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Abstract 

Predicting the three-dimensional (3D) structure of proteins is a central 
problem in biology. These computationally predicted 3D protein structures 
have been successfully applied in many fields of biomedicine, e.g. family 
assignments and drug discovery. The accurate detection of remotely 
homologous templates is critical for the successful prediction of the 3D 
structure of proteins. Also, the prediction of one-dimensional (1D) protein 
structures such as secondary structures and shape strings are useful for 
predicting the 3D structure of proteins and important for understanding the 
sequence-structure relationship. In addition, the prediction of the functional 
sites of proteins, such as metal-binding sites, can not only reveal the 
important function of proteins (even in the absence of the 3D structure) but 
also facilitate the prediction of the 3D structure. 

Here, three novel methods in the field of protein structure prediction are 
presented: PREDZINC, a method for predicting zinc-binding sites in 
proteins; Frag1D, a method for predicting the 1D structure of proteins; and 
FragMatch, a method for detecting remotely homologous proteins. These 
methods compete satisfactorily with the best methods previously published 
and contribute to the task of protein structure prediction. 
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1 Introduction   

Proteins are essential to life. In bodies, proteins fold into certain three-
dimensional (3D) structures, called the native structures. The functions of 
proteins rely on their native structures. Determining the 3D structure of 
proteins has become a major task for modern biological research. Protein 
structures are determined experimentally by X-ray crystallography, NMR 
spectroscopy and cryo-electro microscopy (cryo-EM). Since the 
determination of the first protein structure, myoglobin, by Kendrew and his 
colleagues 50 years ago (Kendrew et al., 1958), the number of 
experimentally solved protein structures deposited in the Protein Data Bank 
(PDB, www.pdb.org/pdb) (Berman et al., 2000) has reached 56 951 (as of 
Nov. 18, 2009; there are also 4626 other biological macromolecular 
structures such as DNA in the PDB) and this number is still doubling about 
every three years. However, this exciting number can be disappointing for 
the biologists who need 3D models of proteins in their research. As of Nov. 
2009, there are ~9.7 million protein sequences deposited in the 
UniProtKB/TrEMBL database (The-UniProt-Consortium, 2009). The chance 
of a protein sequence to have a solved structure has dropped to 0.6% (56951 
/ 9700000 * 100%) by Nov. 2009; while this number was 2.1% in Dec. 2004 
and 1.6% in Dec. 2007. It has to be noticed that many entries deposited in 
the PDB are the same proteins but have been solved in different conditions 
(e.g. different concentrations and different temperatures) for various 
scientific purposes. For example, 1171 entries in the PDB are structures of 
lysozyme. When taking this into account, the chance of a protein sequence to 
have a solved structure is even lower. To narrow the gap between the 
number of solved sequences and the number of solved structures, efficient 
and accurate computational prediction methods are highly demanded.  

Since Anfinsen beautifully demonstrated that bovine pancreatic 
ribonuclease could regain its native 3D structure after unfolding (Anfinsen, 
1973), it has been believed that the 3D structure of proteins are determined 
by their amino acid sequences. Numerous methods have been developed for 
predicting protein structures from amino acid sequences in the past decades. 
Progress in predicting 3D structures of proteins from amino acids has been 
shown in the Critical Assessment of protein Structure Prediction (CASP) in 
recent years (Moult et al., 2003; Moult et al., 2005; Moult et al., 2007; 
Moult et al., 2009). CASP is a world-wide competition of 3D protein 
structure predictions held every two years. As revealed by CASP, the 
accuracy of the predicted structure model mainly relies on the successfulness 
of the detection of structurally similar templates. It is generally accepted that 
proteins with similar amino acid sequences are structurally similar. Although 
exceptions that two proteins (constructed by man) sharing 88% sequence 
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identity but with totally different fold have also been observed (Alexander et 
al., 2007), for natural proteins, it is still safe to say that if two proteins share 
> 30% sequence identity, they are structurally similar. However, to detect 
the homology between proteins sharing less than 25% sequence identity is a 
challenge. Therefore, methods which can accurately detect remotely 
homologous templates become essential. The accuracy of the predicted 
structural models using de novo prediction methods, i.e. predicting 3D 
structures without any structural template, is still far away from practical 
requirements. Protein structures in reduced form, e.g. protein secondary 
structures (represented by H: helix, S: sheet and R: random coil) and shape 
strings (see Figure 1 for definition) can be predicted at high accuracy. Such 
predicted one-dimensional (1D) structures can assist the prediction of 3D 
structures.  

Many proteins need to interact with other molecules or ions in order to 
function properly. Metals are among the most common molecules or ions 
that interact with proteins. Metal ions are present in about one third of the 
proteins deposited in the PDB and they play a variety of roles in many 
biological processes, from structure stabilization to enzyme catalysis. Zinc is 
the second (only after iron) most abundant transition metal found in 
eukaryotic organisms (Coleman, 1992). The function of zinc in proteins can 
generally be divided into two categories: structural and catalytic. An 
example for the former is that zinc-fingers which comprise the largest class 
of transcription factors in the human genome are structurally stable only in 
the presence of zinc (Tupler et al., 2001). An example for the latter is that 
zinc ions serve as powerful electrophilic catalysts in many hydrolases and 
lyases (McCall et al., 2000).  

A protein might not be of great biological interest unless its function has 
been annotated. The identification and localization of zinc-binding sites (if 
they exist) is not only important for functional annotation of many proteins 
but also helpful to the prediction of 3D protein structures. The accurate 
prediction of zinc-binding residues in sequences can be used directly to 
screen zinc-binding proteins in genomes. The predicted zinc-binding 
proteins can also be used to complement the current metalloprotein or 
catalytic site database, e.g. MDB (Metalloprotein Database and Browser, 
metallo.scripps.edu/) and CSA (Catalytic Site Atlas, http://www.ebi.ac.uk/ 
thornton-srv/databases/CSA/). In addition, the accurate prediction of zinc-
binding proteins might be used to select protein enzymes capable of 
catalyzing inorganic reactions and mediating the formation of crystals, 
which is fundamental in material synthesis (Feldheim and Eaton, 2007). 
Advances in DNA/protein sequencing techniques and the much slower 
traditional function annotation methods have led to an increasing gap 
between the number of functionally uncharacterized protein sequences and 
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that of well-annotated protein structures. Fast and automatic annotation tools 
based on computational biology are required.  

Here, three methods in the field of protein structure prediction are 
described: (1) Frag1D: a method for predicting 1D protein structures, 
including secondary structures and shape strings; (2) FragMatch: a method 
for detecting remote homologues; and (3) PREDZINC: a method for 
predicting zinc-binding sites of proteins from amino acid sequences, 
including the prediction of (i) whether a protein is zinc-binding or not and (ii) 
residues that bind to zinc. Aside from the above three methods, different 
methods for describing and comparing protein structures are reviewed, with 
the emphasis on those methods that represent protein structures as 1D 
geometrical strings, especially shape strings.  

 

Figure 1: The definitions of eight-state (S, R, U, V, K, A, T and G) shape strings on 
the Ramachandran plot (Ison et al., 2005). The typical shapes for α-helices and β-
sheets are A and S respectively. Shape R represents the so-called polyproline type II 
structure. Shape K is often found at ends of helices or in 310 helices. T denotes the 
turn region and G is special for glycine. Three-state shape strings are obtained by 
mapping S, R, U and V to S, K and A to H, T and G to T. The Ramachandran plot 
shown here is a montage from two plots; the left part shows the Ramachandran plot 
for all amino acids found in random coil, while the left half of the figure is that 
found for all glycine residues. Both are taken from Hovmöller et al. (2002). [From 
Fig. 1 in Paper II ] 

1.1 Background: 3D protein structure prediction 

Predicting the 3D structure of proteins from their amino acid sequences has 
been a major interest for researchers in various disciplines for many years 
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(Lewis and Scheraga, 1971). The purposes of protein structure prediction 
vary from the high intellectual challenge of elucidating the protein folding 
process, to diverse applications that might be possible once the accurate 3D 
structure of proteins can be predicted.  

Protein structure prediction is usually divided into three categories: ab 
initio (or de nono) prediction, fold recognition (or threading) and homology 
modelling, based on to which extent the homology information in sequence 
and structure databases has been used to construct the structural model. Ab 
initio prediction refers to the prediction of protein structures where neither 
homologues nor fold templates can be found in the PDB. In its purest form, 
ab initio prediction predicts protein structures based entirely on physical and 
chemical laws, e.g. simulation of folding process using molecular dynamics. 
However, it often applies to the prediction using only local structure 
information or starting from a secondary structure prediction. In CASP 
(Moult et al., 2009) it almost always refers to the latter. Fold recognition 
means the prediction of protein structures for which only templates that 
might have similar folds but without obvious homologous to the target can 
be detected in the PDB. Finally, when a close homologue to the target 
protein can be identified in the PDB, the prediction is often referred to as 
homology modelling.  

To date the most accurate protein structure prediction methods are still 
based on homology modelling, although significant progress has been made 
in fold recognition and ab initio prediction, according to the results revealed 
in recent CASP experiments. The boundary between these three categories is 
becoming increasingly unclear (Zhang, 2008); nowadays even the prediction 
tasks classified as de novo prediction are usually based on available 3D 
fragmental structures. However, the accuracy of a predicted model is mainly 
determined by the availability of templates. For proteins with close 
homologous templates, the predicted 3D protein structures can be as close as 
1-2Å root mean square deviation (RMSD) to their native structures. For 
proteins having only distantly related templates in the PDB, the predicted 
structures can be as close as 2-6Å to their native structures. The errors are 
mainly caused by incorrectly predicted loop regions (Jauch et al., 2007). For 
proteins without any homologous templates, successful predictions have 
only been reported for small proteins, with less than 100 residues (Zhang, 
2008). The best predicted models can be as close as 4-8Å to the native 
structures. The relationship among the algorithms, accuracy and biological 
usefulness of protein structure predictions are illustrated in Figure 2.  

Although there is only one final goal for protein structure prediction, 
that is, predicting 3D structures from amino acid sequences, sub-problems 
such as protein secondary structure prediction, protein backbone dihedral 
angle prediction, homology detection, binding-site prediction and protein-
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protein interaction prediction are also of great interest. Some of these 
problems are inevitable steps in 3D protein structure prediction. Two 
examples are protein secondary structure prediction for ab initio 3D 
structure prediction (Bonneau and Baker, 2001) and homology detection for 
homology modelling. Others, e.g. binding-site prediction and protein-protein 
interaction prediction, are not directly used in 3D structure prediction, but 
will be of great help to the 3D structure prediction if they can be accurately 
predicted. In addition, the prediction of binding-sites and protein-protein 
interactions can immediately be applied in functional annotation and protein 
design, even without the knowledge of the full 3D structure (Laurie and 
Jackson, 2006).  

 
TM-score: Template modelling (TM) score, a scoring function for assessing the quality of 
protein structure templates and predicted structural model (Zhang and Skolnick, 2004).  

Figure 2: Approximate relationship among the algorithms, accuracy and biological 
usefulness of protein structure predictions. [Reproduced from Zhang, (2009) with 
permission] 

1.2 Predicting 1D protein structures 

Predicting the secondary structure of proteins has long been considered as an 
important stage for 3D structure prediction. Since the first protein structures 
were solved by X-ray crystallography, attempts have been made to predict 
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the secondary structure of proteins as α-helix, β-sheet and random coil from 
their amino acid sequences. Chou and Fasman (1974) pioneered the 
secondary structure prediction based on simple statistics of the probabilities 
of each individual amino acid appearing at each of the three states, namely H 
(helix), S (sheet) and R (random coil). Although Chou and Fasman claimed 
nearly 80% Q3 (overall three-state per-residue accuracy) in their original 
work when tested on 19 proteins available at that time, it has been proved 
that the Chou and Fasman method predicts protein secondary structures only 
at 50-60% accuracy (Kabsch and Sander, 1983b). The over-optimistic results 
reported in the original work of Chou and Fasman is caused by the very 
small and non-representative dataset they used (due to the limited number of 
protein structures that were solved at that time). Moreover, Chou and 
Fassman failed to separate the training set and the test set. Later on, by using 
the propensities for segments of 3-51 adjacent residues, the Q3 accuracy of 
the secondary structure prediction was improved steadily to above 60% 
(Deleage and Roux, 1987; Holley and Karplus, 1989; Kneller et al., 1990; 
Muggleton et al., 1992; Presnell et al., 1992). The breakthrough of the third-
generation secondary structure prediction was made by using the 
evolutionary information and advanced algorithms such as neural networks: 
Q3 was improved to over 70% (Rost and Sander, 1993). The evolutionary 
information was derived from the divergence of amino acids among 
homologous proteins to the protein to be predicted. With the emergence of 
new sequence database searching tools such as Hidden Markov Models 
(HMM) (Eddy, 1998) and PSI-BLAST  (Altschul et al., 1997), large-scale 
real-time database searching became feasible. Consequently, reliable profiles 
(see Figure 25 in Appendix 3 for an example) built from large sequence 
families became achievable. By using PSI-BLAST to build profiles, David 
Jones made a big step forward in secondary structure prediction: a Q3 of 
76.5% was obtained when tested on 187 unique folds (Jones, 1999b). 
Recently developed methods (Wood and Hirst, 2004; Dor and Zhou, 2007; 
Homaeian et al., 2007) are almost without exception based on sequence 
profiles generated by PSI-BLAST. The Q3 for those methods is approaching 
80% and slightly better result may be obtained by combining several of these 
methods (Cheng et al., 2007). Rost et al. proposed that the upper limit of the 
secondary structure prediction is 88% Q3 by analyzing the structural 
divergence among homologous proteins (Rost et al., 1994). The accuracy of 
recently developed secondary structure prediction methods is approaching 
this proposed upper limit but there is still a long way to go, since every 1% 
step forward is becoming more difficult as it is approaching the upper limit.  

The accurate prediction of secondary structure can improve the 
sensitivity of threading methods (Jones, 1999a) and is critical to many de 
novo structure prediction methods (Bradley et al., 2003). However, for on 
average ~40% of all residues in random coils, the classical secondary 
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structure representation carries no structural information. On the other hand, 
the backbone protein structure is precisely described by a series of torsion 
angle pairs (φ, ψ), one pair for each residue, due to the planarity of the 
peptide bond. The torsion angle pairs of native protein structures are actually 
clustered into distinct regions. Therefore the backbone protein structure can 
be rather accurately described by a 1D string of symbols representing the 
clustered regions of φ/ψ torsion angle pairs, called shape strings (Ison et al., 
2005) (see Figure 1 for definition). Shape strings describe the conformations 
of residues in regular secondary structure elements (SSE), e.g. shape A 
corresponds to the regular α-helix (centered at φ = –61°, ψ = –41° on the 
Ramachandran plot) and shape S corresponds to the regular β-sheet 
(centered at φ = –116°, ψ = 128° on the Ramachandran plot) (Hovmöller et 
al., 2002). Shape strings also classify residues in random coils into several 
states, thus containing much richer conformation information. It has been 
shown that shape strings can be used for efficient searching for similar 
structures in a database (Paper IV ) and the precise backbone structure can be 
reconstructed from shape strings (Gong et al., 2005; Ison et al., 2005). Only 
recently, attempts to predict also the conformation of the protein backbone in 
segments of random coil have been made. Bystroff et al. predicted 11-state 
shape strings with an overall MDA score (Bystroff et al., 2000) of 58.8%, 
using a Hidden Markov Model. The MDA score is defined as the fraction of 
residues that are found in predicted eight-residue segments in which no 
predicted φ/ψ angles differ by more than 120° from the true structure. Kuang 
et al. predicted three-state shape strings with overall per-residue accuracy 
(S3) of 79.5% and for four-state shape strings, 78.4%, using Support Vector 
Machines (SVM) (Kuang et al., 2004). Our method, Frag1D predicted the 
three-state shape strings at 81.7% S3, i.e. 2.2% better than that of Kuang’s 
method (Paper II ), using the same shape string definition as in Kuang’s work. 
Note that slightly different definitions on how to discretize clustered regions 
of φ/ψ angle pairs on the Ramachandran plot have been used for these works 
(see the comparison of different definitions in Paper IV,  Fig. 6). The 
baseline for the three-state shape string prediction is higher than that for the 
three-state secondary structure prediction. The average abundances of the 
three secondary structure states H, S and R are 38.1%, 21.7% and 40.3% 
respectively (see Table 5 in section 2.3.1). Therefore, a random guess of the 
secondary structure, given the condition that the proportions must be 
correct, will yield Q3 = (0.3812 + 0.2172 + 0.4032) = 35.5%. For three-state 
shape strings, the average compositions for H (A+K), S (S+R+U+V) and T 
(T+G) are 51.7%, 42.6% and 5.7% respectively (Table 5), and thus the S3 of 
a random guess is (0.5172 + 0.4262 + 0.0572) = 45.2%. Nevertheless, even 
the best result reported for the three-state shape string prediction is 79.5% 
(Kuang et al., 2004), at the same level as the secondary structure prediction. 
More accurate methods for predicting shape strings are required.  
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1.3 Detecting remote homologues 

The function and structures of unknown sequences can often be accurately 
inferred if one can map the uncharacterized sequence to a well-annotated 
protein or protein family. This mapping procedure requires the detection of 
evolutionary relationship, or homology, between proteins. As mentioned at 
the beginning of the Introduction, presently the chance of a protein sequence 
to have a solved structure is only 0.6%, due to the big gap between the 
number of solved sequences and solved structures. However, recent analyses 
show that the coverage of existing protein folds represented by the solved 
3D protein structures in the PDB is close to completion (Zhang et al., 2006; 
Qi et al., 2007). This means that for any new protein, it is likely to have a 
homologue with a solved 3D structure already in the PDB, and the structure 
of this new protein is similar to the solved one. This presents a challenge to 
computational biologists, that is, to find a method which can detect 
homologues for a given protein, if it exists. Around 1990, homology 
detection methods such as FASTA (Pearson and Lipman, 1988) and BLAST 
(Altschul et al., 1990) were developed using pairwise comparison of protein 
sequences with sequence and position independent substitution matrices, e.g. 
PAM (Dayhoff et al., 1978) and BLOSUM (Henikoff and Henikoff, 1992). 
Brenner et al. (1998) once showed that sequence-sequence methods such as 
BLAST can detect most homologues with > 30% sequence identity to a 
target sequence. However, structural classifications of proteins as done in 
SCOP and CATH (see section 1.5 for more details) show that also proteins 
sharing very low sequence identities (10-20%) may still be homologues. For 
example, two forms of the protein triosephosphate isomerase in the PDB, 
1HG3_A (from Pyrococcus woesei) and 1TRE_A (from Escherichia coli), 
share only 18% sequence identity but both belong to the SCOP family 
triosephosphate isomerase (see Fig. 1 in Paper IV ). To detect the homology 
between those proteins sharing low sequence identity, i.e. to detect distantly 
related homologues, is still a challenge. 

By comparing protein sequences to position specific substitution 
matrices (PSSM, also termed as profiles), methods such as PSI-BLAST 
(Altschul et al., 1997), HMMer (Eddy, 1998) and SAM (Karplus et al., 1998) 
are able to detect more remotely homologous proteins. Bussiere et al. (1998) 
showed that profile-sequence methods could detect three times as many 
homologues as the traditional sequence-sequence methods when the 
sequence identity was below 30%. Profiles are built by multiple sequence 
alignments among homologous proteins to the target (see Figure 25 in 
Appendix 3 for an example). PSI-BLAST automated the profile building 
together with the large-scale sequence database searching in a very efficient 
way and is thus widely used by biologists. Even more sensitive methods, e.g. 
PROF_SIM (Yona and Levitt, 2002), PRC (Madera and Gough, 2002), 
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COMPASS (Sadreyev and Grishin, 2003) and HHsearch (Soding, 2005), 
were developed by comparing profiles to profiles, which means that the 
position specific evolutionary information is used for both the query and the 
target sequence. Some of these methods employed HMM to model the 
sequence profile. Consequently, the sequence-profile and profile-profile 
methods became sequence-HMM methods (e.g. HMMer and SAM) and 
HMM-HMM methods (e.g. RPC and HHsearch). These HMM models are 
similar to normal sequence profiles but they contain the position-specific 
probabilities for insertions and deletions along the alignment, in addition to 
the amino acid frequencies in the columns of the multiple sequence 
alignment (Eddy, 1998). Some recent studies show also that improved 
sensitivity can be achieved by incorporating predicted secondary structures 
into profiles or HMMs (Soding, 2005; Wang et al., 2009). At the same time, 
methods using supervised machine learning algorithms such as SVM were 
developed for remote homology detection and protein family classification. 
Such methods include SVM-pairwise (Liao and Noble, 2003), the Fisher-
kernel (Jaakkola et al., 2000), the mismatch kernel (Leslie et al., 2004) and 
SW-PSSM (Rangwala and Karypis, 2005). By taking the advantages of 
SVM in binary classification, these methods are very accurate in 
distinguishing positive examples (homologues) and negative examples (non-
homologues) when trained on a large dataset containing both positive 
examples and negative examples. Therefore, these machine learning based 
methods are extremely suitable for protein family classifications, albeit at the 
cost of computational time.  

1.4 Predicting metal-binding sites in proteins 

Due to the abundance and importance of metal-binding sites in proteins, 
many researchers have endeavoured in developing methods for predicting 
these metal-binding sites based on structures or amino acid sequences 
(Gregory et al., 1993; Nakata, 1995; Andreini et al., 2004; Sodhi et al., 2004; 
Lin et al., 2005; Schymkowitz et al., 2005; Menchetti et al., 2006; Passerini 
et al., 2007; Ebert and Altman, 2008). However, even given the 3D structure, 
the detection of binding sites solely from geometric criteria in proteins 
without bound metal (e.g. apoproteins) is difficult, since the residues that 
bind to a metal often undergo conformational changes upon binding (Babor 
et al., 2005). Therefore, structure based metal-binding prediction methods 
often employ sequence profiles (Sodhi et al., 2004; Ebert and Altman, 2008) 
derived from multiple sequence alignments, due to the fact that metal-
binding sites are often highly conserved (Ouzounis et al., 1998).  

It has been noticed that special sequence patterns exist among functional 
metal-binding sites, for example, the C2H2 zinc-finger motif (one of the 
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most ubiquitous zinc-binding motifs). Such motifs are now deposited in 
databases such as PROSITE (Hulo et al., 2004), either as sequence patterns 
or as matrices. An example is a sequence pattern for the zinc finger C2H2 
type domain signature, represented as C-x(2,4)-C-x(3)-[LIVMFYWC]- x(8)-
H-x(3,5)-H. This pattern means a Cys (cysteine) followed by 2 to 4 residues 
of any type, followed by a Cys and then by exactly 3 residues of any type, 
followed by one residue of either lysine, isoleucine, valine, methionine, 
phenylalanine, tyrosine, tryptophan or cysteine, followed by exactly eight 
residues of any type and then a His (histidine) followed by 3 to 5 residues of 
any type and finally ended by a histidine. Alternatively, such information 
may also be represented as matrices. These patterns and matrices in 
PROSITE are generated from multiple sequence alignments of homologous 
motifs and are very sensitive for identifying metal-binding sites. However, 
the coverage of the PROSITE patterns is low. Take zinc-binding proteins for 
example: when searching in a non-redundant set of PDB chains containing 
2727 chains, only ~29% of all zinc-binding chains (210 chains binding to 
biologically important zinc, see Table 3 in section 2.2.1) can be detected 
using the current PROSITE database (version 20.27, Feb. 26, 2008) by the 
program ‘ps_scan’ (version 1.57) (Gattiker et al., 2002), although the 
precision is as high as 90%. Note that all these 2727 protein chains have 
been used to build this version of the PROSITE database and thus an over-
fitting might have occurred. The actual accuracy of the PROSITE motif 
searching for zinc-binding proteins might be lower than reported here.  

Methods for predicting zinc- and other metal-binding sites from 
sequence alone have received attention recently thanks to the large and 
increasing number of high-resolution protein structures in the PDB, 
advances in the machine learning methods such as neural networks 
(Lawrence, 1994) and SVM (Vapnik, 2000), as well as the availability of 
PSI-BLAST (Altschul et al., 1997) which enables the creation of reliable 
sequence profiles. The two amino acids most frequently binding to zinc are 
Cys and His (see also Table 3). Menchetti et al. (2006) and Passerini et al. 
(2007) predicted zinc-binding Cys and His by a local predictor and a gated 
predictor based on SVM. They observed that residues that bind to a zinc 
atom tend to be close in sequence. Based on this observation, they selected 
preliminary zinc-binding residue candidates with a semi-pattern [CH]x(0–
7)[CH] (C is cysteine, H is histidine and CH stands for cysteine or histidine, 
x(0–7) stands for a consecutive substring of any amino acid with a length 
from 0 to 7). These selected residue pairs were encoded into feature vectors 
by PSSMs and SVM were then applied to distinguish zinc-binding residues 
from non-zinc-binding residues. Their method predicted zinc-binding Cys 
and His with 60% precision at 60% recall (see section 3.2 for the description 
of precision and recall) based on a five-fold cross-validation (Menchetti et 
al., 2006) (see section 3.1 for the description of cross-validation). For the 
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less common zinc-binding residues Asp and Glu, the results were less 
satisfactory. Passerini et al. (2006) described a method for predicting metal-
binding Cys and His in a generic way, based on a two-stage machine 
learning approach. The first step was similar to the method used in 
Menchetti et al. (2006), i.e. using SVM to classify feature vectors which 
encode preliminary selected zinc-biding residue candidates. After that, a 
three layer bi-directional recurrent neural network (BRNN) was used to 
further distinguish metal-binding and non metal-binding Cys and His. For 
zinc-binding Cys and His, SVM-BRNN predicted with 60% precision at 
60% recall. Note that in the works of both Menchetti et al. (2006) and 
Passerini et al. (2006), positive examples are proteins containing zinc-
binding sites and negative examples are non-metalloproteins. The exclusion 
of non-zinc metalloproteins from the negative examples tends to simplify the 
zinc-binding prediction, which might yield over-optimistic prediction results 
as reported in Menchetti et al. (2006) and Passerini et al. (2006). Although 
these methods are reasonably successful in locating zinc-binding sites in 
proteins, higher prediction accuracy is required for accurate functional 
annotations of vast amounts of uncharacterized protein sequence data.  

1.5 Describing and comparing protein structures 

Most protein molecules contain thousands or even tens of thousands of 
atoms. Their structures are so complex that perhaps the only way to 
comprehensively describe them is by listing the xyz coordinates of all atoms, 
as is done in the PDB. Close to half of the atoms in proteins are hydrogens 
(Andersson and Hovmöller, 2000), but for most structures they are not listed 
in the PDB, because they are very hard to detect by X-ray crystallography. 
Luckily, most hydrogen atom positions can easily be deduced from geometry. 
Using such verbose description of protein structures by listing xyz 
coordinates of all atoms in proteins using thousands of real numbers, 
although comprehensive, is not only difficult for the human brain to grasp, 
but also not easy for a computer to carry out large scale comparisons.  

The existence of ordered regular conformations in proteins, stabilized 
by hydrogen bonds, was predicted already in 1951 (Pauling et al.). These 
regular conformations were called secondary structures, namely α-helices 
and β-sheets. Today, the secondary structure is usually defined by the 
definition of the secondary structure of proteins (DSSP) (Kabsch and Sander, 
1983a). Thus, a protein structure can be described simply as a set of α-
helices, β-sheets and with the rest as random coils. The secondary structure 
description of a protein captures the most important features of the protein in 
a rather concise way, which allows our human brain to grasp the most 
essential information of the protein. However, for the remaining part of the 
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protein structure, which on average comprises ~40% of all amino acids in 
proteins, the random coil in the secondary structure description carries no 
structural information.  

As already mentioned, experimental characterization of proteins is both 
time-consuming and expensive and thus it is not feasible to study all proteins 
in all genomes experimentally. As a consequence, the function of an 
uncharacterized protein is often inferred from a characterized protein by 
sequence/structure comparison methods. Functional inference based on 
sequences only, which often refers to homology detection, is fundamental in 
computational biology due to the massive uncharacterized sequence data as 
described above. However, for proteins with sequence identity below 25%, 
the relationship between them can hardly be inferred from pairwise sequence 
comparison. To improve the homology detection for distantly related 
proteins, large scale hierarchical structure classification databases, such as 
SCOP (Murzin et al., 1995) and CATH (Class, Architecture, Topology and 
Homology superfamily) (Orengo et al., 1997), have been built by comparing 
all solved protein structures in the PDB.  

1.5.1 SCOP (Structural Classification of Proteins) 

The SCOP database is a comprehensive classification of all protein 
structures in the PDB according to structural, functional and evolutionary 
relationships among proteins. The basic classification unit in SCOP is the 
protein domain and domains are classified hierarchically into classes, folds, 
superfamilies, families, proteins and species. Small proteins are usually 
comprised of a single domain while domains in large proteins are often 
classified individually. The classification species is used to distinguish the 
structures of the same protein from different organisms.  

First, different proteins are grouped into classes, including (1) all alpha, 
(2) all beta, (3) alpha and beta (α/β, α-helices and β-strands are interspersed), 
(4) alpha plus beta (α+β, α-helices and β-strands are largely segregated), (5) 
multi-domain, (6) membrane and cell surface proteins and peptides and (7) 
small proteins. Other classes (e.g. designed proteins) are also defined in the 
current SCOP classification. Nevertheless, they are not true classes but 
merely temporary holders for PDB entries that are useful to keep together. 
Proteins in each class are further clustered into folds if their major secondary 
structures are of the same arrangement. Furthermore, proteins are defined to 
belong to the same superfamily if they do not have a high sequence identity 
but their structural and functional features indicate a probable common 
origin. Finally, proteins are defined to belong to the same family if they meet 
at least one of the following two criteria which imply that they share a 
common evolutionary origin: (i) their sequence identity is ≥ 30%, and (ii) 
their functions and structures are very similar, even if they do not have a 
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high sequence identity. Proteins that are within the same superfamily but not 
belonging to the same family are usually regarded as remote homologues. A 
topological illustration of the SCOP hierarchical classification is shown in 
Figure 3. SCOP is curated manually with visual inspections and structure 
comparisons by human experts. It has become the gold standard for 
homology relationships, e.g. for evaluating remote homology detection 
methods. However, the accuracy brought from the manual verification of 
human experts has to be sacrificed by the relatively low updating speed. The 
latest update of SCOP is June 2009, containing 110 800 domains which are 
clustered in 1195 folds, 1962 superfamilies and 3902 families. This update 
contains 38 221 PDB entries from before Feb. 23, 2009. 

 

Figure 3: Illustration of part of the hierarchical classification of the SCOP database. 
There are in total 11 classes (of which 4 are shown here), 1195 folds, 1962 
superfamilies and 3902 families in the current SCOP database (version 1.75, June 
2009). 

1.5.2 CATH (Class, Architecture, Topology and Homologous 
superfamily) 

CATH is a semi-automated hierarchical classification of protein domain 
structures, in which, protein structures are clustered into four major levels, 
namely Class (C), Architecture (A), Topology (T) and Homologous 
superfamily (H), using automated computer programs and supervised by 
manual inspections. Proteins are automatically clustered into classes 
according to their secondary structure content. Architecture is currently 

SCOP 

α+β 

α/β 

All- β 

All- α 

Globin-like  

Ferritin-like 

Prealbumin-
like 

TIM 
beta/alpha-

barrel 

Cytochrome c 

GroEs-like 

Globin-like 

alpha-helical 
ferredoxin 

Triosephosphate 
isomerase (TIM) 

Barstar-like 

Globins 

Truncated 
hemoglobin 

Aldolase 

Class Fold Superfamily Family 

Cupredoxin-
like GroEs-like Alcohol 

dehydrogenase
-like, N-
terminal 
domain 



14

assigned manually according to the gross orientation of secondary structures. 
Furthermore, proteins are clustered into topologies (or folds) according to 
their topological connections and numbers of secondary structure elements. 
Finally, proteins with highly similar structures and functions are clustered 
into homologous superfamilies. The assignments of structures to fold groups 
and homologous superfamilies are made by sequence and structure 
comparisons. The latest update of the CATH database is June, 2009, version 
3.3, containing 128 688 domains, clustered in 1233 topologies and 2386 
homologous superfamilies. This update contains 53 132 PDB entries from 
before March 02, 2009. 

1.5.3 Comparing protein structures 

Structure classifications such as SCOP and CATH provide comprehensive 
descriptions of structural and evolutionary relationships between all proteins 
with known structures. Due to the fact that structures are more conserved 
than sequences (Rost, 1997), very distant evolutionary relationships can be 
revealed by structure comparison methods. Apart from the database building, 
structure comparison is often required when searching a newly determined 
structure in the PDB for similar structures, so that more functional 
annotations can be found. However, comparing protein structures by 
superposing all atoms of one protein onto the other as rigid bodies is very 
computationally expensive (even if simplified by superposing Cα atoms 
only). Still, it is widely used when subtle structural changes need to be 
detected, for example when a protein loads a ligand. An all-against-all 
comparison of all proteins in the PDB takes months of computational time. 
Moreover, rigid body superposition methods often fail to detect the global 
similarity between proteins with large motions such as hinge-bending (see 
Fig. 9 in Paper IV  for an example). Efficient and yet accurate structure 
comparison methods are required, as more and more structures become 
available in the PDB. Secondary structure based comparison methods 
(Orengo et al., 1992; Madej et al., 1995; Kawabata and Nishikawa, 2000; Lu, 
2000; Yang and Honig, 2000; Harrison et al., 2003; Krissinel and Henrick, 
2004; Vesterstrom and Taylor, 2006) have been introduced to facilitate 
structure comparison. These methods compare SSEs of protein structures 
first and then carry out a more careful Cα alignment between pairs of protein 
molecules [for reviews see Gibrat et al. (1996), Carugo and Pongor (2002) 
and Carugo (2006; 2007)]. In structure database searching, the first step is 
vital in rapidly eliminating non-similar structures and identifying the 
structurally similar parts between proteins, since it is this step that enables 
the efficiency of SSE based structure comparison methods. However, these 
methods are limited by the inherent drawbacks of the secondary structure 
description, that is, on average ~40% of amino acids in protein structures are 
simply classified as random coils (or loop regions) which carry no structural 
information.  
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Recent observations of rich and regular structural conformations in loop 
regions (Oliva et al., 1997) inspired researchers to develop structure 
comparison methods by representing the backbone structures of proteins as 
1D strings of backbone path in the 3D space (Zhi et al., 2006) or shape 
strings (Ison et al., 2005). A shape string is a 1D geometrical string with 
each symbol representing a clustered region of φ/ψ torsion angle pairs in the 
Ramachandran plot (Ramachandran and Sasisekharan, 1968). Although 
these methods have not been fully developed yet, their advantages in 
representing the protein structures in loop regions and the rapid database 
searching for similar structures have already been shown. It is worth to 
review these methods to arouse attentions from more researchers. It is also 
necessary to discuss the advantages and disadvantages of these methods 
compared to rigid body superposition methods and SSE based methods, and 
to point out the future search directions regarding shape strings. This has 
been done in Paper IV  and also in the present summary. 
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2 Methods and materials 

2.1 Properties of shape strings 

2.1.1 Definition of shape strings 

A shape string is a one dimensional string composed of eight symbols (i.e. A, 
K, S, R, U, V, T and G, see Figure 1) which correspond to eight clustered 
regions of backbone dihedral angles (i.e. φ/ψ angles) in the Ramachandran 
plot (Ramachandran and Sasisekharan, 1968; Ison et al., 2005). 

The planarity of the peptide bond in proteins was noted already in 1951 
by Pauling et al. As a result of this planarity, the backbone conformation in a 
polypeptide chain can be described by a pair of torsion angles, φ and ψ, per 
residue. Thus, the most compact, yet complete, description of the backbone 
structure needs just two numbers (strictly speaking there is also the ω angle, 
but it is almost always 180 degrees) per amino acid. In 1963, Ramachandran 
et al. noted that only a few combinations of these torsion angles are possible 
in proteins. They predicted three commonly allowed regions: αR, αL and β, 
for φ/ψ-angle pairs in the Ramachandran plot, based on the analysis of steric 
hindrances of short peptides (Figure 4a and 4b). Recent studies on the 
Ramachandran plot by using high-resolution X-ray crystallography protein 
structures in the PDB, showed that the allowed regions of φ/ψ-angle pairs in 
the observed plot differ from the original Ramachandran plot (Kleywegt and 
Jones, 1996; Chakrabarti and Pal, 2001; Hovmöller et al., 2002; Lovell et al., 
2003). The first main difference is that αR, αL and β-sheet regions are 
diagonal in the observed Ramachandran plot (Figure 4c and 4d) while in the 
original Ramachandran plot the edges of these regions are mostly parallel to 
one or both of the φ or ψ axes (Figure 4a and 4b). The second is that the β-
region is split into two diagonal lobes: the β-sheet region (left) and the 
polyproline II region (right) (Kleywegt and Jones, 1996; Hovmöller et al., 
2002) (Figure 4c). The third is that the two most populated regions for 
glycine (Figure 4d) are in regions predicted to be only permissible in the 
standard Ramachandran plot. These discrepancies were explained partly in 
terms of local electrostatic interaction by Ho et al. (2003).  

Knowing that the allowed combinations of φ/ψ angles in the 
Ramachandran plot are highly clustered, we can assign a symbol to each 
cluster in the Ramachandran plot as defined by Figure 1. The backbone 
structure of a protein can then be expressed as a 1D string of such symbols 
(one symbol for each amino acid), i.e. a shape string. Each shape symbol in 
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the shape string corresponds to a certain region of backbone dihedral angles 
in the Ramachandran plot. The shape string of an entire protein carries a 
description of the entire 3D backbone structure. In contrast, the common 
secondary structure description with only 3 symbols, H (helix), S (sheet) and 
R (random coil), can describe helices and sheets accurately, but carries no 
information about the structure of the other 40% of all residues that are in 
loop regions.  

(a) (b)

 

(c)

 

(d)

 

Figure 4: (a) and (b) are the classical Ramachandran plots predicted by 
Ramachandran and Saisekharan (1968), and (c) and (d) are obtained from high 
resolution X-ray protein structures from the PDB by Hovmöller et al. (2002). (a) is 
actually modeled for alanine, but often taken as typical for all non-glycines except 
proline, while (b) is for glycine. (c) is for all 19 non-glycines amino acids and (d) is 
for glycine. [Reproduced from Hovmöller et al., (2002) with permission] 
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2.1.2 Statistics on shape strings 

Among the eight shapes (Figure 1), the A shape is the most abundant with 
~45% of all residues (Table 1). This is because almost all residues in α-
helices are of the A shape and also a significant part of residues in random 
coil have the A shape. The second most abundant shape symbol is S which 
accounts for nearly 25% of all residues, since most residues in β-sheets and 
some in random coils are of the S shape. The R shape accounts for 16.4% of 
all residues. It corresponds to the so-called polyproline II region, but it is 
found also in many slightly distorted β-strands. The name polyproline II has 
historical roots (Adzhubei and Sternberg, 1993) but does not mean that all or 
even most of the residues in this region are proline. In fact only 15.8% of the 
residues in the polyproline II region are prolines (see http://www.fos.su.se 
/~pdbdna/). The K shape (6.5% of all residues) is typically found as a 
terminating residue of α-helices. The T shape is the left-handed alpha-helical 
region αL and is the most common conformation for glycine (Figure 1) but is 
rare for most other amino acids so that in total only 4.5% of all residues have 
T shape. The shapes U, V and G are less abundant, with 1.2-1.4% each, but 
they are also very important since they contain extra information in the loop 
regions which is lacking in the standard secondary structure description. The 
distribution of shape symbols changes dramatically given the shape symbol 
of the preceding amino acid (Table 1 and Figure 5). For example, while in 
total, the A shape accounts for nearly 45% of all residues, the probability for 
a residue with A shape following a residue with the A shape is 80% but after 
an amino acid with the S shape, the probability for being the A shape is only 
11%.  
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Figure 5: Distribution of eight shape symbols for all residues (represented by All  in 
the legend, which gives out the background composition of shape symbols) and 
those following a residue with each of the eight shape symbols (S, R, U, V, K, A, T 
and G in the legend). See also Table 1 for detailed percentage values. [From Paper 
IV , Fig. 4] 

Table 1: Percentages for the eight shape symbols for all residues and for those 
following a residue with each of the eight shape symbols. Complementary to Figure 
5. [From Paper IV , Table 1] 

          Second a.a.
First a.a. 

S (%) R (%) U (%) V (%) K (%) A (%) T (%) G (%)

All 24.7 16.2 1.3 1.1 6.4 44.7 4.5 1.2 
S 54.2 24.7 1.4 1.4 3.2 11.2 2.3 1.6 
R 31.2 27.9 1.5 1.8 5.1 24.0 7.4 1.0 
U 15.2 33.6 1.3 2.1 4.4 36.5 3.3 3.7 
V 35.0 23.7 1.6 2.5 7.9 24.6 2.8 1.9 
K 24.8 24.5 2.3 1.4 6.2 18.2 19.2 3.5 
A 5.7 3.1 1.0 0.5 8.4 78.7 2.0 0.6 
T 28.9 35.6 1.6 1.8 6.1 15.0 10.1 1.0 
G 20.8 22.5 1.8 2.2 17.7 28.4 3.6 3.1 

One of the most prominent advantages of shape strings over secondary 
structures is their ability to describe the detailed conformation in loop 
regions. Table 2 shows the distribution of short turns connecting two helices, 
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a helix and a strand, a strand and a helix and two strands. Some shape string 
fragments, e.g. RAKTR, appear very often, which indicates the existence of 
characteristic conformations also in loop regions. 

Table 2: Frequencies of the shape string fragments of short turns or loops (2 to 5 
amino acids long), connecting two helices (H*H), a helix and a strand (H*S), a 
strand and a helix (S*H), and two strands (S*S), respectively. For each case, the five 
most frequent shape string fragments are listed. As loops getting longer, there are of 
course more possible shape string fragments, making each individual shape string 
fragment less abundant, as seen by low percentages. Note, however, that the shape 
string fragment RAKTR is very common between two strands. See also Fig. 7 in 
Paper IV  for the structural alignment of 313 protein segments each of which 
contains two strands connected by the five-long turn with the shape string RAKTR. 
The three-state secondary structure HSR (helix, sheet and random coil) is defined by 
mapping the eight-state DSSP (Kabsch and Sander, 1983a) definition to HSR with 
the scheme: H, I and P to H, E to S and the rest to R. Shape strings are defined 
according to Figure 1. The existence of the A shape following a helix, e.g. the AS 
shape string fragment between two helices, are caused by differences in definitions 
of DSSP and shape strings. The statistics is based on a non-redundant set of PDB 
containing 4274 protein chains. [Modified from Paper IV , Table 2] 

 H*H   H*S   S*H   S*S   
Sizea Shapes Count % Shapes Count % Shapes Count % Shapes Count % 

2 RR 551 18.6 RA 316 14.9 AS 438 17.5 TT 1600 38.2 
 SR 260 8.8 TR 289 13.7 SR 339 13.6 GK 697 16.7 
 KR 221 7.4 SA 215 10.2 RR 289 11.6 AK 251 6.0 
 AS 170 5.7 TS 209 9.9 KS 226 9.1 GA 184 4.4 
 RS 162 5.5 KT 132 6.2 SS 135 5.4 RT 161 3.9 
3 TSR 248 8.4 KTR 410 13.3 SAS 132 6.8 SAK 115 5.6 
 KRR 165 5.6 TRA 277 9.0 SKS 67 3.4 RRR 102 4.9 
 ARR 156 5.3 KTS 264 8.5 RRR 66 3.4 AKG 91 4.4 
 TRR 146 4.9 TSR 190 6.1 RAS 56 2.9 SAA 79 3.8 
 KSR 112 3.8 ATR 148 4.8 ASR 54 2.8 ASR 74 3.6 
4 KTRR 198 8.4 KTRA 203 7.2 AKRR 37 2.2 AAKT 286 9.1 
 KTSR 118 5.0 ATRA 120 4.3 RRSR 34 2.0 AAAT 282 9.0 
 ATRR 95 4.0 KTSR 110 3.9 SRRR 22 1.3 ASAK 144 4.6 
 KTSS 56 2.4 KTRK 93 3.3 SAAR 21 1.3 RRTR 137 4.4 
 KTRS 49 2.1 KTRR 88 3.1 RRRR 20 1.2 AKTR 131 4.2 
5 KTASR 60 3.5 RRRTR 38 1.9 RAKRR 33 2.1 RAKTR 492 18.3 
 ATASR 33 1.9 KTASA 38 1.9 RAARR 26 1.6 RAATR 153 5.7 
 TSRRR 28 1.6 ATASA 32 1.6 RRTRR 23 1.4 RAKTS 97 3.6 
 UAARR 18 1.1 RSRTR 30 1.5 SSAAS 15 0.9 SAKTR 76 2.8 
 KTKSR 18 1.1 KTRAS 19 1.0 RRTRS 11 0.7 AAATR 67 2.5 

aSize of the turn in between two secondary structure elements 
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2.2 Predicting zinc-binding sites in proteins  

2.2.1 Statistics and properties of zinc-binding sites in proteins 

Most Zn atoms in proteins (78%, see Table 3) bind to 3 or 4 amino acid 
residues (called Zn3 and Zn4; Znm refers to Zn atoms coordinated by m 
amino acid residues), that is, 90% of all zinc-binding Cys (cysteine), His 
(histidine), Asp (apartate) and Glu (glutamate) are Zn3 or Zn4 binding. Zinc 
atoms that bind to 4 residues and have no bound water molecules are mostly 
structural, while those binding to 3 residues are generally catalytic (Auld, 
2001). Figure 6 shows an example of a protein, alcohol dehydrogenase, with 
the PDB code 2OHX (Al-Karadaghi et al., 1994), which contains both a Zn3 
and a Zn4 binding site. Many Zn3 and Zn4 atoms have other metal atoms 
nearby, bridged by a side-chain atom or a water molecule. These bridging 
metal atoms work together to ensure the protein function. Such Zn atoms are 
called co-catalytic zinc, according to Auld (2001). Zn atoms that bind to 
only one or two residues are generally located on the surfaces of proteins. 
They are most probably bound to proteins during crystallization (McPherson, 
1999) but have no biological function. We focused here on predicting 
biologically important zinc-binding sites, i.e. structural (Zn4), catalytic (Zn3) 
and co-catalytic zinc-binding sites. Inter-chain Zn atoms, e.g. Zn atoms that 
bind to two residues in one chain and one residue in another chain, and one 
Zn5 atom were also included. There were in total 295 biologically bound Zn 
atoms, binding to 531 Cys, 325 His, 92 Asp and 51 Glu (Table 3).  

 

Figure 6: An example of a zinc-binding protein: liver alcohol dehydrogenase [PDB 
code 2OHX in (Al-Karadaghi, Cedergren and Hovmöller, 1994)]. Zn401 binds to 
three amino acid residues and is catalytic, whereas Zn402 is fully coordinated by 
four cysteines and plays a structural role. [From the supplementary data of Paper I ] 
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Table 3: Number of residues bound to each type of Zn atom. The statistics are based 
on a non-redundant set of PDB retrieved by the UniqueProt (Mika and Rost, 2003) 
program with HSSP (homology derived secondary structure of proteins) distance 
(see Appendix 1 for definition of HSSP distance) set to zero. This dataset 
(containing 2727 chains with 564 444 residues)  is the same as that used by Passerini 
et al. (2006) for testing the metal-binding site prediction. Among these 2727 chains, 
1136 residues were identified binding to 375 zinc atoms. These 1136 residues were 
distributed in 235 chains (see Paper I  for details about how zinc-binding residues 
were identified). The statistics for zinc-binding sites below are also based on this 
dataset. [Modified from Table 1 in Paper I ] 

 Cys His Asp Glu Others Subtotal 
No. of Zn 

atoms 
No. of chains 

Zn1a 1 10 9 10 3 33 34 19 
Zn2a 3 32 15 26 7 83 45 37 
Zn3a 25 134 54 30 7 250 89 73 
Zn4a 499 190 41 24 15 769 205 148 
Zn5a 7 1 0 0 2 10 2 2 
Co-cat Znb 46 59 38 22 10 175 67 35 
Subtotal 535 366 116 85 24 1136 375 235 
Subtotalc 531 325 92 51 24 1023 295 210 

aZn1, Zn2, Zn3, Zn4 and Zn5 are Zn atoms binding to 1, 2, 3, 4 and 5 amino acid residues, 
respectively. bCo-catalytic Zn: Zn atoms that bind to 3, 4 or 5 amino acids and are bridged to 
another metal atom(s) via side chain atoms or water molecules. cSubtotal for Zn3, Zn4, Zn5 
and co-catalytic Zn. 

2.2.1.1 Distribution of zinc-atoms per chain 

Most zinc-binding protein chains (88%) contain only one or two Zn atoms 
(Figure 7). This is the case for other metals as well, although a few metal-
binding proteins are very metal-rich. For example, the protein cyanobacterial 
photosystem I with the PDB code 1JB0 contains 37 Mg atoms (embedded in 
ligands Alpha chlorophyll a) and two Fe atoms (embedded in ligands 
Iron/sulfur cluster) in a single polypeptide chain (the A chain) (Jordan et al., 
2001). 
 

Figure 7: Percentages of 
chains having 0 Zn atoms, 1 
Zn atom, 2 Zn atoms, 3 Zn 
atoms, 4 Zn atoms and over 
4 Zn atoms, based on the 
dataset mentioned above 
which contains 2727 chains. 
[Unpublished results] 
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2.2.1.2 Distances between zinc-binding residues along the 
sequence 

A protein chain is usually composed of hundreds of amino acids, all linearly 
connected by peptide bonds. The average length of zinc-binding chains is 
219 amino acids (very close to the average length of all 2727 unique chains 
in our dataset, which is 206). Zinc-binding residues are usually rather closely 
located in sequence. For most zinc-binding sites, all the 3 or 4 zinc-binding 
residues are located within 100 residues in sequence (Figure 8). About 50% 
of the zinc-binding residues are separated by less than 10 residues. For Zn4, 
the closest zinc-binding residues are most frequently separated by 2 amino 
acids and for Zn3, 1 or 3. The average distances of adjacent zinc-binding 
residues which bind to the same Zn atom are 32 for Zn3 and 22 for Zn4. For 
most zinc-binding residue groups (residues binding to the same Zn atom), 
there is at least one pair of residues closer than 10 amino acids, although 
other residues might be distantly separated. The average distance for the 
closest pair of each zinc-binding residue group is 11 for Zn3 and 4 for Zn4.  
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Figure 8: Distance between zinc-binding residues in sequence: (a) Distribution of 
the distance of adjacent zinc-binding residues binding to the same Zn atom. (b) 
Distribution of the distance in sequence from the first zinc-binding residue to the 
following ones that bind to the same Zn atom. (c) Distribution of the distance for the 
closest residue pair in each zinc-binding residue group (residues binding to the same 
Zn atom). [Unpublished results] 
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2.2.1.3 Amino acids at zinc-binding sites and their 
neighbouring sites 

The four residues Cys, His, Asp and Glu constitute ~98% of all residues 
bound to zinc for Zn3 and Zn4 (Table 3). His dominates for Zn3 (54% His, 
22% Asp, 10% Cys and 12% Glu) and Cys for Zn4 (65% Cys, 25% His, 
5.3% Asp and 3.1% Glu). Figure 9 shows clearly the dominance of CHDE 
(Cys, His, Asp or Glu) at zinc-binding sites. In stark contrast to this, the 
residues immediately adjacent to the zinc-binding sites show a frequency 
pattern quite close to the overall frequencies in proteins. It probably 
indicates that the type of amino acids adjacent to zinc-binding sites has no 
critical influence on the metal-binding domain. This observation might be 
important for protein engineering such as the study of zinc-binding site 
mutations (Windsor et al., 1994). Note also in Figure 9 that His is 
predominant in Zn3 (catalytic zinc) binding sites, while Cys is preferred in 
Zn4 (structural zinc) binding sites. This dramatic difference in the preference 
of the ligand residues for Zn3 and Zn4 binding sites might be employed to 
distinguish them from each other in prediction. 
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Figure 9: Amino acid content composition at zinc-binding sites and their four 
nearest adjacent residue positions for (a) Zn3 and (b) Zn4. The background amino 
acid content composition was estimated by averaging the amino acid compositions 
in all 2727 protein chains in the dataset mentioned above. If a residue within one of 
the four nearest adjacent residue positions to a zinc-binding site also binds to zinc, it 
was not included in calculating the amino acid content composition on that position. 
[Unpublished results] 
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2.2.1.4 Conservation level at zinc-binding sites  

Ouzounis et al. (1998) showed that ligand binding residues are highly 
conserved (see Paper I  for definition of the conservation level). This is 
certainly true for zinc-binding residues. For Zn3 and Zn4, the conservation 
level of zinc-binding residues is much higher than the background level 
(Figure 10). However, for Zn1 and Zn2, their conservation levels are not 
significantly different from the background. This probably indicates that zinc 
atoms at these sites are not biologically essential. A more detailed analysis 
on the Zn3 and Zn4 binding sites and their adjacent residues shows that the 
conservation levels of residues at zinc-binding sites are dramatically higher 
than those of their adjacent residues (see the clear peaks in Figure 11).  
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Figure 10: Conservation levels (ranging from 0 to 1) above the background level for 
residues bound to zinc according to the types of binding sites. The background 
conservation level for CHDE is 0.48-0.62. It was estimated by averaging the 
conservation levels of all amino acids of each type for all the 2727 unique chains 
described above. The conservation level is defined in Paper I . [Unpublished results] 
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Figure 11: Average conservation levels at zinc-binding sites and their 10 nearest 
adjacent residue positions. If a residue within the 10 nearest adjacent residue 
positions to a zinc-binding site also binds to zinc, it is not included in calculating the 
average conservation level on that position. [Unpublished results] 
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2.2.2 Method description for PREDZINC  

The zinc-binding prediction method consists of an SVM based predictor and 
a homology-based predictor. In this study, only four types of amino acids, i.e. 
Cys, His, Asp and Glu were predicted, since these four amino acids comprise 
~98% of all residues binding to Zn3 and Zn4. For the SVM based predictor, 
CHDEs were selected in both the training set and the test set and were 
encoded into single-site vectors and pair-based vectors (see Appendix 2 for 
methods to encode single-site vectors and pair-based vectors) which 
represented a window of residues centered at each selected CHDE or a pair 
of selected CHDE respectively. The optimized model was learned by 
training the SVM on the training set and this model was then used by SVM 
to make the prediction on the test set. The publicly available Gist SVM 
package (version 2.1.1) (Pavlidis et al., 2004), was used to implement SVM. 
The kernel was set as radial basis and all other parameters kept at their 
default values. SVM predictions on individually selected residues were 
obtained by combining the predictions using single-sites vectors and pair-
based vectors with a gating network defined by 

( ) ( ) ( ){ } ( ))(|1)(|11)(|1)(|1 xfYPxfYPxfYPxfYP spsg =⋅=−+===  (1)

where x is the SVM input of each test instance, f (x) denotes the margin of 
the test instance x, P (Ys=1 | f (x)), P (Yp = 1 | f (x)) and P (Yg = 1 | f (x)) are 
the probabilities of zinc-binding predictions using single-site vectors, pair-
based vectors and the gating network, respectively. For the homology-based 
predictor, each target chain in the test set was searched in the training set for 
remote homologues using a segment matching method (see the description 
of the homology detection method FragMatch). Homology-based predictions 
of zinc-binding residues were made by mapping the selected CHDE residue 
groups in the target chain to the binding sites in detected homologues. 
Finally, SVM predictions and homology-based predictions were combined to 
reach a consensus. The whole prediction procedure is illustrated in Figure 12. 
Details about SVM based predictor and homology based predictor are 
described in Paper I .  
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Figure 12: Flowchart for PREDZINC. SVM predictions and homology-based 
predictions are combined into the final consensus prediction. [Modified from Fig. 1 
in Paper I ] 

2.2.2.1 Support Vector Machines (SVM) 

SVM (Vapnik, 2000) is a supervised learning algorithm which is efficient in 
recognizing subtle patterns in large-scale and complex datasets. They have 
been widely used in different areas of computational biology (Byvatov and 
Schneider, 2003; Noble, 2004). SVM discriminates two different classes of 
feature vectors (n-dimensional vectors with numerical values which 
represent properties of the example) by first mapping the input vectors into a 
higher dimensional feature space using a kernel function and then doing a 
linear separation there. A simple case is a binary classification problem on a 
two-dimensional (2D) space where two sets of dots (square and round) need 
to be separated (Figure 13). Square dots belong to class A, labelled as -1, 
while round dots belong to class B, labelled as +1. There are in principle 
numerous hyperplanes (lines in 2D space) to separate these two classes of 
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dots. As shown in Figure 13a, hyperplane H1, H2 and H3 are successful 
classifications since they all separate two classes of dots correctly. However, 
H4 is an unsuccessful hyperplane since it mis-classifies some square dots. 
Two questions are: (i) which one of the three successful hyperplanes, H1, H2 
and H3 is the best and (ii) does an optimal hyperplane exist and how can it 
be found? In mathematics, a hyperplane can be expressed as  

0)( =+〉⋅〈= bf xwx  (2)

where w is the vector normal to the hyperplane, x is a dot on the hyperplane 
and b is signed distance from the origin to the hyperplane (Figure 13b). With 
this definition, all dots above the hyperplane have f (x) > 0 and those below 
the hyperplane have f (x) < 0. Therefore, in our example, a successful 
hyperplane should have negative f (x) values for all square dots and positive 
values for the round dots.  
 

(a)     

(b) (c)  

Figure 13: Illustration of binary classification on 2D space: (a) four hyperplanes 
that separate two classes of dots (square and round) on 2D space. H1, H2 and H3 
separate these two classes of dots correctly (of which H2 is the best since it has the 
maximum margin of the three) while H4 does not, (b) the mathematical expression 
of a hyperplane, and (c) the separation hyperplane and its two parallel margin 
hyperplanes which hit the nearest dots on each class to the separation hyperplane.  
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For an ideal separation hyperplane, we would expect it not only to 
classify the visible dots (i.e. dots in the training set) but also the potentially 
added dots (i.e. dots in the test set) correctly. This requires the remaining 
space between the hyperplane and the nearest dot in class A and class B 
maximized so that as many dots as possible can be added without breaking 
the correct separation. In mathematics, this actually requires that the 
separation hyperplane should be as far away from the data of both classes as 
possible, or in another way, that the margin as shown in Figure 13c should 
be maximized. The margin m can be calculated as  

||||

2

w
=m  (3) 

where w is the vector normal to the hyperplane as described before. In 
reality, non-linear classification with different kernel functions has been 
used. Please refer to the work of Cristianini and Shawe-Taylor (2000) and 
Vapnik (2000) for more descriptions on SVM.  

In this study, a feature vector represents the conservativity and 
physicochemical properties of selected amino acids which are either zinc-
binding or not. The publicly available Gist SVM package [version 2.1.1, 
(Pavlidis et al., 2004)] with the standard radial basis kernel of the form 
exp[(–D(x,y)2)/(2w2)] was used to implement SVM. 

2.3 Predicting the 1D structure of proteins 

2.3.1 Data description 

The dataset used in this study was a non-redundant set of protein chains in 
the PDB (as of June 2007) culled at 30% sequence identity by the PISCES 
server (Wang and Dunbrack, 2003), containing 5860 chains (1 480 756 
amino acids). The three-state secondary structure (H: helix, S: sheet and R: 
random coil) of proteins was defined by converting the eight-state DSSP 
(Kabsch and Sander, 1983a) definition with the classical scheme: H, G and I 
to H, B and E to S and the rest to R. The eight-state shape string was defined 
according to Figure 1. The three-state shape string was transformed from 
eight-state shape string with the following scheme: S, R, U and V to S, K 
and A to H, T and G to T. The relation between shape strings and secondary 
structures from DSSP is shown in Table 4 and Table 5. 
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Table 4: The relationship between the eight-state DSSP definition and eight-state 
shape string definition. All numbers are given in percentages. [From supplementary 
Table 1 in Paper II ] 

  DSSP 
Shape 

B E G H I S T R Sum 

S 0.55 16.54 0.00 0.00 0.00 2.01 0.05 5.21 24.37 
R 0.48 4.10 0.04 0.00 0.00 1.63 0.96 8.86 16.07 
U 0.04 0.23 0.02 0.01 0.00 0.26 0.09 0.69 1.33 
V 0.02 0.21 0.00 0.00 0.00 0.23 0.07 0.61 1.15 
K 0.01 0.18 0.80 0.63 0.00 0.91 2.64 1.16 6.33 
A 0.00 0.48 2.87 33.94 0.02 2.28 4.71 0.91 45.20 
T 0.00 0.10 0.10 0.01 0.00 0.87 2.59 0.71 4.38 
G 0.02 0.10 0.06 0.04 0.00 0.32 0.24 0.38 1.16 

Sum 1.12 21.94 3.89 34.64 0.02 8.51 11.34 18.54 100 

Table 5: The relationship between the three-state DSSP definition and the three-
state shape string definition. All numbers are given in percentages. Almost all amino 
acids in helices or sheets according to the DSSP have the H or S shape, respectively, 
but the reverse is not true. As many as half of the amino acids with the S shape are 
actually found in stretches of random coils. [From Table 3 in Paper II ] 

DSSP 
Shape  

Helix Sheet Random coil Sum 

Shape H (A+K) 37.8 0.7 13.2 51.7 
Shape S (S+R+U+V) 0.1 20.8 21.7 42.6 
Shape T (T+G) 0.2 0.2 5.3 5.7 
Sum 38.1 21.7 40.3 100 

 

2.3.2 Method description for Frag1D 

Given a protein sequence to be predicted, a sliding window of N-residue (N 
varies from 7 to 15, typically 9) long fragment with their respective profiles 
(see Appendix 3 for how profiles are obtained) of this target sequence, was 
searched among all N-residue segments in the training set. At each position 
of a target sequence, the 100 segments with the highest profile-profile scores 
were kept, together with their accompanying PDB chain IDs and positions in 
the sequence. The profile-profile score between two compared N-residue 
segments was defined as 

∑ ∑
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where α and β are profiles for the two compared N-residue segments 
respectively, N is the window size and P is the background frequency for the 
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20 standard amino acids. In this study, N was set to 9. This profile-profile 
score was derived from the PICASSO3 score (Mittelman et al., 2003). After 
that, the above selected top 100 segments with the highest profile-profile 
scores were further sorted by the weighted profile-profile score and only the 
top 10 were kept after re-sorting. The weighted profile-profile score was 
defined as  
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where Pinfon is the information score which was defined as 
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where ∑ =
= 20

1 ini )/(/)/(
iinini pqpqX , i = 1, 2, 3, …, 20, qni denotes the 

probability for amino acid i at position j in the profile, pi is the background 
frequency for amino acid i. Equation (6) is empirical; the closer the profile is 
to the background composition, the larger the Pinfo score is. This score ranges 
from 0 to 0.90. Score2 [defined by Equation (5)] was assigned to each of 
these selected segments.  

Not all of these 10 selected N-residue segments were used to predict the 
local structure of the query segment, nor were they used with equal weights. 
Although the dataset was culled at ≤ 30% (or 25% or 20%) sequence 
identity, homologues to the target chain may still exist in the training set. 
These remotely homologous proteins can be accurately predicted by 
FragMatch (see description of the method FragMatch). The number of 
segments which were actually used for secondary structure and shape string 
prediction depended on whether presumed homologues are detected or not 
for the target chain. If a homologue to the target chain was predicted, only 
the top 5 segments were used for predicting the secondary structure, since 
the conformation of the selected segments was believed to be closer to the 
native conformation of the target protein to be predicted at that position. 
Otherwise the top 10 were used. Among these 5 or 10 segments actually 
used for local structure prediction, some may belong to the predicted 
homologues. Their scores [i.e. Score2 defined by Equation (5)] were 
multiplied by a factor between 1 and 3 based on the homology score which 
represented the confidence of the predicted homologues. 

The probability for a residue of the target appearing at each state (H, S 
or R for three-state secondary structures and S, R, U, V, K, A, G or T for 
eight-state shape strings) was predicted as the sum of weighted scores of all 
matched segments with the state of the residue aligned at that position 



32

equaling that state. As mentioned above, if there were homologues detected 
for the target chain, the top 5 candidate fragments for each position were 
used for prediction; otherwise the top 10 were used. Since a residue in an N-
residue target segment may be aligned to at most 9 positions of a candidate 
segment, there were in total at most either 45 or 90 candidate segments 
aligned to a target segment depending on whether there were homologues 
predicted for this target chain or not (see Figure 14 for an example). The 
state with the highest probability was predicted as the secondary structure or 
shape string state for that residue. In case of equal probability, the secondary 
structure was predicted in descending order as R, S and H, and the shape 
string in the order of G, T, V, U, K, S, R and A. We have noted that S was 
often under-predicted. In order to remedy this, an empirical 3% probability 
score was added to the S state. The thus calculated probability for the residue 
to be predicted on each state was taken as the raw confidence of the 
prediction. However, the Q3, S3 and S8 were on average 5-10% better than 
this raw confidence. We thus normalized this raw confidence, such that for a 
prediction with a given confidence, one might on average expect the Q3, S3 
and S8 accuracy to be the same as the confidence. The raw confidence was 
normalized by a linear function: y = ax+b, where x is the raw confidence and 
y is the normalized confidence. The parameters a and b were obtained by 
first plotting raw confidence against the real Q3, or S3 or S8, and then 
making a linear regression (see Figure 15).  
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Target PFAQAYDSVAIRADVEM  PFAQAYDSVAIRADVEM  Chain ID 

Posa No. Candidate secondary structure Wscoreb Candidate sequence  
1 1 HHHHHHHHH-------- 2.2 PIMQGWDWF-------- 1Y42X 
1 2 HHHHHHHHH-------- 2.2 PGLQALDEE-------- 1N3LA 
1 3 HHHHHHHHR-------- 1.8 PAIQAAPSF-------- 1R6UA 
1 4 HHHHHRRSS-------- 1.0 ELMAAADLL-------- 2IW1A 
1 5 HHHRRRRSS-------- 1.0 ELLEEYDWY-------- 1S4NA 
2 1 -HHHHHHHHH------- 2.2 -IMQGWDWFE-------  1Y42X 
2 2 -HHHHHHHHH------- 2.2 -GLQALDEEY-------  1N3LA 
2 3 -HHHHHHHRH------- 1.8 -AIQAAPSFS-------  1R6UA 
2 4 -HHHHHHHHH------- 1.0 -TLQAYDYLC-------  1P2XA 
2 5 -HHHHHHHHH------- 1.0 -MLRAVDRFH-------  1YOVA 
3 1 --HHHHHHHHH------ 2.2 --MQGWDWFEL------  1Y42X 
3 2 --HHHHHHHHR------ 2.2 --LQALDE EYL------  1N3LA 
3 3 --HHHHHHRHH------ 1.8 --IQAAPS FSN------  1R6UA 
3 4 --RRRSSSSSS------ 1.0 --LDGARWFHF------  2AFBA 
3 5 --HHRHHHHHH------ 1.0 --LNVFEY VSI------  1I5PA 
4 1 ---HHHHH HHHH----- 2.2 ---QGWDWFELF-----  1Y42X 
4 2 ---HHHHH HHRR----- 2.2 ---QALDE EYLK-----  1N3LA 
4 3 ---HHHHH RHHH----- 1.8 ---QAAPS FSNS-----  1R6UA 
4 4 ---SSSSS SSSS----- 1.0 ---AGWDWISAN-----  2ICHA 
4 5 ---HHHHH HHHH----- 1.0 ---QAIDL RHLE-----  1W27A 
5 1 ----HHHH HHHHH---- 2.2 ----GWDWFELFY----  1Y42X 
5 2 ----HHHH HHRRR---- 2.2 ----ALDE EYLKV----  1N3LA 
5 3 ----HHHH HRRRR---- 2.0 ----AADI LLYNT----  1I6LA 
5 4 ----HHHH RHHHR---- 1.8 ----AAPS FSNSF----  1R6UA 
5 5 ----RRRS SRRRR---- 1.0 ----AVDL IQIDA----  2HXTA 
6 1 -----HHH HHRRRR--- 2.2 -----LDE EYLKVD---  1N3LA 
6 2 -----HHH HHHHHH--- 2.2 -----WDW FELFYQ---  1Y42X 
6 3 -----HHH HRRRRR--- 2.0 -----ADI LLYNTD---  1I6LA 
6 4 -----SSS SSSSSS--- 1.0 -----YDH VHVHTD---  2GAGA 
6 5 -----SSS SSSRRR--- 1.0 -----FDV AVVDAD---  2AVDA 
7 1 ------HH HHRRRRS-- 2.2 ------DE EYLKVDA--  1N3LA 
7 2 ------HH HHHHHHH-- 2.2 ------DW FELFYQQ-- 1Y42X 
7 3 ------HH HRRRRRS-- 2.0 ------DI LLYNTDI--  1I6LA 
7 4 ------RR SSSSSSR-- 1.0 ------DT VLLQANV--  2FWHA 
7 5 ------HH HHHHHHH-- 1.0 ------DI IWLQRDL-- 2HBJA 
8 1 -------H HHRRRRSS- 2.2 -------E EYLKVDAQ- 1N3LA 
8 2 -------H HHHRSSSS- 2.2 -------F YQQGVQMQ- 1Y42X 
8 3 -------H HRRRRRSS- 2.0 -------I LLYNTDIV-  1I6LA 
8 4 -------S SSSSSSSS- 1.0 -------F LLLQMDFG- 2OBDA 
8 5 -------S SSSSSSSS- 1.0 -------F LLFGADVV- 1EWFA 
9 1 -------- HHRRRRSSS 2.2 -------- EYLKVDAQF 1N3LA 
9 2 -------- HHHRSSSSS 2.2 -------- YQQGVQMQI 1Y42X 
9 3 -------- HRRRRRSSS 2.0 -------- LLYNTDIVP 1I6LA 
9 4 -------- HHRRRRSSS 1.0 -------- FALMFDQRL 2A7KA 
9 5 -------- HHHHRRSSS 1.0 -------- LALACDIRV 1HZDA 

aPos: position of the fragment that contains the residue of interest bWscore: weighted score of 
the candidate fragment 

For the central residue V to be predicted (shown in bold in the target segments in this figure), 
we find H in 30 cases, S in10 cases and R in 5 cases.  
Sum of weighted scores for H = 56.4 (sum of the values in the column ‘Wscore’ for which the 
residue in the center of the fragment is in the ‘H’ state)                   [Continues to the next page] 
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Sum of weighted scores for R = 9.0 
Sum of weighted scores for S = 10.0 + (56.4+9.0+10.0)*0.03 = 12.3 
Total weighted scores = 56.4 + 12.3 + 9.0 = 77.7 
Probability of H = 56.6 / 77.7 * 100%= 72.6% 
Probability of S = 12.3 / 77.7 * 100% = 15.8% 
Probability of R = 9.0 / 77.7 * 100% = 11.6% 
The secondary structure of the residue V is predicted as H with a raw confidence of 0.726.  
About 63% of all residues are predicted with higher confidence than this one and 37% with 
lower confidence. Notice how few (only three, shaded in green) of the used sequences have a 
Val at the corresponding position. 

Figure 14: An example for predicting the secondary structure. The residue VAL in 
the target chain from PDB entry 1H3F:A (amino acids PRO 176 to MET 192) is to 
be predicted. More than one homologue was predicted for the target chain and thus 
only the top 5 segments at each position were used for predicting the secondary 
structure. [From supplementary Figure 1 in Paper II ] 
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Figure 15: (a) Raw confidence versus the actual percentage of correctly predicted 
residues for three-state secondary structure, three-state shape strings and eight-state 
shape strings. (b) Normalized confidence versus the actual Q3, S3 and S8.  The 
normalization functions as shown in the figure (a) were obtained by the linear 
regression as described in the text. [From supplementary Figure 3 in Paper II ] 
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Figure 16: Outline of the 1D structure prediction procedure. [From Fig. 2, Paper II ] 

After the prediction was made, the 1D structure of the target sequence 
was available with an expected high accuracy. Therefore, structural profiles 
(see Appendix 3) for the target sequence could be built from the predicted 
1D structure and then enrich profiles of the target sequence by structural 
profiles. A second round of prediction was thus carried out with the same 
setting as the first round, but with enriched profiles for also the target 
sequence. The whole prediction procedure is outlined in Figure 16. In 
principle, this procedure can be iterated many rounds until it converges. 
However, we noted that Q3 dropped already at the third round. This is most 
probably because the inaccuracy of structural profiles embedded in the 
predicted 1D structure accumulates quickly as the iteration procedure 
progresses and thus the gain by using such structural profiles is soon 
counteracted by the loss caused by the accumulated inaccuracy. Therefore, 
the final results were obtained from the second round. 

2.4 Detecting remote homologues 

2.4.1 Method description for FragMatch 

Given a target protein sequence, a sliding N-residue (N ranges from 5 to 17, 
typically 9 or 11) fragment of that sequence was searched against all such 

Fragment matching: find 100 top 
candidate fragments for each target 

fragment 

Predict the state of 1D structure based on the 
weighted frequency of 1D structure states 

among matched candidate fragments 

Build the structural profile for the 
target chain based on the predicted 

1D structure and merge it to the 
profile of that target chain 

Given a target sequence 

Output the result after two 
iterations 
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fragments in the database by the profile-profile score defined by Equation (1) 
[see Appendix 3 for how profiles were obtained]. For each fragment in the 
target sequence, up to 150 candidate fragments from difference sequences in 
the database with highest scores to that target fragment were kept; the PDB 
chain identifier (CID) of the candidate sequence to which each selected high-
scoring fragment belongs was recorded as well (see Figure 17 for a 
schematic diagram).  

 

Figure 17: A schematic diagram of the segment matching method. Given a target 
sequence, a sliding N-residue fragment of that sequence is searched in the database 
for high scoring (defined by the profile-profile scoring equation) candidate 
fragments. For each target fragment, up to top 150 high scoring candidate fragments 
are kept, as shown in the table to the right. The bold lines in this table highlight a 
frequently appearing candidate chain: 2G0WA. Note that at some places along the 
sequence, but far from all, the most common amino acid found in related proteins is 
the same as the amino acid at this position (marked in red and bold in the profile 
example). [From Figure 1 in Paper III ] 

PosSegTar1 PosSegCan2 Chain ID Score3 
... ... ... ... 
81 163 2HXWA 123 
81 28 2GOMA 121 
81 106 2G0WA 120 
81 224 2O36A 120 
... ... ... ... 
82 228 1W5TA 209 
82 27 1VQOX 208 
82 107 2G0WA 208 
82 295 2P4HX 203 
... ... ... ... 

126 41 2GLFA 708 
126 317 2BG5A 705 
126 297 1O5KA 703 
126 74 2G0WA 697 
126 130 2BKWA 697 
... ... ... ... 

1Position of the target segment. 2Position of 
the candidate segment. 3Fragmental profile-
profile score calculated according to the 
equation on the left. 

Num AA A V L I P F M K R H G S T C Y N E W D Q 
4 F 1 2 3 2 0 73 1 1 1 1 1 1 1 0 5 1 1 4 1 1 
5 E 7 1 3 1 20 1 0 13 2 1 7 4 1 0 0 7 12 0 14 4 
6 N 3 1 2 1 2 1 0 5 3 3 20 6 3 0 1 13 8 0 21 8 
7 V 4 19 11 46 1 5 1 1 1 0 2 4 1 1 1 1 1 0 1 1 
8 S 10 1 1 1 17 1 0 2 1 1 14 7 4 0 0 8 12 0 14 5 
9 K 7 3 2 1 11 1 1 40 8 1 1 3 6 0 1 2 4 0 1 6 

10 I 2 29 6 50 1 1 2 1 1 0 1 1 1 0 1 1 1 0 1 1 
11 K 6 3 3 2 5 1 1 21 15 1 3 5 6 0 1 7 10 0 2 10 
12 Y 1 2 3 2 1 22 1 1 1 1 1 1 1 0 59 1 1 1 1 1 

 

1M1QA:  GNLKKCPITISSYTLGTEVSFPK… 

Target: NKYFENVSKIKYEGPKSNNPYSF… 

(Candidate sequences) 

Profile example: 
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Equation for calculating the fragmental profile-profile 
score: 
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Some CID tends to appear frequently if they are evolutionary related to 
the target sequence. We made use of this to carry out the homology detection. 
For each candidate sequence, if there were candidate fragments from that 
sequence appearing in the candidate fragment list, a dot plot was drawn by 
plotting the positions of the fragments in the target sequence against the 
positions of the matched fragments in that candidate sequence (see Figure 18 
for an example).  

 

Figure 18: A typical dot plot between a target (1A0CA) and a candidate (2G0WA) 
sequence where dots form long and consecutive lines. This was obtained by using 
the protein sequence 1A0CA from the PDB as the target and searching in a non 
redundant set of PDB (with 5860 chains) cutting at ≤ 30% sequence identity. The 
dashed red line shows the location of the predicted homology region between 
1A0CA and 2G0WA which actually belong to the xylose isomerase-like superfamily 
(c.1.15) according to SCOP version 1.73. Note that the sequence identity between 
1A0CA and 2G0WA is only 16% (obtained by the program ‘needle’ from EMBOSS 
version 3.0.0). At this sequence identity level it is very difficult to detect a 
homologue based purely on comparing amino acid sequences. [From Figure 2 in 
Paper III ] 

More dots on a dot plot means more high-scoring fragments found 
between the target sequence and the candidate sequence and thus may 
indicate a probable homology between these two sequences. However, only 
when these dots form long and consecutive patterns, it is really a strong 
indication of the homology between these two sequences. This is similar to 
the classic dot plot (Maizel and Lenk, 1981) based purely on amino acids, 
but here we used the profile-profile score instead of the equivalence of 
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amino acids. A homology score was derived for each candidate sequence 
from the length and linearity of the pattern and then normalized by the 
sequence length. The algorithm for calculating the homology score from dot 
plots has been described in Paper I  and is also summarized in Figure 19. 
Generally speaking, a dot plot with more dots clustered as long, linear and 
consecutive lines results in a higher homology score.   

 

 

Figure 19: Algorithm for calculating the homology score from dot plots. [From 
Figure 3 in Paper III ] 

If several related target sequences were available, e.g. when a protein 
family was used to classify all proteins in a genome, each individual target 
sequence was first searched in the database, producing a ranking in the same 
way as for a single target sequence. These rankings of different target 
sequences were then combined into a consensus ranking by 
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Algorithm for calculating the homology score from a dot plot 

Step 1: Initializing the score on the dot plot: 
For each diagonal on the dot plot 

1. Set the score of each dot as the number of consecutive dots 

2. Record the position of the diagonal with the top 10 longest 
consecutive dot segments 

Step 2: Calculating the score of each diagonal 

For each diagonal with the top 10 longest consecutive dot segments 

1. The diagonal score is calculated as the sum of the scores of all 
dots on the diagonal and the scores of all dots on the other 
diagonals divided by the distance to that diagonal 

2. Divide the diagonal score by the average length of the target 
sequence and candidate sequence  

Step 3: Calculating the homology score of the candidate 

1. The homology score of the candidate is set as the highest 
diagonal score  
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where Ci is the consensus homology score for candidate sequence i, αj,i is the 
homology score for sequence i in ranking j, p is the power to raise the large 
homology scores in consensus and n is the number of rankings. p was set to 
2 when combining rankings obtained by positive examples. 

If a large training set with both positive and negative examples was 
available, more suitable parameters of the fragment matching method could 
be learned for the specific datasets. Liao and Nobel (2003) showed that 
additional accuracy could be obtained by modeling the difference between 
positive and negative examples. For the method FragMatch, when negative 
examples were available, these negative examples were also searched in the 
test set and a ranking of homology scores was obtained for each negative 
example. These rankings searched by negative examples were first combined 
by Equation (7) and then the negative consensus ranking was combined with 
the positive consensus ranking by 
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where FCi is the final consensus homology score, Ci is the consensus score 
for rankings searched by positive examples, Ni is the consensus score for 
rankings searched by negative examples and q is the power for Ni. q was 
empirically set to 0.6. 

2.4.2 Dataset for evaluating FragMatch 

To evaluate the power of FragMatch for remote homology detection with a 
single target sequence, two datasets, one with 803 pairs of SCOP family 
level domain sequences and the other with 480 pairs of SCOP superfamily 
level domain sequences, were created. The former contains 1606 domain 
sequences each of which has another sequence within the same family while 
all others are not within the same superfamily. The latter contains 960 
domain sequences each of which has another sequence within the same 
superfamily but not the same family while all others are not within the same 
superfamily. These two datasets were derived from 7890 SCOP domain 
sequences retrieved from the Astral Database (Chandonia et al., 2004) 
(version 1.73, Nov. 2007) cutting at ≤ 30% sequence identity level. For each 
domain sequence in the dataset, FragMatch tries to identify its only 
homologue (either at superfamily level or family level) among the rest of 
sequences in the dataset. 

To test the method for protein family classification, a well-benchmarked 
database retrieved from Astral Database (version 1.53) by an E-value 
threshold of 10E-25 was used. This dataset contains 4352 domain sequences, 
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grouped into 1938 families and 1001 superfamilies. For the reliability of the 
evaluation, only families containing at least 5 family members and 10 super 
family members outside of the family were selected. This resulted in 54 
families (see Table 6). For each family, the protein domains within the 
family were considered positive test examples, and the protein domains 
outside the family but within the same superfamily were taken as positive 
training examples. Negative examples were taken from outside of the 
positive sequences' fold, and were randomly split into training and test sets 
in the same ratio as the positive examples.  

Table 6: List of 54 families for which each one contains at least 5 family members 
and 10 super family members outside of the family in 4352 domain sequences 
derived from SCOP version 1.53. [Reproduced from Liao and Noble, (2003) with 
permission] 

 No. of sequences  No. of sequences 
 Positive Set Negative Set  Positive Set Negative Set 
SCOP ID Training Test Training Test SCOP ID Training Test Training Test 
1.27.1.1 12 6 2890 1444 2.9.1.4 21 10 2928 1393 
1.27.1.2 10 8 2408 1926 3.1.8.1 19 8 3002 1263 
1.36.1.2 29 7 3477 839 3.1.8.3 17 10 2686 1579 
1.36.1.5 10 26 1199 3117 3.2.1.2 37 16 3002 1297 
1.4.1.1 26 23 2256 1994 3.2.1.3 44 9 3569 730 
1.4.1.2 41 8 3557 693 3.2.1.4 46 7 3732 567 
1.4.1.3 40 9 3470 780 3.2.1.5 46 7 3732 567 
1.41.1.2 36 6 3692 615 3.2.1.6 48 5 3894 405 
1.41.1.5 17 25 1744 2563 3.2.1.7 48 5 3894 405 
1.45.1.2 33 6 3650 663 3.3.1.2 22 7 3280 1043 
2.1.1.1 90 31 3102 1068 3.3.1.5 13 16 1938 2385 
2.1.1.2 99 22 3412 758 3.32.1.1 42 9 3542 759 
2.1.1.3 113 8 3895 275 3.32.1.11 46 5 3880 421 
2.1.1.4 88 33 3033 1137 3.32.1.13 43 8 3627 674 
2.1.1.5 94 27 3240 930 3.32.1.8 40 11 3374 927 
2.28.1.1 18 44 1246 3044 3.42.1.1 29 10 3208 1105 
2.28.1.3 56 6 3875 415 3.42.1.5 26 13 2876 1437 
2.38.4.1 30 5 3682 613 3.42.1.8 34 5 3761 552 
2.38.4.3 24 11 2946 1349 7.3.10.1 11 95 423 3653 
2.38.4.5 26 9 3191 1104 7.3.5.2 12 9 2330 1746 
2.44.1.2 11 140 307 3894 7.3.6.1 33 9 3203 873 
2.5.1.1 13 11 2345 1983 7.3.6.2 16 26 1553 2523 
2.5.1.3 14 10 2525 1803 7.3.6.4 37 5 3591 485 
2.52.1.2 12 5 3060 1275 7.39.1.2 20 7 3204 1121 
2.56.1.2 11 8 2509 1824 7.39.1.3 13 14 2083 2242 
2.9.1.2 17 14 2370 1951 7.41.5.1 10 9 2241 2016 
2.9.1.3 26 5 3625 696 7.41.5.2 10 9 2241 2016 
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3 Performance measurement  

3.1 Cross-validation 

Cross-validation is an efficient and reliable approach to estimate the 
performance and generalizability of a program. In a K-fold cross-validation, 
the whole dataset is randomly split into K subsets (typically [ ]10,5∈K ). 
The cross-validation process is repeated K times (the folds). In each repeat, 
one of the K subsets is retained as the test set, and the remaining K−1 subsets 
are used as training set. When K is equal to the number of examples in the 
dataset, K-fold cross-validation becomes leave-one-out cross-validation. The 
K-fold cross-validation allows efficient use of all examples in the dataset. 
Moreover, it minimizes the probability of getting an over-optimistic result by 
chance and thus allows the generalization of the overall results obtained 
from the cross-validation to real-world predictions on unknown sequence 
data.  

3.2 Precision and recall 

The precision is defined as TP/(TP+FP), where TP (true positives) refers to 
the number of correctly identified positive example, e.g. correctly predicted 
zinc-binding residues or proteins; FP (false positive) is the number of 
negative examples that are incorrectly predicted as positive, e.g. residues or 
proteins predicted to bind zinc, but are not zinc-binding according to the 
PDB. The recall is defined as TP/(TP+FN), where FN (false negative) is the 
number of positive examples that are incorrectly predicted as negative. In the 
study of zinc-binding site prediction, negative examples are far more 
abundant than positive examples. The negative to positive ratios are 26:1 and 
93:1 for CH and CHDE respectively. For such an unbalanced dataset, 
receiver operating characteristic (ROC) curves (see below) can present an 
overly optimistic view of the performance of a method (Davis and Goadrich, 
2006). The recall-precision curve, in which one plots the precision against 
the recall, has been proposed as an alternative to the ROC curve in dealing 
with datasets with great unbalance in the class distribution (Zhang et al., 
2004). The area under the recall-precision curve (AURPC) was used in our 
method for both model selection and performance measurement. AURPC 
was calculated by a method proposed by Davis and Goadrich (2006).  
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3.3 Receiver operating characteristic (ROC) curve 

The ROC curve plots the sensitivity (i.e. recall) against 1–specificity (the 
specificity is equivalent to the precision) for a binary classifier system as its 
discrimination threshold is varied. It can also be represented by plotting the 
fraction of true positives (TPR = true positive rate) against the fraction of 
false positives (FPR = false positive rate). The area under the ROC curve 
(AUC, also termed as ROC score) is a simpler estimation of the performance 
of a binary classification. AUC is 1 for a perfect classification and a score of 
0 means none of the examples are predicted as positive. The expected value 
of the AUC for a random classification is 0.5. In some cases, positive 
examples are much less than negative examples in the dataset to be classified. 
In such cases, the ROC score might not be ideal to distinguish different 
classifiers. For example, for a dataset containing 3 positive examples and 
997 negative examples, the ROC score for a method that ranks the three 
positive examples at positions 1, 3 and 340 is 0.887, and the ROC score for 
another method that ranks the three positive examples at positions 39, 45 and 
58 is 0.955. The latter is obviously better than the former just according to 
the ROC score. However, in practice it is hard to say which one is better. For 
structural biologists trying to solve new crystal structures, they often need to 
find homologues in the PDB. In that case, it does not matter very much to 
miss a few homologues as long as they can find some good homologous 
templates at the top of the list. Under such conditions, one might consider 
the former method superior to the latter. The ROC50 score, which measures 
the area under the ROC curve up to the first 50 false positives, is introduced 
to amend the limitations of the ROC score. The ROC50 score for the above 
two rankings are 0.990 and 0.190, respectively, indicating that the first 
ranking is more useful than the second. However, the ROC50 score is not 
always perfect and it can be misleading sometimes. Take the same 
illustrative dataset used above (with 3 positive examples and 997 negative 
examples) for example, the ROC50 score for a method that ranks the three 
positive examples at positions 1, 2 and 20 is 0.887, while another method 
that ranks these three positive examples at positions 1, 2 and 60 is 1.000, 
indicating a perfect ranking. Nevertheless, it is obvious that the first ranking 
is better than the second. In the study of remote homology detection, both 
the ROC score and the ROC50 score were used for evaluation.  
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4 Summary of scientific contributions 

4.1 Prediction of zinc-binding sites in proteins (Paper I) 

A method for predicting zinc-binding sites in proteins from sequences has 
been developed. When tested on a non-redundant dataset containing 2727 
unique protein chains (see Table 3), this method predicted zinc-binding Cys, 
His, Asp and Glu with 75% precision (86% for Cys and His only) at 50% 
recall according to a 5-fold cross-validation (Figure 20). That is, when 50% 
of all zinc-binding Cys and His were picked out (by setting the prediction 
score to a certain threshold), 85% of the predicted zinc-binding Cys and His 
actually bind to zinc. When the protein level is considered, this method 
predicted protein chains containing zinc-binding Cys, His, Asp and Glu with 
71% precision (75% precision for Cys and His only) at 50% recall. The 
chain level prediction accuracy was slightly lower than that of the residue 
level. This is mainly due to two factors. First, only chains with at least one 
zinc-binding residue predicted at the correct position were considered as 
correctly predicted. Chains with zinc-binding residues predicted but none of 
them at the correct position were not considered as correctly predicted. 
Second, most chains with two or more zinc-binding sites (thus with 6 or 
more zinc-binding residues) were better predicted than chains with only one 
zinc-binding site. When evaluated on the residue level, the former have 
higher weights. However, when evaluated on the chain level, they are 
equally weighted.  

The zinc-binding predictions made by our method are very successful. 
First of all, there are 999 zinc-binding CHDE (856 for CH: Cys or His) but 
93 630 CHDE (22 865 for CH) in total, thus the random prediction accuracy 
for CHDE is only 1.1% (3.7% for CH) on the residue level, and 7.7% on the 
protein level. The zinc-binding site prediction by our method has 71% 
precision (86% for CH) on the residue level and 70% on the chain level at 
50% recall, i.e. substantially higher in accuracy than the random prediction. 
Secondly, when compared to a recently published paper (Passerini et al., 
2006), our method predicted zinc-binding Cys and His at ~10% higher 
precision at different recall levels (Figure 20). The results on protein level 
are not given by Passerini et al. (2006), but the out-performance can also be 
expected, since the prediction accuracies on the residue level and protein 
level are highly correlated and most chains have only one or two zinc-
binding sites (Figure 7).  

We also showed that for ~46% of all target chains which have 
homologues predicted, the zinc-binding prediction accuracy for Cys and His 
was even higher; 90% precision at 70% recall (Fig. 4b in Paper I ). This 
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means that the confidence for zinc-binding site prediction is much higher 
when homologues are detected. With more and more protein structures 
deposited in PDB, > 65% of the newly added proteins are estimated to have 
at least one homologue in the SCOP domain database (Ekman et al., 2005). 
All such proteins can now be predicted at great accuracy for zinc-binding 
sites.  
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Figure 20: Comparison of the results predicted by our method and that of Passerini 
et al. (2006), for Cys and His on residue level, when tested on the same dataset. At 
the 60% recall level, our method predicted zinc-binding Cys and His with 76% 
precision (point A), whereas Passerini et al. predicted these two amino acids with 
60% precision (point B). [Derived from Fig. 3a in Paper I  and Fig. 4b in Passerini et 
al., 2006] 

Moreover, our zinc-binding prediction method is accurate enough even to 
detect potential ‘errors’ in the PDB. When analyzing the false positives 
predicted with high confidence, we found that many of them are actually 
zinc-binding according to the biochemical literature. The absence of zinc in 
the PDB files for those proteins might be caused by purification and 
crystallization in zinc-free conditions. Other proteins that were predicted to 
bind zinc, but had no evidence in the literature as zinc-binding, actually have 
several highly predicted zinc-binding residues close in 3D space (see Figure 
21 for an example). It is highly likely that such a protein will bind zinc in 
vivo. 
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Figure 21: An example of a protein chain highly predicted as zinc-binding but with 
no bound zinc according to the PDB: chain A of the protein TatD-related 
deoxyribonuclease (PDB code 1J6O). Four residues His17, His19, His139 and 
His164 of 1J6OA were predicted at > 0.9 confidence score. His74 was predicted at 
0.5 confidence score. These five histidines are closely located in 3D space. The 
residue sequence numbers in the 1J6O PDB file for His17, His19, His74, His139 
and His164 are 4, 6, 61, 126 and 151 respectively. The sequence numbers in the 
PDB files do not always follow the index of residues in the chain. Therefore, the 
sequence numbers for these five histidines in the PDB file are different from the 
index of those residues in the sequence. [From the supplementary data of Paper I ] 

Our method is not only capable of predicting zinc-binding sites in 
proteins with rather high accuracy, but it can also be used for screening 
potential zinc-binding sites for protein design, since some apo proteins or 
proteins with 3 or 4 highly conserved CHDEs that might be close in 3D 
space can be predicted. In addition, it might also be a useful tool to 
complement the annotation of zinc-binding sites in PDB files for its ability 
in identifying occasional un-annotated zinc-binding sites in PDB files. 

4.2 Prediction of 1D protein structures (Paper II) 

A novel 1D structure prediction method, called Frag1D, was developed 
using a straightforward profile based fragment matching algorithm. The 
results show that this method predicted three sets of 1D structural alphabet, 
i.e. the classical three-state secondary structure, three-state shape strings and 
eight-state shape strings, successfully. 
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By exploiting the vast protein sequence and protein structure data 
available, we have brought the accuracy of the secondary structure 
prediction closer to the expected theoretical limit (88%, Rost et al., 1994). 
The method was tested by a leave-one-out cross-validation on a non-
redundant set of PDB cutting at ≤ 30% sequence identity (by the PISCES 
server, Wang and Dunbrack, 2003) containing 5860 protein chains (1.48 
million amino acids). For the secondary structure prediction, the Q3 was 
82.8%; and for the shape string prediction, the S3 and S8 were 85.0% and 
71.5% respectively (see Table 1 and Table 4 in Paper II ). For 80% of all 
amino acids predicted with the highest confidence, the Q3, S3 and S8 were 
as high as 88%, 92% and 79% respectively (Figure 22). Note that these 80% 
residues were identified only from their predicted confidences. This means 
our program not only predicted the 1D protein structure with a good overall 
accuracy, but also identified quite well which sequences and which parts of 
the sequences that were better predicted.  

We have also benchmarked Frag1D with the latest version of PSIPRED 
(version 2.2.17, 2008) (Jones, 1999b) for secondary structure prediction. 
PSIPRED is to date one of the best methods for secondary structure 
prediction. Frag1D predicted 0.3% better in Q3 when tested on 2241 chains 
with the same training set (see Appendix 4 for how the training set and the 
test set were created for this benchmark). The overall outperformance 0.3% 
Q3 might not be significant. However, for residues in helices and sheets, 
Frag1D predicted 2.3% better in Q3 compared to PSIPRED (see Table 2 in 
Paper II ). In addition, the fact that Frag1D and PSIPRED predicted 
differently in helices, sheets and random coils, may benefit consensus 
methods such as JPred (Cole et al., 2008) which combine the results of other 
original methods to take the merits of Frag1D and PSIPRED to obtain even 
better results.  

For shape string predictions, we benchmarked Frag1D with a recently 
published method by Kuang et al. (2004). When tested on a non-redundant 
set of PDB chains cutting at ≤ 20% sequence identity, including 1296 chains, 
Kuang et al. predicted the three-state shape strings at 79.5% S3. With the 
same definition, Frag1D predicted at 81.7% S3, i.e. 2.2% better in accuracy. 
It has to be noticed that Kuang’s definition is slightly different from that is 
defined in Figure 1. For these 1296 chains (containing 304 585 amino acids), 
Kuang’s definition and our definition agreed on 98.5% of all residues. 
Alternatively, with the definition according to Figure 1, Frag1D predicted 
the three-state shape strings at 81.1% S3.   
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Figure 22: Correctly predicted secondary structure (Q3) and shape strings (S3 and 
S8) as a function of all residues above a certain confidence. For example, for the 
~80% amino acids predicted with highest confidence, Q3, S3 and S8 are roughly 
88%, 92% and 79% respectively. [From Fig. 3 in Paper II ] 

It has long been a topic of discussion that the accuracy of secondary 
structure prediction increases as the size of the database increases, even if 
the method has not been improved. We have investigated the effect of the 
size and sequence identity cutting level of the database on the prediction 
accuracy quantitatively. The results show that the Q3 increases by ~1% with 
every doubling of the database. Similar trends were observed for S3 and S8 
as well (see Fig. 5 in Paper II ). 

4.3 Remote homology detection (Paper III) 

A new method, called FragMatch, for detecting remote homologues was 
developed by using profile-based fragment matching and pattern 
generalisation based on high scoring candidate fragments on dot plots (see 
Figure 18 for an example). This method accepts either a single sequence 
query to search for homologues in a database, or a group of protein 
sequences with a number of positive examples and negative examples to 
classify an un-annotated sequence database to be positives or negatives. 
Therefore, FragMatch is suitable for various purposes in biology, such as 
finding homologous templates to solve protein crystal structures by 
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molecular replacement and protein family classification for a newly 
sequenced genome.  

For the remote homology detection with a single query sequence, 
FragMatch was tested on two datasets; one with 480 superfamily domain 
pairs and the other with 803 family domain pairs (see section 2.4.2). On the 
family level, the best average ROC and ROC50 scores for FragMatch were 
0.978 and 0.906 respectively (the window size was set to 11). This result 
was significantly better than that of HHsearch (version 1.5.1) (Soding, 2005), 
which obtained 0.944 and 0.867 for ROC and ROC50 respectively. 
Moreover, FragMatch was running ~3 times faster than HHsearch. The 
popular homology detection program PSI-BLAST obtained 0.845 and 0.694 
for ROC and ROC50 scores respectively even supplied with PSI-BLAST 
checkpoint files built from the NCBI nr database with 6.5 million sequences. 
On the superfamily level, the best ROC and ROC50 scores were also 
obtained when setting the window size to 11. Although FragMatch predicted 
slightly worse ROC50 (0.707 versus 0.721) than HHsearch, the ROC was 
better (0.920 versus 0.913). 
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Figure 23: Comparison of ROC50 scores of FragMatch and SW-PSSM for all 54 
family classifications. The X-axis is in the ascending order of the ROC50 scores by 
SW-PSSM. For most family classifications, SW-PSSM predicted homologues as 
good as FragMatch, with ROC50 scores very close to 1.0, as shown in the right part 
of the figure. For some family classifications, SW-PSSM did not predict 
homologues successfully, as shown in the left part of the figure. However, even for 
these family classifications, FragMatch obtained quite good ROC50 scores. [From 
Figure 5 in Paper III ] 



49 

For the protein family classification with a training set including both 
positive examples and negative examples, FragMatch was tested on a well-
benchmarked dataset with 4352 domain sequences (see section 2.4.2). The 
average ROC and ROC50 scores over 54 families for FragMatch were 0.981 
and 0.924 respectively. The best result of previously published works tested 
on this dataset was reached by Rangwala and Karypis (2005). The average 
ROC and ROC50 scores for their method, SW-PSSM, were 0.981 and 0.904 
respectively. Since in this classification task, there are far more negative 
examples than positive examples, the ROC50 score is a better measurement 
of the performance (see the discussion in section 3.3). Therefore, the out-
performance of FragMatch over SW-PSSM is significant. The per family 
comparison (Figure 23) shows clearly that FragMatch performed slightly 
worse on just 5 families but significantly better on many families.  

4.4 Describing and comparing protein structures 
(Paper IV) 

In this work, we reviewed various methods of describing and comparing tens 
of thousands of protein structures, with the emphasis on the recently 
developed methods that represent protein backbone structure as one-
dimensional geometric strings. We showed that shape strings introduced by 
Ison et al. (2005) are as compact as secondary structures in describing 
protein backbone structure, and they capture more information for loop 
regions which comprise ~40% of all amino acids. Moreover, short protein 
backbone fragments with the same shape string are often highly similar in 
3D space (see Fig. 7 in Paper IV ), although each shape symbol represents a 
rather large area with a spread of torsion angle φ and ψ in the order of +/- 
20˚. It means that the 8-state conformation definition of Ison et al. (2005) is 
a good representation of constrains of the 3D path of backbone structures, 
which is also in accordance with the observation by Kolodny et al. (2002) 
that the conformation space of fragments of native structures is limited. With 
this observation, it becomes straightforward to construct the 3D backbone 
structure from a shape string, whereas it still remains a big problem when 
constructing the 3D structure from secondary structures. Nevertheless, the 
prediction of shape strings is still not sufficiently accurate and needs further 
study.  

In addition, we showed that shape strings could be applied to improve 
fast structure database searching. We illustrated in two examples (Figs. 9 and 
10 in Paper IV ) that shape string comparison could reveal the global 
similarity between protein structures with a hinge bending, whereas rigid 
body superposition failed in spite of taking a longer computation time. Shape 
string comparisons can also reveal the difference in loop regions between 
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different protein structures with the same secondary structure elements, 
whereas SSE comparison failed in such cases for its lack of information in 
loop regions. In a large scale homology detection benchmark (Fig. 8 in Paper 
IV ), the shape string alignment outperformed KL-string (Friedberg et al., 
2007) alignment and sequence based BLAST alignment. It fell behind 
FATCAT (Ye and Godzik, 2003) and CE (Shindyalov and Bourne, 1998), 
two Cα based structural alignment methods, but they are three orders of 
magnitude more time-consuming than shape string alignment.  
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5 Conclusions 

Machine learning methods, data mining techniques and statistics based 
methods have been widely applied in biology for protein structure prediction, 
gene finding and other various areas. In this thesis, I have introduced three 
novel methods for predicting zinc-binding sites in proteins from amino acid 
sequences, predicting 1D protein structures and detecting remote 
homologues, respectively.  

The zinc-binding site prediction method, PREDZINC, predicts whether 
a residue (or a protein chain) binds to zinc or not, taking advantage of recent 
advances in SVM and remote homology detection methods. This method 
predicted zinc-binding Cys, His, Asp and Glu with 75% precision (86% for 
Cys and His only) at 50% recall level, when tested on a non-redundant set of 
PDB containing 2727 unique protein chains. The predictions were so reliable 
that some occasional mis-annotated proteins regarding zinc-binding were 
found. This method should be useful for large scale screening for zinc-
binding proteins in genomes and for checking poorly annotated proteins 
whether they are zinc-binding or not. However, the whole zinc-binding 
group, i.e. exactly which 3 or 4 residues that bind to the same zinc atom, can 
not be predicted by the method described in this thesis. The prediction of the 
whole zinc-binding group, and moreover, to distinguish catalytic zinc-
binding sites from structural zinc-binding sites, is more challenging and will 
be of great help for metalloprotein design and 3D structure prediction since 
the freedom of the 3D structure of zinc-binding proteins will be restricted 
enormously if zinc-binding sites can be allocated.  

The one-dimensional protein structure prediction method, Frag1D, 
predicted three sets of 1D protein structures with satisfactory results. When 
tested on a large (5860 chains including 1.48 million amino acids), non-
redundant set of PDB chains cutting at ≤ 30% sequence identity, Frag1D 
predicted the protein secondary structure at 82.9% Q3 and shape strings at 
85.1% S3 and 71.5% S8. Moreover, better predicted residues and sequences 
can also be identified by the predicted confidence. For 80% of residues 
predicted with the highest confidence, the Q3, S3 and S8 were 88%, 92% 
and 79% respectively.  

The remote homology detection method, FragMatch, detected more than 
twice of the superfamily level homologues and missed less than half of the 
homologues at the family level compared to the most widely used homology 
detection method, PSI-BLAST. For protein family classifications, it also 
outperformed the best method previously published. One can expect more 
use of this method for structural biologists for structural template searching 
and genome classification and annotation.  
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In addition, various methods for describing and comparing protein 
structures have been reviewed. Some recently developed methods of 
representing protein structures as one-dimensional geometrical strings, 
especially shape strings, have been highlighted. Shape strings encode the 
backbone structures as 1D strings but carry rich structural information in 
loop regions. They are efficient in detecting the similarity and dissimilarity 
between protein structures and with them it is possible to construct the 3D 
structure. However, it should be noted that the current development on 
applications of shape strings is still very preliminary. More accurate 
alignments that make best use of the properties of shape strings as well as 
the analysis of the statistical significance of shape string alignment are 
required. Moreover, prediction of shape strings instead of the secondary 
structures of proteins might be an alternative way to start 3D structure 
prediction. Both the prediction of shape strings and the building of 3D 
structures from shape strings need further research. Shape strings facilitate 
fast database searching for similar structures, classification of loop regions 
and evaluation of model structures. We can expect more widely use of such 
methods in the near future. 
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6 Appendices 

6.1 Appendix 1: HSSP distance 

 
HSSP (homology derived secondary structure of proteins) distance is a 
measure of sequence similarity which takes both the pairwise sequence 
identity and alignment length into account (Rost, 1999). It is defined as  

HSSP distance = PIDE – HSSP_PIDE, (9)

where PIDE is the percentage of pairwise sequence identity and HSSP_PIDE 
is defined as 
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where L is the length of the alignment. A common HSSP distance threshold 
is 0, which corresponds to 20% sequence identity for the alignment between 
two sequences with the length of 300 amino acids (size of a typical protein 
chain). 

6.2 Appendix 2: vector encoding 

6.2.1 Encoding of single-site vectors 

A window of residues centered at a residue of interest is encoded into a 
vector of numerical values of size (2k+1)·p, where k is the length of 
extension along the amino acid sequence on both sides of the centered 
residue and p is the number of numerical features used to describe each 
residue. In this study, the residue of interest is a selected amino acid residue 
C, H, D or E as described above. We used 39 numerical features to encode 
each residue. The first 20 items are the profile of multiple alignments 
derived from the position specific matrix generated by PSI-BLAST. The 
information content per position (denoted as score1) and the “relative weight 
of gapless real matches to pseudocounts” (score2) as in the last two columns 
of PSI-BLAST output, are encoded by 5 features each. The former is 
discretized into five bins (0 to 0.2), (0.2 to 0.5), (0.5 to 0.9), (0.9 to 2.0) and 
(2.0 to +∞) and the latter into the bins (0 to 0.05), (0.05 to 0.8), (0.8 to 1.4), 
(1.4 to 2.0) and (2.0 to +∞), so that except the first and last bins which hold a 
few very low or high scores, the numbers of residues within each bin are 
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essentially equal. Score1 represents the conservation level and score2 the 
number of aligned residues of that position. A modified one-hot encoding is 
applied for these bins; for example, score1 of 0.6 is encoded as (0 0 4 1 0). 
Some of the non-diagonal values of the matrix composed of vectors 
encoding these bins are set to 1 to represent the correlation between different 
bins. The diagonal values of the matrix are set to 4 so that the diagonal value 
of the matrix is equal to the average value of PSI-BLAST profiles for C, H, 
D and E on their corresponding column. The 31st item is the flag of the 
position of the residue, which is either 1 (within the sequence) or 0 (outside 
the sequence, normally at the start or end of the sequence). Five features are 
used to encode amino acid types which are classified as C, H, D, E and 
others (for example, C is encoded as 4 1 0 0 0 and H as 1 4 0 0 0, non 
diagonal values are set to 1 again to represent the fact that some zinc-binding 
Cys and His are interchangeable). Three features are used to encode 
hydrophobicity of each residue. Hydrophobicity (Black and Mould, 1991) of 
residues is classified as hydrophilic (R, D, E, H, N, Q and K), neutral (S, T, 
G, A) and hydrophobic (C, P, M, V, W, Y, I, L and F). A one-hot encoding 
is used for these bins, for example, the amino acid lysine (K) is encoded as 
(4 0 0), whereas proline (P) is (0 0 4). Finally, the feature vector of each 
residue position is multiplied by a weight defined as  

kkj
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pospos
W j

j ..,
||

2 0 −=
−
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where posj is the position of residue j in the sequence and pos0 is the position 
of the centered residue of each window, and k is the length of extension on 
both sides of the centered residue described above. For example, if k = 10 
and the position for the centring residue (pos0) is 25, the weight for the 
residue at sequence position 30 is calculated as 1.5. 

6.2.2 Encoding of pair-based vectors 

A pair-based vector encodes a window of residues centered by a pair of 
residues. It represents the correlation between a pair of residues. The 
encoding of each residue position is similar as for the single-site vectors. 
Each residue pair is represented by a vector of size (2·k+2+2·w)·p + 5, where 
k and p are the same as described in the single-site vector, w is a constant as 
described below and 5 numerical numbers are used to encode the distance 
between the two residues of the pair. The number of residues separating the 
residue pair varies, while SVM requires the input to be a collection of fixed-
length vectors (Noble, 2004). To solve this conflict, for residues between the 
pair, we took always w residues after the first residue in the pair and w 
residues before the second. Take w = 3 for example. If there are 8 residues 
(i.e. more than 2·w = 6) between the two zinc-binding residues p1 and p2 in 
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the pair, p1-x1-x2-x3-x4-x5-x6-x7-x8-p2 (x1-x8 represent the residues 
within the pair), residues x4 and x5 are not in the  feature vector encoding. If 
there are 2 (less than w = 3) residues within the pair; p1-x1-x2-p2, the 
numerical features for the putative x3 are set to 0. An example is shown in 
Figure 24. Finally, five numerical features are used to encode the distance 
between the residues of the pair. The distance is discretized into five bins [1 
or 2], [3], [4 or 5], [6 to 20] and [> 21], such that the number of zinc-binding 
pairs within each bin is nearly equal. A one-hot encoding is used for these 
five bins, while the diagonal values are set to 4 (for example, the distance 3 
is encoded as 0 4 0 0 0).  
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Figure 24: Examples for how a single-site vector and a pair-based vector are 
encoded, when k =10, w = 5 and p = 39, where k is the length of extension along the 
polypeptide chain on both sides of the entered residue, p is the number of numerical 
features used to describe each residue and w is the number of residues to take after 
the first residue in the pair and before the second residue in the pair.  

Amino acid sequence of 1C9QA (117 amino acids) from Lys66 to Asp91 (selected C, H, D 
and E are shaded in black) 

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 
L Y Y T G I G D Q V Q C F A C G G K L K N W E P G D 
 (a) For a single site vector centred at Cys80: 

This window includes 21 residue positions, so the size of the vector is 21*39 = 819 

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 
L Y Y T G I G D Q V Q C F A C G G K L K N W E P G D 

Using 10 positions before Cys80 Using 10 positions after Cys80 

This residue position is represented by 39 numerical features, weight = 2 - 8/10 = 1.2 
 -2.777 -1.44 3.312 0.522 ... 0 0 4.8 1.2 0   0 0 0 4.8 1.2     1            0 0 0 0 4.8     0 4.8 0 

20 numbers from the 
PSI-BLAST profile 
of G72 

5 numbers 
encoding the 
score1a 

5 numbers 
encoding the 
score2b 

‘1’ indicates 
that G72 is 
within the 
sequence 

5 numbers 
encoding the 
amino acid 
type 

3 numbers 
encoding the 
hydrophobicity 

(b) For a pair -based vector centred at Cys77 and Cys80: 

This window includes 32 residue positions. The size of the vector is 32*39 +5 = 1253 
The last five numbers encodes the number of residues separating Cys77 and Cys80 

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 
L Y Y T G I G D Q V Q C F A C G G K L K N W E P G D 

Using 10 positions before Cys77 Using 10 positions after Cys80 

The encoding of each residue position is the same 
as in single-site vectors. Thus, this residue 
position is also represented by 39 numerical 
numbers. The only difference is the weight. Here 
the distance from Gly72 to Cys77 is 5, therefore 
the weight is calculated as 2 - 5/10 = 1.5. 

aScore1: The information content of the PSSM profile generated by PSI-BLAST. bScore2: The relative 
weight of gapless real matches to pseudocounts of the PSSM profile generated by PSI-BLAST. 

For residues in between Cys77 and Cys89, use up 
to 5 residue positions after Cys77 and 5 before 
Cys80. In this case, the third, fourth and fifth 
position after Cys77 can not allocate a residue 
between Cys77 and Cys80. The values of the 
vector are thus set to 0. It is the same for the third, 
fourth and fifth position before Cys80. 
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6.3 Appendix 3: profiles 

A profile is a table that lists the frequencies of the 20 amino acids at each 
residue position in the sequence from an evolutionary point of view. A log-
odds score is defined as the logarithm of the ratio of the likelihood for two 
amino acids to be aligned to that of seeing these two amino acids matched by 
chance: 

)log(
ji

ij
ij PP

q
S =  (12)

where Sij is the log-odds score between amino acid i and j, qij is the 
likelihood for amino acid i and j to be matched, Pi and Pj are background 
frequencies for amino acid i and j respectively and PiPj represents the 
probability of amino acids i and j being matched by chance. In this study, 
profiles were obtained by running PSI-BLAST (version 2.2.13) against the 
NCBI nr database (version April 2006) for three iterations with an E-value 
threshold of 0.001. The E-value is a statistical parameter that represents the 
number of hits one would expect to find by chance when searching a 
database of a particular size. For example, a hit with an E-value of 1 means 
that when searching a query sequence in a database of the current size, one 
would expect to see one match with a similar score simply by chance. The 
lower the E-value, or the closer it is to 0, the higher the significance of the 
match. Figure 25 shows a typical profile with log-odds values and weighted 
percentages that are generated by PSI-BLAST. Such profiles contain a 
summary of evolutionary information, since they show the average amino 
acid composition at each position along the protein sequence. This amino 
acid composition is calculated from many (often hundreds) of protein chains 
that are considered homologues. These putative homologues are picked out 
by PSI-BLAST from large sequence databases (e.g. the NCBI nr database 
which contains over 5 million sequences). The profiles generated by PSI-
BLAST have been proven of tremendous value for protein structure 
prediction (Jones and Swindells, 2002). 

(a)  

[Continues to the next page] 

        A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P   S  T  W  Y  V 
 1 N   -4 -3  8  4 -5 -2 -2 -3 -2 -6 -6 -2 -5 -5 -4  -2 -2 -6 -5 -5 
 2 R   -1  2  2 -1 -5 -1 -4  5 -3 -5 -5 -3 -4  2 -5   0 -3 -4 -1 -5 
 3 N   -2 -2  1 -4 -4 -2 -2 -1 -4 -1 -4 -2 -3 -2 -4  -1  6  1  0  0 
 4 C   -3 -4 -5 -5  4 -1 -3 -5  0 -4 -4 -4 -4  2 -5   0 -4  1  9 -4 
 5 K   -1  2 -2 -4 -5  4 -1 -5 -1 -3 -4  4 -4 -1  1  -1  2 -5  1 -3 
 6 L   -4 -3 -6 -6 -4 -5 -6 -6 -6  7  2 -3 -2  2 -3  -5 -2 -5 -3  1 
 7 Q   -2  2 -4 -3 -4  2 -1 -4  2  0 -2  1 -3 -4 -4   0 -1 -5 -2  5 
 8 T   -2 -2  2 -3 -1 -2 -3 -3 -4 -4 -4 -3 -4 -5  3   4  5 -5 -4 -4 
 9 Q    2 -2  1 -2 -4 -1 -3  0 -4  2 -2  1 -3 -1 -2   2 -2 -5 -1  1 
10 L   -1  2 -4 -4 -1 -2 -2 -4  0  2  2  3  1 -1 -3  -3 -3 -1 -3  2 
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(b)  

Figure 25: Part of a typical profile for a protein sequence generated by PSI-BLAST 
with (a) log-odds values and (b) weighted percentages. The first line lists the one 
letter code of the 20 amino acids found in proteins. The residue number in sequence 
and amino acid types are shown in the first two columns. The 20 values (which 
compose a profile at each residue position) in each row are scaled log-odds values in 
(a) and  weighted percentages rounded to the nearest integer in (b) [see (Altschul et 
al., 1997) for details] .  

Profiles of the test protein sequences (proteins with only amino acid 
sequence information available) are represented by Qij (the estimated 
probability for residue i to be found on amino acid j, j represents 20 amino 
acids). Qij is calculated from weighted percentages by taking pseudo-counts 
into account, according to Altschul et al. (1997), which is defined as 
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where α and β are the relative weights given to observed and pseudocount 
residue frequencies, fij is a weighted percentage (see Figure 25b for an 
example), that is, the observed frequency for residue i on amino acid j, Pj is 
the background frequency for amino acid j , Skj is the substitution score from 
amino acid k to j as given in BLOSUM62 (Henikoff and Henikoff, 1992), 
and λu is a statistical parameter related to the database for PSI-BLAST. 

For the training set, Qij profiles are enriched by structural profiles 
derived from blocks of similar shape string fragments. To get the blocks of 
shape strings, a sliding N-residue (here N is set to 9) fragment of shape 
strings of a given sequence in the training set is searched against all N-
residue fragments of shape strings from all other sequences in the training 
set. First, up to top 200 N-residue shape string fragments are picked out by 
the similarity in shape strings. Then, the number of the initially selected 
fragments is further reduced to up to 100 by the similarity in amino acids 
and the water accessibility between the target fragment and candidate 
fragments. Once the blocks of shape strings are obtained, a position specific 
substitution matrix for each sliding N-residue fragment is derived from 
amino acid percentages at different columns of a L×N block (L is the 

        A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P   S  T  W  Y  V 
 1 N    0  0 81 19  0  0  0  0  0  0  0  0  0  0  0   0  0  0  0  0 
 2 R    5 12 11  4  0  2  0 49  0  0  0  0  0  9  0   6  0  0  2  0 
 3 N    2  1  8  0  0  2  1  4  0  4  0  2  0  1  0   2 61  2  3  7 
 4 C    1  0  0  0  9  2  1  0  1  0  0  0  0  5  0   7  0  1 72  0 
 5 K    3 11  2  0  0 18  3  0  1  1  1 28  0  2  8   3 12  0  5  2 
 6 L    0  1  0  0  0  0  0  0  0 61 20  2  0  9  1   0  1  0  0  4 
 7 Q    3 10  0  1  0  9  3  0  4  3  3  9  0  0  0   8  3  0  1 41 
 8 T    1  2 11  0  1  1  0  1  0  0  1  0  0  0 13  29 38  0  0  0 
 9 Q   18  2  6  2  0  2  1  6  0 12  4 10  0  2  2  18  2  0  2  9 
10 L    4 12  0  0  1  1  3  1  2 13 21 17  3  3  1   1  0  1  0 13 
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number of matched shape string fragments in the block) based on the same 
principles as in PSI-BLAST. The structural profile of the entire sequence is 
calculated as the average of substitution matrices of all sliding fragments for 
that sequence. Finally, the profile for the residue i in column j (Fij) of that 
sequence is calculated as the linear combination of the Qij profile and 
structural profile according to, 

ijijij SQF **)1( λλ +−=  (14) 

where Qij is the same as mentioned before, Sij is the profile for residue i on 
amino acid j (j is the index for 20 amino acids) derived from blocks of shape 
strings and λ (ranging from 0 to 1) is the parameter used to linearly combine 
the Qij matrix and Sij matrix. In practice, we find that a λ of 0.40 will often 
produce the best result for the remote homology detection and for the 1D 
structure prediction. Such linear combination method to merging the 
sequence profile and structural profile has also been used by Teodorescu et 
al. (2004) in protein threading and led to satisfactory results.  

6.4 Appendix 4: dataset for benchmarking with 
PSIPRED 

The training set was obtained from Dr. David Jones which has been used to 
build the weighting files for PSIPRED version 2.61. This training set 
contains 6598 protein chains with 1 563 587 amino acids. The average 
sequence length is 237. Note that many chains in this training set are of high 
sequence identity to each other. For example, the sequence identity of the 
chain 1JPTL and 1L7IL is as high as 90%. When cutting this training set 
down to ≤ 30% sequence identity by the PISCES server (Wang and 
Dunbrack, 2003), only 3644 chains remain.  

The test set was constructed in the following ways. First, all PDB chains 
(as of June 10, 2009) cutting at ≤ 99% sequence identity were obtained with 
the following criteria: resolution < 2.5Å, R-value < 0.3 and only X-ray 
structures were used. In total 21 574 protein chains were retrieved. Then, 
those chains with the same chain IDs as examples in the training set were 
removed. This resulted in 15 256 protein chains. After that, PSI-BLAST 
(blastpgp) was run with an E-value threshold of 0.001 and three iterations for 
searching each of these 15 256 chains in the training set and chains with at 
least one significant hit in the training set were removed. To be a significant 
hit, the candidate should meet at least one of the following two criteria: (1) 
the sequence identity > 30%, the alignment length > 30 and the E-value < 
0.1; (2) the sequence identity > 50%, the alignment length > 15 and the E-
value < 5. This resulted in 3100 protein chains satisfying the above criteria. 
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Finally, these 3100 chains were cutting down to ≤ 30% sequence identity by 
the PISCES server, which resulted in 2421 unique chains for testing.  
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