3732 567
1413 40 9 3470 780 3.2.15 46 7 3732 567
141.1.2 36 6 3692 615 3.2.1.6 48 5 3894 405
14115 17 25 1744 2563 3.2.1.7 48 5 3894 405
1.45.1.2 33 6 3650 663 3.3.1.2 22 7 3280 1043
2111 90 31 3102 1068 3.3.15 13 16 1938 2385
2.1.1.2 99 22 3412 758 3.32.11 42 9 3542 759
2113 113 8 3895 275 3.32.1.11 46 5 3880 421
2114 88 33 3033 1137 3.32.1.13 43 8 3627 674
2.1.15 94 27 3240 930 3.32.1.8 40 11 3374 927

2.28.1.1 18 44 1246 3044 3.421.1 29 10 3208 1105
2.28.1.3 56 6 3875 415 3.42.1.5 26 13 2876 1437
2.38.4.1 30 5 3682 613 3.42.1.8 34 5 3761 552
2.38.4.3 24 11 2946 1349 7.3.10.1 11 95 423 3653

2.38.4.5 26 9 3191 1104 7.35.2 12 9 2330 1746
244.1.2 11 140 307 3894 7.36.1 33 9 3203 873
2511 13 11 2345 1983 7.3.6.2 16 26 1553 2523
2513 14 10 2525 1803 7.3.6.4 37 5 3591 485

2.52.1.2 12 5 3060 1275 7.39.1.2 20 7 3204 1121
2.56.1.2 11 8 2509 1824 7.39.1.3 13 14 2083 2242
29.1.2 17 14 2370 1951 7.415.1 10 9 2241 2016
2.9.1.3 26 5 3625 696 7.415.2 10 9 2241 2016
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3 Performance measurement

3.1 Cross-validation

Cross-validation is an efficient and reliable agmto to estimate the
performance and generalizability of a program. K-Bld cross-validation,
the whole dataset is randomly split inkosubsets (typicalliK D[5,10]).
The cross-validation process is repedfetimes (the folds). In each repeat,
one of theK subsets is retained as the test set, and thenmgm#i—1 subsets
are used as training set. Whiéris equal to the number of examples in the
datasetK-fold cross-validation becomes leave-one-out ckadlation. The
K-fold cross-validation allows efficient use of akamples in the dataset.
Moreover, it minimizes the probability of getting aver-optimistic result by
chance and thus allows the generalization of theradlresults obtained
from the cross-validation to real-world predictioos unknown sequence
data.

3.2 Precision and recall

The precision is defined as TP/(TP+FP), where TR (positives) refers to
the number of correctly identified positive exampeg. correctly predicted
zinc-binding residues or proteins; FP (false pesjtiis the number of
negative examples that are incorrectly predictegaasstive, e.g. residues or
proteins predicted to bind zinc, but are not ziim@ing according to the
PDB. The recall is defined as TP/(TP+FN), where(Flise negative) is the
number of positive examples that are incorrectgdjpted as negative. In the
study of zinc-binding site prediction, negative mypdes are far more
abundant than positive examples. The negative $aip® ratios are 26:1 and
93:1 for CH and CHDE respectively. For such an lared dataset,
receiver operating characteristic (ROC) curves (sglew) can present an
overly optimistic view of the performance of a nmh(Davis and Goadrich,
2006). The recall-precision curve, in which onetplthe precision against
the recall, has been proposed as an alternatitleetlROC curve in dealing
with datasets with great unbalance in the classiloigion (Zhanget al,
2004). The area under the recall-precision curvdRRC) was used in our
method for both model selection and performancesoreanent. AURPC
was calculated by a method proposed by Davis aradigdn (2006).
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3.3 Receiver operating characteristic (ROC) curve

The ROC curve plots the sensitivity (i.e. recalijpimst 1-specificity (the
specificity is equivalent to the precision) for iadry classifier system as its
discrimination threshold is varied. It can alsorbpresented by plotting the
fraction of true positives (TPR = true positiveejatgainst the fraction of
false positives (FPR = false positive rate). Theaannder the ROC curve
(AUC, also termed as ROC score) is a simpler esiomaf the performance
of a binary classification. AUC is 1 for a perfetdssification and a score of
0 means none of the examples are predicted asvpoditie expected value
of the AUC for a random classification is 0.5. longe cases, positive
examples are much less than negative examples utiaset to be classified.
In such cases, the ROC score might not be idedigiinguish different
classifiers. For example, for a dataset contairingositive examples and
997 negative examples, the ROC score for a methadranks the three
positive examples at positions 1, 3 and 340 isQ.88d the ROC score for
another method that ranks the three positive exasradl positions 39, 45 and
58 is 0.955. The latter is obviously better tham fbrmer just according to
the ROC score. However, in practice it is hardapwhich one is better. For
structural biologists trying to solve new crystailistures, they often need to
find homologues in the PDB. In that case, it doesmatter very much to
miss a few homologues as long as they can find spoeel homologous
templates at the top of the list. Under such camast one might consider
the former method superior to the latter. The RO&&fYe, which measures
the area under the ROC curve up to the first Sefabsitives, is introduced
to amend the limitations of the ROC score. The RO&&ore for the above
two rankings are 0.990 and 0.190, respectivelyjcatihg that the first
ranking is more useful than the second. However,RDC50 score is not
always perfect and it can be misleading sometiméske the same
illustrative dataset used above (with 3 positivaregles and 997 negative
examples) for example, the ROC50 score for a methatiranks the three
positive examples at positions 1, 2 and 20 is Q.88%¥le another method
that ranks these three positive examples at pasitig 2 and 60 is 1.000,
indicating a perfect ranking. Nevertheless, ithsious that the first ranking
is better than the second. In the study of remotadiogy detection, both
the ROC score and the ROC50 score were used fhragizan.
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4  Summary of scientific contributions

4.1 Prediction of zinc-binding sites in proteins (Papet)

A method for predicting zinc-binding sites in priate from sequences has
been developed. When tested on a non-redundardedatantaining 2727
unique protein chains (see TaB)e this method predicted zinc-binding Cys,
His, Asp and Glu with 75% precision (86% for Cyslasis only) at 50%
recall according to a 5-fold cross-validation (Fig@0). That is, when 50%
of all zinc-binding Cys and His were picked out @stting the prediction
score to a certain threshold), 85% of the predieted-binding Cys and His
actually bind to zinc. When the protein level isnslered, this method
predicted protein chains containing zinc-bindings(Klis, Asp and Glu with
71% precision (75% precision for Cys and His ordy)50% recall. The
chain level prediction accuracy was slightly lovilean that of the residue
level. This is mainly due to two factors. Firstlyoohains with at least one
zinc-binding residue predicted at the correct pasitwere considered as
correctly predicted. Chains with zinc-binding resd predicted but none of
them at the correct position were not considereccasectly predicted.
Second, most chains with two or more zinc-bindiitgss(thus with 6 or
more zinc-binding residues) were better predickeoh tchains with only one
zinc-binding site. When evaluated on the residuellethe former have
higher weights. However, when evaluated on the rchavel, they are
equally weighted.

The zinc-binding predictions made by our method e/ successful.
First of all, there are 999 zinc-binding CHDE (888 CH: Cys or His) but
93 630 CHDE (22 865 for CH) in total, thus the ramdprediction accuracy
for CHDE is only 1.1% (3.7% for CH) on the residaeel, and 7.7% on the
protein level. The zinc-binding site prediction loyr method has 71%
precision (86% for CH) on the residue level and 7@%the chain level at
50% recall, i.e. substantially higher in accuratgn the random prediction.
Secondly, when compared to a recently publishedmpépasserinet al,
2006), our method predicted zinc-binding Cys and Hi ~10% higher
precision at different recall levels (Figu?). The results on protein level
are not given by Passerigi al. (2006), but the out-performance can also be
expected, since the prediction accuracies on thelue level and protein
level are highly correlated and most chains havly ome or two zinc-
binding sites (Figure 7).

We also showed that for ~46% of all target chainkictv have
homologues predicted, the zinc-binding predictioouaacy for Cys and His
was even higher; 90% precision at 70% recall (Big.in Papen). This
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means that the confidence for zinc-binding sitedjgteon is much higher
when homologues are detected. With more and moogeipr structures
deposited in PDB, > 65% of the newly added protaigsestimated to have
at least one homologue in the SCOP domain datdbBkseanet al, 2005).
All such proteins can now be predicted at greatigmy for zinc-binding
sites.
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Figure 20: Comparison of the results predicted by our metiod that of Passerini
et al. (2006), for Cys and His on residue level, wheteg®n the same dataset. At
the 60% recall level, our method predicted zinadbig Cys and His with 76%
precision (point A), whereas Passemial. predicted these two amino acids with
60% precision (point B). [Derived from Fig. 3a iapgerl and Fig. 4b in Passeriat
al., 2006]

Moreover, our zinc-binding prediction method isw@ate enough even to
detect potential ‘errors’ in the PDB. When analgzithe false positives
predicted with high confidence, we found that marfiythem are actually
zinc-binding according to the biochemical literaufhe absence of zinc in
the PDB files for those proteins might be caused poyification and
crystallization in zinc-free conditions. Other mots that were predicted to
bind zinc, but had no evidence in the literatureias-binding, actually have
several highly predicted zinc-binding residues elos 3D space (see Figure
21 for an example). It is highly likely that such eoein will bind zincin
vivo.
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Figure 21: An example of a protein chain highly predictedza-binding but with
no bound zinc according to the PDB: chain A of theotein TatD-related
deoxyribonuclease (PDB code 1J60). Four residuesl HiHis19, His139 and
His164 of 1J60A were predicted at > 0.9 confidescare. His74 was predicted at
0.5 confidence score. These five histidines arsedjolocated in 3D space. The
residue sequence numbers in the 1J60 PDB file fet H His19, His74, His139
and His164 are 4, 6, 61, 126 and 151 respectiviédlg. sequence numbers in the
PDB files do not always follow the index of residu@ the chain. Therefore, the
sequence numbers for these five histidines in Q8 Fle are different from the
index of those residues in the sequence. [Frorsupplementary data of Pagégr

Our method is not only capable of predicting zimeding sites in
proteins with rather high accuracy, but it can dsoused for screening
potential zinc-binding sites for protein desigmc& some apo proteins or
proteins with 3 or 4 highly conserved CHDEs thagimibe close in 3D
space can be predicted. In addition, it might ateo a useful tool to
complement the annotation of zinc-binding site®DB files for its ability
in identifying occasional un-annotated zinc-bindgitgs in PDB files.

4.2 Prediction of 1D protein structures (Paper II)

A novel 1D structure prediction method, called Aifag was developed
using a straightforward profile based fragment mmawg algorithm. The
results show that this method predicted three afeld structural alphabet,
i.e. the classical three-state secondary structhiree-state shape strings and
eight-state shape strings, successfully.
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By exploiting the vast protein sequence and protmcture data
available, we have brought the accuracy of the rsemy structure
prediction closer to the expected theoretical li(B8%, Rostet al, 1994).
The method was tested by a leave-one-out crosgat@in on a non-
redundant set of PDB cutting gt30% sequence identity (by the PISCES
server, Wang and Dunbrack, 2003) containing 586flepr chains (1.48
million amino acids). For the secondary structuredpction, the Q3 was
82.8%; and for the shape string prediction, theaB8 S8 were 85.0% and
71.5% respectively (see Table 1 and Table 4 in PApeFor 80% of all
amino acids predicted with the highest confidetice,Q3, S3 and S8 were
as high as 88%, 92% and 79% respectively (FigdyeNote that these 80%
residues were identified only from their predicmahfidences. This means
our program not only predicted the 1D protein suree with a good overall
accuracy, but also identified quite well which segees and which parts of
the sequences that were better predicted.

We have also benchmarked FraglD with the latesioeiof PSIPRED
(version 2.2.17, 2008) (Jones, 1999b) for secondémycture prediction.
PSIPRED is to date one of the best methods for neey structure
prediction. FraglD predicted 0.3% better in Q3 whested on 2241 chains
with the same training set (see Appendix 4 for lbevtraining set and the
test set were created for this benchmark). Theativeutperformance 0.3%
Q3 might not be significant. However, for residumshelices and sheets,
FraglD predicted 2.3% better in Q3 compared to REIP (see Table 2 in
Paper II'). In addition, the fact that FraglD and PSIPRE®dpmted
differently in helices, sheets and random coils,y nenefit consensus
methods such as JPred (Ceteal, 2008) which combine the results of other
original methods to take the merits of FraglD aBSiPIRED to obtain even
better results.

For shape string predictions, we benchmarked Fragitb a recently
published method by Kuargt al. (2004). When tested on a non-redundant
set of PDB chains cutting &t20% sequence identity, including 1296 chains,
Kuanget al predicted the three-state shape strings at 7%&3%With the
same definition, FraglD predicted at 81.7% S3,2.2% better in accuracy.

It has to be noticed that Kuang's definition igbtly different from that is
defined in Figurel. For these 1296 chains (containing 304 585 antidsg
Kuang’s definition and our definition agreed on 8. of all residues.
Alternatively, with the definition according to kige 1, FraglD predicted
the three-state shape strings at 81.1% S3.
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Figure 22: Correctly predicted secondary structure (Q3) drmaps strings (S3 and
S8) as a function of all residues above a certairfidence. For example, for the
~80% amino acids predicted with highest confideri@d, S3 and S8 are roughly
88%, 92% and 79% respectively. [From Fig. 3 in Paide

It has long been a topic of discussion that theui@ay of secondary
structure prediction increases as the size of Hiabdse increases, even if
the method has not been improved. We have invéstighe effect of the
size and sequence identity cutting level of thealase on the prediction
accuracy quantitatively. The results show that@3encreases by ~1% with
every doubling of the database. Similar trends vedserved for S3 and S8
as well (see Fig. 5 in Papkt)).

4.3 Remote homology detection (Paper IlI)

A new method, called FragMatch, for detecting reambbmologues was
developed by using profile-based fragment matchiagd pattern
generalisation based on high scoring candidatarieads on dot plots (see
Figure 18 for an example). This method accepts either alesisgquence
query to search for homologues in a database, groap of protein
sequences with a number of positive examples agdtive examples to
classify an un-annotated sequence database to divg® or negatives.
Therefore, FragMatch is suitable for various puesos biology, such as
finding homologous templates to solve protein @lysstructures by
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molecular replacement and protein family classiiwa for a newly
sequenced genome.

For the remote homology detection with a single rgqusequence,
FragMatch was tested on two datasets; one with stg@rfamily domain
pairs and the other with 803 family domain paiese(section 2.4.2). On the
family level, the best average ROC and ROC50 sdamreBragMatch were
0.978 and 0.906 respectively (the window size weist® 11). This result
was significantly better than that of HHsearch ¢i@r 1.5.1) (Soding, 2005),
which obtained 0.944 and 0.867 for ROC and ROCS5§peetively.
Moreover, FragMatch was running ~3 times fastemti#Hsearch. The
popular homology detection program PSI-BLAST oledi®.845 and 0.694
for ROC and ROCS50 scores respectively even suppli¢hil PSI-BLAST
checkpoint files built from the NCBI nr databasehnaé.5 million sequences.
On the superfamily level, the best ROC and ROC5@resc were also
obtained when setting the window size to 11. Algto&ragMatch predicted
slightly worse ROC50 (0.707 versus 0.721) than Hifde the ROC was
better (0.920 versus 0.913).
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Figure 23: Comparison of ROC50 scores of FragMatch and SWMP&S all 54
family classifications. The X-axis is in the ascimgdorder of the ROC50 scores by
SW-PSSM. For most family classifications, SW-PSSMdicted homologues as
good as FragMatch, with ROC50 scores very close@pas shown in the right part
of the figure. For some family classifications, F¥®SM did not predict
homologues successfully, as shown in the left pathe figure. However, even for
these family classifications, FragMatch obtaineiteqgood ROC50 scores. [From
Figure 5 in Papeltl ]
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For the protein family classification with a traigi set including both
positive examples and negative examples, FragMatshtested on a well-
benchmarked dataset with 4352 domain sequencesé¢stion 2.4.2). The
average ROC and ROC50 scores over 54 familiesrbayWatch were 0.981
and 0.924 respectively. The best result of preWopsblished works tested
on this dataset was reached by Rangwala and Ka(2pB5). The average
ROC and ROC50 scores for their method, SW-PSSMe W81 and 0.904
respectively. Since in this classification taskerth are far more negative
examples than positive examples, the ROC50 scaeitter measurement
of the performance (see the discussion in secti8h Fherefore, the out-
performance of FragMatch over SW-PSSM is significdine per family
comparison (Figur@3) shows clearly that FragMatch performed slightly
worse on just 5 families but significantly better many families.

4.4 Describing and comparing protein structures
(Paper 1V)

In this work, we reviewed various methods of ddBog and comparing tens
of thousands of protein structures, with the emisha® the recently
developed methods that represent protein backbénetige as one-
dimensional geometric strings. We showed that slséregs introduced by
Ison et al. (2005) are as compact as secondary structuresesoritding
protein backbone structure, and they capture mofemation for loop
regions which comprise ~40% of all amino acids. &wer, short protein
backbone fragments with the same shape string fega bighly similar in
3D space (see Fig. 7 in Pap¥r), although each shape symbol represents a
rather large area with a spread of torsion aggéndy in the order of +/-
20°. It means that the 8-state conformation dedinibf Isonet al. (2005) is

a good representation of constrains of the 3D péthackbone structures,
which is also in accordance with the observatiorKlojodny et al. (2002)
that the conformation space of fragments of nagtwactures is limited. With
this observation, it becomes straightforward tostarct the 3D backbone
structure from a shape string, whereas it stillag® a big problem when
constructing the 3D structure from secondary simast Nevertheless, the
prediction of shape strings is still not sufficignaccurate and needs further
study.

In addition, we showed that shape strings couléjgied to improve
fast structure database searching. We illustratedd examples (Figs. 9 and
10 in PaperlV) that shape string comparison could reveal theéballo
similarity between protein structures with a hirngending, whereas rigid
body superposition failed in spite of taking a lengomputation time. Shape
string comparisons can also reveal the differemcdp regions between
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different protein structures with the same secondsructure elements,
whereas SSE comparison failed in such cases féadksof information in
loop regions. In a large scale homology detectismchmark (Fig. 8 in Paper
IV), the shape string alignment outperformed KL-gtr{frriedberget al,
2007) alignment and sequence based BLAST alignmientell behind
FATCAT (Ye and Godzik, 2003) and CE (Shindyalov @&wlrne, 1998),
two Co based structural alignment methods, but they lareet orders of
magnitude more time-consuming than shape striggéent.
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5 Conclusions

Machine learning methods, data mining techniqued statistics based
methods have been widely applied in biology fort@rostructure prediction,
gene finding and other various areas. In this fiddhave introduced three
novel methods for predicting zinc-binding sitegpioteins from amino acid
sequences, predicting 1D protein structures andectisj remote

homologues, respectively.

The zinc-binding site prediction method, PREDZIN(Cedicts whether
a residue (or a protein chain) binds to zinc or taking advantage of recent
advances in SVM and remote homology detection nasth@his method
predicted zinc-binding Cys, His, Asp and Glu with?4 precision (86% for
Cys and His only) at 50% recall level, when tesiedh non-redundant set of
PDB containing 2727 unique protein chains. The iptexhs were so reliable
that some occasional mis-annotated proteins raggrdinc-binding were
found. This method should be useful for large scleeening for zinc-
binding proteins in genomes and for checking po@iyotated proteins
whether they are zinc-binding or not. However, thieole zinc-binding
group, i.e. exactly which 3 or 4 residues that limthe same zinc atom, can
not be predicted by the method described in thasigh The prediction of the
whole zinc-binding group, and moreover, to distisucatalytic zinc-
binding sites from structural zinc-binding sitesmore challenging and will
be of great help for metalloprotein design and 8Dcsure prediction since
the freedom of the 3D structure of zinc-bindingtpnes will be restricted
enormously if zinc-binding sites can be allocated.

The one-dimensional protein structure predictionthme, FraglD,
predicted three sets of 1D protein structures witisfactory results. When
tested on a large (5860 chains including 1.48 omllamino acids), non-
redundant set of PDB chains cutting<aB0% sequence identity, FraglD
predicted the protein secondary structure at 8XI@and shape strings at
85.1% S3 and 71.5% S8. Moreover, better prediasiflues and sequences
can also be identified by the predicted confiderfesr. 80% of residues
predicted with the highest confidence, the Q3, 88 &8 were 88%, 92%
and 79% respectively.

The remote homology detection method, FragMatcteatled more than
twice of the superfamily level homologues and ndskess than half of the
homologues at the family level compared to the nagdely used homology
detection method, PSI-BLAST. For protein family sddications, it also
outperformed the best method previously publisti@te can expect more
use of this method for structural biologists faustural template searching
and genome classification and annotation.
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In addition, various methods for describing and parmg protein
structures have been reviewed. Some recently deselomethods of
representing protein structures as one-dimensigeametrical strings,
especially shape strings, have been highlightedp&tstrings encode the
backbone structures as 1D strings but carry riacttral information in
loop regions. They are efficient in detecting tivailarity and dissimilarity
between protein structures and with them it is jpbsdo construct the 3D
structure. However, it should be noted that therenur development on
applications of shape strings is still very prefiany. More accurate
alignments that make best use of the propertieshape strings as well as
the analysis of the statistical significance of pghastring alignment are
required. Moreover, prediction of shape stringdead of the secondary
structures of proteins might be an alternative waystart 3D structure
prediction. Both the prediction of shape stringsl ahe building of 3D
structures from shape strings need further rese&ichpe strings facilitate
fast database searching for similar structuressiflaation of loop regions
and evaluation of model structures. We can expecerwidely use of such
methods in the near future.
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6 Appendices

6.1 Appendix 1: HSSP distance

HSSP (homology derived secondary structure of prgtedistance is a
measure of sequence similarity which takes both ghewise sequence
identity and alignment length into account (Ro899). It is defined as

HSSP distance = PIDE — HSSP_PIDE, 9)

where PIDE is the percentage of pairwise sequetargity and HSSP_PIDE
is defined as

100, for L< 11
HSSP_PIDE={480L 2™ for L <450 (10)
195, for L>450

where L is the length of the alignment. A commonSRSlistance threshold
is 0, which corresponds to 20% sequence identityhf® alignment between
two sequences with the length of 300 amino acid® (f a typical protein

chain).

6.2 Appendix 2: vector encoding

6.2.1 Encoding of single-site vectors

A window of residues centered at a residue of @seis encoded into a
vector of numerical values of sizek)p, where k is the length of
extension along the amino acid sequence on bots sid the centered
residue and is the number of numerical features used to descsiach
residue. In this study, the residue of interest selected amino acid residue
C, H, D or E as described above. We used 39 nualdratures to encode
each residue. The first 20 items are the profilemafltiple alignments
derived from the position specific matrix generatad PSI-BLAST. The
information content per position (denoted as scoaedl the “relative weight
of gapless real matches to pseudocounts” (scoeei?) the last two columns
of PSI-BLAST output, are encoded by 5 features eddte former is
discretized into five bins (0 to 0.2), (0.2 to 0.8).5 to 0.9), (0.9 to 2.0) and
(2.0 to +0) and the latter into the bins (0 to 0.05), (0.0918), (0.8 to 1.4),
(1.4 to 2.0) and (2.0 tood), so that except the first and last bins whictdreol
few very low or high scores, the numbers of residwithin each bin are
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essentially equal. Scorel represents the consemvégiel and score2 the
number of aligned residues of that position. A rfiedione-hot encoding is
applied for these bins; for example, scorel ofi®.éncoded as (0 0 4 1 0).
Some of the non-diagonal values of the matrix cosepoof vectors
encoding these bins are set to 1 to representtinelation between different
bins. The diagonal values of the matrix are sét $o that the diagonal value
of the matrix is equal to the average value of BISAST profiles for C, H,

D and E on their corresponding column. Thé' &m is the flag of the
position of the residue, which is either 1 (withive sequence) or 0 (outside
the sequence, normally at the start or end of ¢k@ience). Five features are
used to encode amino acid types which are cladsd®e C, H, D, E and
others (for example, C is encoded as 4 1 0 O Otaras 1 4 0 O O, non
diagonal values are set to 1 again to represeratiiehat some zinc-binding
Cys and His are interchangeable). Three features uged to encode
hydrophobicity of each residue. Hydrophobicity (@&and Mould, 1991) of
residues is classified as hydrophilic (R, D, ENH,Q and K), neutral (S, T,
G, A) and hydrophobic (C, P, M, V, W, Y, |, L andl. A one-hot encoding
is used for these bins, for example, the amino Bsithe (K) is encoded as
(4 0 0), whereas proline (P) is (0 0 4). Finallye tfeature vector of each
residue position is multiplied by a weight defirasi

w _,_1POS ~pos | - oS | ok (11)
where pogis the position of residue j in the sequence argdip the position
of the centered residue of each window, &nsl the length of extension on
both sides of the centered residue described alkmreexample, ik = 10
and the position for the centring residue gpas 25, the weight for the
residue at sequence position 30 is calculatedsas 1.

6.2.2 Encoding of pair-based vectors

A pair-based vector encodes a window of residuegeced by a pair of
residues. It represents the correlation betweenaia @f residues. The
encoding of each residue position is similar astfa single-site vectors.
Each residue pair is represented by a vector ef(@k+2+2w)-p + 5, where

k andp are the same as described in the single-site yeetis a constant as
described below and 5 numerical numbers are usemdode the distance
between the two residues of the pair. The humbeesitiues separating the
residue pair varies, while SVM requires the ingubé a collection of fixed-
length vectors (Noble, 2004). To solve this comflfor residues between the
pair, we took alwaysv residues after the first residue in the pair and
residues before the second. Take 3 for example. If there are 8 residues
(i.e. more than ¥ = 6) between the two zinc-binding residues pl p2dh
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the pair, pl-x1-x2-x3-x4-x5-x6-x7-x8-p2 (x1-x8 repent the residues
within the pair), residues x4 and x5 are not in feature vector encoding. If
there are 2 (less than w = 3) residues within thi; pl-x1-x2-p2, the

numerical features for the putative x3 are set.tdrd example is shown in
Figure 24. Finally, five numerical features are used to electhe distance

between the residues of the pair. The distancesigeatized into five bins [1

or 2], [3], [4 or 5], [6 to 20] and [> 21], suchaththe number of zinc-binding
pairs within each bin is nearly equal. A one-hotagting is used for these
five bins, while the diagonal values are set tdo4 €xample, the distance 3
is encoded as 04 00 0).
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Amino acid sequence of 1C9QA (117 amino acids) ftgis66 to Asp91 (selected C, H, D
and E are shaded in black)

66(67(68|69|70|71|72 &) 74| 75|76 Al 78| 7Okl8] 81(82|83|84(85|86|87|88|89|90 jeil
LIYIY|[T|G|I|GQ|VIQOFF AKSg G |G| K|L|K|N|W|E|P|G}®

(a) For asingle site vector centred at Cys80:

This window includes 21 residue positions, so ike sf the vector is 21*39 = 819

: Using 10 positions before Cys Using 10 positionaftel Cys8(
~ ™~ —-

66]67[68]69170[71]72173[74[75]76]77]78] 79 B8] 81[82[83[84]85[86[87[88[89[90]91
LIYIY|T|G|I\G/D|Q|VI|IQ|C|F|IAKMG|G|K|L|K|[NIW|E|P|G|D
______________________________ 1

This residue position is represented by 39 numidieedures, weight = 2 - 8/10 = 1.2

|—2.777—l.44 3.3120.522.004.81.20 000481.. 1 00004.8 04.8¢( |
P — S S — T — ——

20 numbers bmthe 5 numbers 5 numbers ‘1’ indicates 5 numbers 3 numbers
PSI-BLAST profile  encoding the encoding the that G72 is - encoding theencoding the
of G72 scoref scored within the  amino acid hydrophobicit
sequence  type

(b) For apair-basec vector centred at Cys77 and Cys80:

This window includes 32 residue positions. The sizhe vector is 32*39 +5 = 1253
The last five numbers encodes the number of resideparating Cys77 and Cys80

| A

66(67[68]69]70[71]72[73
LIYIY|T|G|I\G,D

i -

The encoding of each residue position is the s(k: Eor residues in between Cys77 and Cys89, usg up
as in single-site vectors. Thus, this residuig¢o 5 residue positions after Cys77 and 5 before
position is also represented by 39 numeridaCys80. In this case, the third, fourth and fifth
numbers. The only difference is the weight. Hefeposition after Cys77 can not allocate a resiflue
the distance from Gly72 to Cys77 is 5, therefprebetween Cys77 and Cys80. The values of |the
the weight is calculated as 2 - 5/10 = 1.5. vector are thus set to 0. It is the same for tire
fourth and fifth position before Cys80.

86(87|88|89|90{91

®Scorel: The information content of the PSSM prajiémerated by PSI-BLASTScore2: The relati
weight of gapless real matches to pseudocountseed?ESM profile generated by PSI-BLAST.

Figure 24; Examples for how a single-site vector and a pased vector are
encoded, when k =10, w = 5 and p = 39, where kaddngth of extension along the
polypeptide chain on both sides of the enteredivesip is the number of numerical
features used to describe each residue and w isutmber of residues to take after
the first residue in the pair and before the secesitiue in the pair.
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6.3 Appendix 3: profiles

A profile is a table that lists the frequenciestlof 20 amino acids at each
residue position in the sequence from an evolutiopaint of view. A log-
odds score is defined as the logarithm of the ratithe likelihood for two
amino acids to be aligned to that of seeing theseamino acids matched by
chance:
_ d;
S log(Pin ) (12)

where $ is the log-odds score between amino acidndj, g; is the
likelihood for amino acid andj to be matched andP; are background
frequencies for amino acid and j respectively andP,P; represents the
probability of amino acid$ andj being matched by chance. In this study,
profiles were obtained by running PSI-BLAST (versi®.2.13) against the
NCBI nr database (version April 2006) for thregatemns with an E-value
threshold of 0.001. The E-value is a statisticabhpeeter that represents the
number of hits one would expect to find by chandeemv searching a
database of a particular size. For example, a iflit an E-value of 1 means
that when searching a query sequence in a datalbdke current size, one
would expect to see one match with a similar ssorgly by chance. The
lower the E-value, or the closer it is to O, thghar the significance of the
match. Figure&5 shows a typical profile with log-odds values aneighted
percentages that are generated by PSI-BLAST. Suofilgs contain a
summary of evolutionary information, since they whilve average amino
acid composition at each position along the prosgiquence. This amino
acid composition is calculated from many (oftendnals) of protein chains
that are considered homologues. These putative logues are picked out
by PSI-BLAST from large sequence databases (esgNBBI nr database
which contains over 5 million sequences). The psfgenerated by PSI-
BLAST have been proven of tremendous value for gonotstructure
prediction (Jones and Swindells, 2002).

(a ARNDCQEGHILKMEFP STWYV
1IN -4-384-5-2-2-3-2-6-6-2-5-5-4 2-2-6-5-5
2R -122-15-1-45-3-5-5-3-4 2-5 0-3-4-1-5
3N 2-21-4-4-2-2-1-4-1-4-2-3-2-4 16100
4C -3-4-5-54-1-3-50-4-4-4-42-5 0-419-4
5K -12-2-4-54-1-5-1-3-44-4-11 -12-51-3
6L -4-3-6-6-4-5-6-6-6 7 2-3-2 2-3 5-2-5-31
7Q 22-4-3-42-1-420-21-3-4-4 0-15-25
8T -2-22-3-1-2-3-3-4-4-4-3-4-5 3 45-5-4-4
9Q 2-21-2-4-1-30-42-21-3-1-2 2-2-5-11
10L -12-4-4-12-2-402231-1-3 3-3-1-32

[Continues to the next page]
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M) ARNDCQEGHILKMEP STWYV
1IN 00811900000000000 00000
2R 51211 402049000009 0 60020
3N 218002140402010 261237
4C 100092101000050 701720
5K 31120018301112802 8 31205 2
6L 01000000061202009 1 0100 4
7Q 3100109304339000 830141
8T 12110110100100013 293800 0
9Q 18262021601241002 2 182029
10L 412001131213211733 1 101013

Figure 25: Part of a typical profile for a protein sequeneagrated by PSI-BLAST
with (a) log-odds values and (b) weighted percesgad he first line lists the one
letter code of the 20 amino acids found in proteifige residue number in sequence
and amino acid types are shown in the first twaugwls. The 20 values (which
compose a profile at each residue position) in eashare scaled log-odds values in
(a) and weighted percentages rounded to the riaateger in (b) [see (Altschudt
al., 1997) for details] .

Profiles of the test protein sequences (proteirth whly amino acid
sequence information available) are representedQpy(the estimated
probability for residue to be found on amino acjgj represents 20 amino
acids). Q is calculated from weighted percentages by takisgLido-counts
into account, according to Altsched al. (1997), which is defined as

/]usxj
_df /P fue (13)

1j O’+[)’

wherea andp are the relative weights given to observed andig@sount
residue frequencied; is a weighted percentage (see Figdib for an
example), that is, the observed frequency for tesidn amino acid, B is
the background frequency for amino agidS; is the substitution score from
amino acidk to j as given in BLOSUM®62 (Henikoff and Henikoff, 1992)
and), is a statistical parameter related to the datafumdeSI-BLAST.

For the training set, Qprofiles are enriched by structural profiles
derived from blocks of similar shape string fragisemo get the blocks of
shape strings, a sliding N-residue (here N is sed)tfragment of shape
strings of a given sequence in the training seteigrched against all N-
residue fragments of shape strings from all otleguences in the training
set. First, up to top 200 N-residue shape striagrfrents are picked out by
the similarity in shape strings. Then, the numbkthe initially selected
fragments is further reduced to up to 100 by timeilarity in amino acids
and the water accessibility between the targetnieag and candidate
fragments. Once the blocks of shape strings ar@radat, a position specific
substitution matrix for each sliding N-residue frant is derived from
amino acid percentages at different columns of & Llblock (L is the
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number of matched shape string fragments in thekplbased on the same
principles as in PSI-BLAST. The structural profileéthe entire sequence is
calculated as the average of substitution mati€ed sliding fragments for
that sequence. Finally, the profile for the residue columnj (F;) of that
sequence is calculated as the linear combinatiothefQij profile and
structural profile according to,

Fij = (1— /]) * Qij +A* SIj (14)

where Q is the same as mentioned beforgjsSthe profile for residueon
amino acid (j is the index for 20 amino acids) derived from B®of shape
strings and. (ranging from O to 1) is the parameter used tedity combine
the Qij matrix and Sij matrix. In practice, we fitlgat ak of 0.40 will often
produce the best result for the remote homologedietn and for the 1D
structure prediction. Such linear combination mdthim merging the
sequence profile and structural profile has alssnhgesed by Teodoreset
al. (2004) in protein threading and led to satisfactesults.

6.4 Appendix 4: dataset for benchmarking with
PSIPRED

The training set was obtained from Dr. David Jonbgh has been used to
build the weighting files for PSIPRED version 2.6Ihis training set
contains 6598 protein chains with 1 563 587 aminimsa The average
sequence length is 237. Note that many chainssrirthining set are of high
sequence identity to each other. For example, ¢lq@esnce identity of the
chain 1JPTL and 1L7IL is as high as 90%. When rgtthis training set
down to < 30% sequence identity by the PISCES server (Wamdj a
Dunbrack, 2003), only 3644 chains remain.

The test set was constructed in the following wé&ytst, all PDB chains
(as of June 10, 2009) cuttingsa®9% sequence identity were obtained with
the following criteria: resolution < 2.5A, R-value 0.3 and only X-ray
structures were used. In total 21 574 protein chaiere retrieved. Then,
those chains with the same chain IDs as exampléiseiniraining set were
removed. This resulted in 15 256 protein chaingerAthat, PSI-BLAST
(blastpgp) was run with an E-value threshold ob@.8nd three iterations for
searching each of these 15 256 chains in the miguiset and chains with at
least one significant hit in the training set wegmoved. To be a significant
hit, the candidate should meet at least one ofdahewing two criteria: (1)
the sequence identity > 30%, the alignment lengB0>and the E-value <
0.1; (2) the sequence identity > 50%, the alignniength > 15 and the E-
value < 5. This resulted in 3100 protein chainssBang the above criteria.
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Finally, these 3100 chains were cutting dowr: t80% sequence identity by
the PISCES server, which resulted in 2421 uniqaénshfor testing.
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