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1. Introduction

The stylized facts of economic and especially �nancial time series are
that their variance, or volatility, changes over time. This characteristic is
often referred to as heteroscedasticity (or volatility clustering) and was
�rst recognized by Mandelbrot (1963):

"...large changes tend to be followed by large changes - of either sign - and

small changes by small changes..."

Still, the heteroscedasticity is surprisingly often neglected by practition-
ers and researchers. Much of the work in this thesis is about �nding more
e¤ective ways to deal with heteroscedasticity in economic and �nancial
data. This also enables measuring the e¤ect of neglected heteroscedas-
ticity.

The thesis is structured as follows. Potential readers of this thesis might
be more or less familiar with econometrics or time series analysis. This
is the reason why I in Section 2 and 3 present a toolbox of fundamen-
tals, aimed to ease understanding of the material in Papers I-IV. These
introductory sections should give the reader a presentation of the typical
problems in this �eld, and of how the ideas and solutions presented in
the thesis have evolved.

Section 2 presents some essentials about detrending �lters and their prop-
erties. Filtering is about emphasizing or eliminating a chosen character-
istic or interval of frequencies in the series. Thus, �ltering is closely
related to frequency domain analysis and is considered in Section 2.1.
Section 3 contains some essentials about stationarity and unit root test-
ing. The consequences of neglecting heteroscedasticity in unit root tests
are discussed in Section 3.1. In the fortunate case of observing a variance
that changes proportionally to the level of the series, it may be stabilized
using the Box-Cox transformation described in Section 3.2. More often
than not, the variance is "level invariant", and might be modelled using
the techniques described in Section 3.3, or removed using the proposed
procedure summarized in Section 3.4, and discussed in greater depth in
Paper I.

An appropriate removal of heteroscedasticity allows more e¤ective analy-
sis of heteroscedastic time series. A few examples are presented in this
thesis. Accounting for heteroscedasticity enables a e¢ cient study of the

3



underlying probability distribution of economic growth as summarized in
Section 4.1. A closely related topic is density forecasting as described in
Section 4.2 and applied on Dow Jones stock index returns in Section 4.3.
It is shown that the mixed Normal - Asymmetric Laplace (NAL) dis-
tribution is particularly suitable for �tting both GDP growth and stock
index returns, thus hinting at an observable analogy between economic
growth and �nancial data. Paper IV (summarized in Section 5) makes
use of the proposed �lter in Paper I prior to an investigation of the pre-
sumed analogy indicated in Papers II and III. Thus - Paper IV, in a
sense, completes the circle.

Some concluding remarks and some ideas for future work are presented
in Section 6, followed by Papers I-IV.

2. Filters in the frequency domain

Separating trends and cycles of seasonally adjusted data is essential to
much macroeconomic analysis. The research to �nd proper methods to
decompose time series was accelerated after the in�uential paper by Nel-
son and Plosser (1982), who argued that macroeconomic time series are
characterized by stochastic trends rather than linear trends. This decom-
position might be done using so called low-pass, high-pass or band-pass
�lters. Low-pass �lters are used to pick out the trend in a time series (or
the low frequency movements when viewed in the frequency domain). On
the contrary, the high-pass �lter eliminates the trend. The intermediate
band-pass �lter is designed to isolate midrange frequencies, often asso-
ciated with business cycle �uctuations. An ideal �lter completely elimi-
nates the frequencies outside the prespeci�ed interval, while passing the
remaining ones unchanged. The exact �lter would be a moving average of
in�nite order, impossible to design for a �nite sample. A central issue in
detrending time series involves �nding good, hopefully optimal, approx-
imations to the ideal �lter. Perhaps the most popular (also frequently
used in this thesis) approximation is the detrending �lter proposed by
Hodrick-Prescott (HP) (1997). The HP �lter is an example of a low-
pass �lter. Baxter-King (BK) (1999) proposed a moving average type
approximation of the business cycle band de�ned by Burns and Mitchell
(1946). The BK �lter is thus of band-pass type designed to pass through
time series components with frequencies between 6 and 32 quarters, while
dampening higher and lower frequencies.
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Following Baxter-King (1999), a useful detrending method should satisfy
six requirements. First, the �lter should extract a cyclical component
within a speci�ed range of periodicities, and leave the characteristics of
this component as undistorted as possible. Secondly, the �lter should
not change the timing of the turning points in the series under analysis
(thus, there should be no phase shift). Thirdly, the �lter should be an
optimal approximation to the ideal �lter, according to some predesigned
loss function measuring the discrepancies between the approximate and
exact �lters. Fourth, the �lter should produce a stationary series. Fifth,
the �lter should yield business cycle components unrelated to the length
of the observation period and �nally the method must be operational.
The �rst di¤erence for instance, sometimes used to detrend a time series,
has the drawback of being asymmetrical and thus induces phase shifts.
Also, the �rst di¤erence �lter reweights the densities towards higher fre-
quencies as indicated in Paper IV.

Working with �lters, it is thus hard not to cross the paths of spectral
analysis. The e¤ect of any linear �lter, h(B) =

P1
�1 hjB

j , where hj ;
j = 0; �1, �2,... are �xed weights and B is the lag operator such as
Bjyt = yt�j ; can be obtained from the frequency response function (or
transfer function) found by replacing B by exp(�iw), where 0 � w � �:
Assuming that the series is stationary, the gain (de�ned as the modulus
of the frequency response function) shows how the amplitude at each
frequency is a¤ected. Studying the gain thus provides information about
whether the �lter is of the low-pass, high-pass or the band-pass type. The
accuracy of the approximation of the ideal �lter might also be studied
using the gain. The squared gain is the factor by which the original spec-
trum must be multiplied to yield the �ltered spectrum. Other important
spectral functions frequently used in this thesis include the phase shift
and coherency functions. The formulae are given in the next section.

2.1 Spectral analysis

In the frequency domain, the variance of a time series is decomposed ac-
cording to periodicity. This may reveal important features of univariate
or bivariate time series, not apparent in the time domain. The estima-
tion of spectral densities in the frequency domain raises some issues not
encountered in the time domain.

If yt is a real-valued stationary process with absolutely summable auto-
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covariances, 
(j), then the Fourier transform, f(w); of 
(j) exists and

f(w) =
1

2�

1X
j=�1


(j)e�iwj =
1

2�

0@
(0) + 2 1X
j=1


(j) coswj

1A : (2.1)

This is the spectral density function de�ned in the range [��; �]. Based
on sample time series of n observations, it is logical to estimate f(w) by
replacing the theoretical autocovariances 
(j) by the sample counterpartb
(j): The spectrum is hence estimated as

bf(w) = 1

2�

n�1X
j=�(n�1)

b
(j)e�iwj = 1

2�

0@b
(0) + 2 n�1X
j=1

b
(j) coswj
1A :

The sample autocovariance function b
(j) is asymptotically unbiased and
lim
n!1

E
� bf(w)� = f(w):

Thus, bf(w) is also asymptotically unbiased. But the variance of bf(w)
does not decrease as n increases, and so bf(w) is not a consistent estimator.
It is clear that the precision of b
(j) decreases as j increases, because the
coe¢ cients will be based on fewer and fewer observations. An intuitive
way of reasoning would be to give less weight to b
(j) as j increases. An
estimator with this property is

bf(w) = 1

2�

0@b
(0)�0 + 2 MX
j=1

b
(j)�j coswj
1A ;

where f�jg is a set of weights called the lag window, and M (< n) is
called the truncation point. Several lag windows exist which all lead
to consistent estimates of f(w). Throughout the entire thesis, a Parzen
window with truncation pointM = 20 has been used to smooth the sam-
ple spectrum. This window has the advantage of not producing negative
estimates. Where applied in this thesis, the chosen truncation point falls
right between the two "rule of thumb" values, M =

p
n and M = 2

p
n,

see e.g. the discussion in Percival and Walden 1993, pp. 277-280.

A natural tool for examining the comovements of two stationary series in
the time domain is the cross-correlation function r1;2(j) = c1;2(j)=s1s2,
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where c1;2(j) is the sample cross-covariance function on lag j, and s1 and
s2 are the sample standard deviations for the two time series y1;t and
y2;t. In this study we mainly use a frequency domain approach with focus
on the cross-spectrum. Frequency domain techniques allow for studying
correlation di¤erentiated by frequency. In practice, several cross-spectral
functions are necessary to describe the comovements of two time series in
the frequency domain. The cross-spectrum is most easily studied through
the so called phase, the gain and the coherency functions. They are all
derived from the cross-spectrum de�ned as the Fourier transform of the
cross-covariance function 
1;2, namely

f1;2(w) =
1

2�

1X
j=�1


1;2(j)e
�iwj :

Note that the cross-covariance function 
1;2(j) is real for real series y1;t
and y2;t, but f1;2(w) is complex because 
1;2(j) 6= 
1;2(�j), but the
cross-spectrum can be divided into one real and one imaginary part

f1;2(w) = c1;2(w)� iq1;2(w);

where c1;2(w) and q1;2(w) are de�ned as

c1;2(w) =
1

2�

1X
j=�1


1;2(j) coswj

and

q1;2(w) =
1

2�

1X
j=�1


1;2(j) sinwj:

The function c1;2(w) is called the co-spectrum and q1;2(w) the quadrature
spectrum of the series y1;t and y2;t: These functions are, however, di¢ cult
to interpret. An alternative way to express the cross-spectrum is in the
form

f1;2(w) = A1;2(w)e
i�1;2(w);

where
A1;2(w) =

q
c21;2(w) + q

2
1;2(w)

is real and is called the cross-amplitude spectrum between y1;t and y2;t:
The phase spectrum, is de�ned as
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�1;2(w) = tan
�1
�
�q1;2(w)
c1;2(w)

�
;

expressing the shift between the oscillations of the two variables. Note
that �1;2(w) is discontinuous at frequency multiples of

�
2 : Another useful

cross-spectral function is the gain function which is the ratio of the cross-
amplitude spectrum to the input spectrum, i.e.

G1;2(w) =
A1;2(w)

f1(w)
;

the analogue of the regression coe¢ cient in the time domain. Finally, the
(squared) coherency function may be derived from the cross-spectrum as

K2
1;2(w) =

A2
1;2
(w)

f1(w)f2(w)
;

where f1(w) and f2(w) are the spectra of the individual series y1;t and
y2;t: The coherency is essentially the standardized cross-amplitude func-
tion and is analogous to the coe¢ cient of determination, R2, in the time
domain. Cross-spectral analysis thus decomposes the series into individ-
ual cyclical components. The coherency is the squared correlation coef-
�cient between y1;t and y2;t at frequency w. Clearly; 0 � K2

1;2(w) � 1:

A value of K2
1;2(w) close to one implies a strong linear relationship of

the two components at frequency w: The corresponding phase indicates
at what lag this correlation occurs. It is only of interest to study the
phase at frequencies where the coherency is large. Trends in the phase
spectrum reveal information of the lead or lag relationship. If the trend
is linear, the slope is the length of the lead or the lag. A nonlinear phase
spectrum indicates varying lead or lag lengths.

Consider the linear �lter Zt =
P1
j=�1 hjB

jYt = h(B)Yt; where
P1
j=�1 jhj j <

1: It can be shown (see e.g. Priestley (1981), chapter 4.12) that the
spectrum of the �ltered series Zt is given by

fZ(w) =
��h �ejw���2 fY (w);

where fY (w) is the spectral density function (2.1). The function
��h �ejw���2

is the squared gain function often called the transfer function or the fre-
quency response function, used to measure the e¤ect of applying a linear
�lter on a series. As an example, the �rst di¤erence �lter
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Zt = �Yt

= h(B)Yt;

where h(B) is the di¤erence operator � = (1 � B) can, using standard
trigonometrics, be expressed as��h �ejw���2 =

�
1� ejw

� �
1� e�jw

�
= 2(1� cosw);

which is a continuously increasing function for 0 � w � �, see Paper
IV. The transfer functions for other �lters used in this thesis are found
analogously.

3. Stationarity and heteroscedasticity

In time series analysis one does not usually have the luxury of obtain-
ing an ensemble. That is, one typically observes only one observation
at each measurement point for a speci�c variable, which adds up to just
one realization of the same. Fortunately, if the series of interest, yt, is
stationary ; the mean, variance and autocorrelations can be estimated by
averaging across the single realizations. It is therefore desirable that the
series is stationary and most time series models are based on the assump-
tion that the time series of interest are approximately stationary, have
been stationarized or are cointegrated with some other variables. There
are various types of stationarity, see e.g. the classic work of Doob (1953,
chapters 10 and 11) for a thorough treatment on the subject.

The joint distribution function of the �nite set of random variables fYt1 ; Yt2 ; :::; Ytng
from the stochastic process fYt : t = 0;�1;�2; :::g is de�ned by

FYt1 ;Yt2 ;:::;Ytn (yt1 ; yt2 ; :::; ytn) = P fYt1 � yt1 ; :::; Ytn � ytng ;

where yi, i = 1; 2; :::; n are any real numbers. A time series is called
strictly (or strongly) stationary if

FYt1 ;Yt2 ;:::;Ytn (yt1 ; yt2 ; :::; ytn) = FYt1+h ;Yt2+h ;:::;Ytn+h (yt1 ; yt2 ; :::; ytn) ;

for any n and h. If the series is strictly stationary, the joint distribution
function is the same at each time point and depends only (if at all)
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on the distance between the elements in the index set. For the process
Yt, �t = E(Yt) and �2t = E (Yt � �)2 : The covariance and correlation
functions are de�ned as


 (t1; t2) = E
�
Yt1 � �t1

� �
Yt2 � �t2

�
and

� (t1; t2) =

 (t1; t2)

�t1�t2
:

Since the distribution function is the same for all t, the mean and vari-
ance functions for a strictly stationary process is constant provided that
E (jYtj) <1 and E

���Y 2t ��� <1: Furthermore

 (t1; t2) = 
 (t1 + h; t2 + h)

and
� (t1; t2) = � (t1 + h; t2 + h) ;

for any t1; t2 and h: Thus the autocorrelation between Yt and Yt+h in a
strictly stationary process with �nite mean and variance, depends only
on the time di¤erence h.

A weaker form of stationarity (weak or covariance stationarity) is of-
ten used in empirical time series analysis. A weakly stationary process
has constant (time invariant) joint moments up to order n. That is, a
second order weakly stationary process has constant mean and variance
and the covariance and autocorrelation functions being functions of the
time di¤erence alone. A strictly stationary process (with �nite mean and
variance) is also weakly stationary, but not so if the mean and/or the
variance are in�nite.

Usually, economic time series are not stationary and even after seasonal
adjustment or de�ation they will typically still exhibit trends, fairly reg-
ular cycles and other non-stationary behaviours. If the series has a long-
run linear trend and tends to revert to the trend line following a distur-
bance, e.g.

yt = �+ �0t+ "t; (3.1)

where "t is stationary; it may be possible to stationarize the series by
detrending. In this case it is done by �tting and subtracting a linear
trend line prior to �tting a model. The result, yt = "t, is stationary by
de�nition. Such a time series is said to be trend-stationary. This concept
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can be generalized to more complicated types of trends. In practice, de-
trending is seldom su¢ cient to make the series stationary, in which case it
is worthwhile to try to transform it into a series of di¤erences, especially
because many time series do not seem to follow a model of type (3.1), see
Nelson and Plosser (1982). If the mean, variance, and autocorrelations
of the original series vary over time, even after detrending, calculating
changes (or di¤erences) of the series between periods or between seasons
is often a better stationarization method. If this results in a station-
ary series, it is said to be di¤erence-stationary. The best example of a
di¤erence stationary process is the random walk, de�ned as

yt = yt�1 + "t:

Clearly, �yt = "t. Sometimes it can be hard to tell the di¤erence between
a series that is trend-stationary and one that is di¤erence-stationary.
Using a di¤erence to try to stationarize (3.1) yields

�yt = �0 + "t � "t�1:

Thus, the �rst order MA coe¢ cient is on the unit circle and �yt is non-
invertible. Of course, the same problem of inducing noninvertible unit
root processes may arise using models with other types of trend. In the
same sense, it is inappropriate to subtract a deterministic trend from
a di¤erence-stationary process. It should also be noted that there are
other more elaborated ways to detrend a time series, see the discussion
in Paper I and IV.

In business cycle research, macroeconomic variables are usually decom-
posed into a trend and a (stationary) cyclical component. Still, in the
1970s it was widely believed that the long-run trend in macroeconomic
variables is constant, i.e. trend-stationary. As already mentioned, Nel-
son and Plosser (1982) questioned this traditional view and argued that
important macroeconomic variables (such as GDP) are instead di¤erence-
stationary.

3.1 Stationarity and homoscedasticity tests

The unit root test may be used to make statistical inference about a time
series being di¤erence-stationary or not. The two main unit root tests
used in this thesis, are the augmented Dickey-Fuller (ADF) test and the
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Phillips-Perron (PP) test. The latter is a modi�cation of the previous
one, but unlike the ADF test, the PP test makes a non-parametric cor-
rection to the t-test statistic, see e.g. Wei (2006) chapter 9 for details.

There are a number ways to test for heteroscedasticity. In this thesis I
have used the common ARCH-LM and the Breusch-Pagan tests. The
former was introduced in Engle (1982) and starts by �tting the most
adequate AR(q) model

yt = �+

qX
i=1

�iyt�i + "t; t = 1; 2; :::

After that, the squared residuals b"2t are regressed on a constant and q
lagged values:

b"2t = b�0 + qX
i=1

b�ib"2t�i: (3.2)

The null hypothesis is homoscedasticity in which case we would expect allb�i to be close to zero. The Lagrange-Multiplier (LM) test statistic nR2,
where n is the sample size and R2 is the coe¢ cient of determination in
regression (3.2), asymptotically follows the �2(q) distribution. An even
simpler test is obtained by regressing the squared residuals directly on
the independent variables, which is the Breusch-Pagan test.

On several occasions in this thesis, unit root tests report stationarity for
a series for which heteroscedasticity tests reject the null hypothesis of
homoscedasticity. This contradiction reveals a weakness in the ADF and
PP tests in that they fail to capture the heteroscedasticity in the series.
It should also be noted that the null hypothesis of a unit root in Dickey-
Fuller tests tend to be rejected too often in the presence of conditional
heteroscedasticity, see e.g. Kim and Schmidt (1993). Heteroscedasticity
a¤ects estimates of parameters. The observations are unequally weighted
and hence sample information is not optimally exploited, which results
in ine¢ cient estimates. So a mechanical use and interpretation of the re-
sults of unit root tests might lead to a statistically correct, but ine¢ cient
use of models which require stationary time series (such as ARIMA or
ARFIMA models).
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3.2 The Box-Cox transformation

In case the series is positive and where the standard deviation is changing
proportionally to the level of the series, the power transformation

T (Yt) =
Y �t � 1
�

; (3.3)

introduced by Box and Cox (1964), can be used to stabilize the variance.
The Box-Cox transformation contains some commonly used transforma-
tions as special cases, for example:

� Transformation

�1 1=Yt
�0:5 1=

p
Yt

0 lnYt
0:5

p
Yt

1 Yt

Ibid. showed how to estimate the transformation parameter, �; using
maximum likelihood. The variance of economic and �nancial time series
may change over time, not only as a function of the series, but also in
other ways. What to do then?

The problem essentially has two1 solutions which are presented in the
subsequent Section 3.3 and 3.4, respectively. The �rst one is to model
the (conditional) variance. The other is to remove the heteroscedasticity
prior to model �tting. The second approach saves on parameters and
enables an application of simple (second-order stationarity) models. The
�rst approach is by far most used in practice. The reason for this is
mainly due to powerful and proven tools to handle heteroscedasticity in
both regression and time series data. A short survey is presented in Sec-
tion 3.3.

3.3 Modeling volatility

In regression it is well known that OLS estimates are not e¢ cient in the
presence of autocorrelated and/or heteroscedastic (nonspherical) distur-
bances. Given the model

1Yet another way to treat heteroscedasticity primarily in density forecasting is presented
in Paper III in this thesis.

13



y = X� + u; (3.4)

where E(u) = 0 and E(uu0) = �2
 (with 
 6= I), the OLS estimator of
� will be unbiased and

V ar(b) = E
�
(b� �)(b� �)0

�
= E

h
(X0X)�1X0uu0X(X0X)�1

i
= �2(X0X)�1X0
X(X0X)�1; (3.5)

which is obviously di¤erent from the OLS variance, �2(X0X)�1. Applica-
tions of the OLS estimate would lead to ine¢ cient estimates of �; invalid
con�dence intervals, t-tests and F -tests etc.

The generalized least squares (GLS) estimator multiplies (3.4) by a n�n
nonsingular matrix T

Ty = (TX)� +Tu: (3.6)

Standard GLS theory (see for instance Hamilton (1994, chapter 8)) ap-
plies OLS to the transformed variables in (3.6) resulting in best linear un-
biased estimators (BLUE´s) for � and V ar(�) in the model y = X�+u;
with nonspherical disturbances.

In a regression with k explanatory variables the heteroscedasticity might
take the form

�2t = �
2x2jt; t = 1; 2; :::

where x2j is the explanatory variable that can be thought of as the source
of heteroscedasticity. The original model can then be transformed to (for
details, see again Hamilton (1994, chapter 8))

yt
xjt

= �1(
1

xjt
) + �2(

x2t
xjt
) + :::+ �j + :::+ �k(

xkt
xjt
) + (

ut
xjt
): (3.7)

The standard inference procedures are valid for the transformed variables
in (3.7). Equation 3.7 can in matrix notation be generalized to

yt
�t
=
x0t�

�t
+
ut
�t
; (3.8)

where the variance of u�t =
ut
�t
is constant:
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E
�
u�2t
�
= E

�
(
ut
�t
)2
�
=
1

�2t
E
�
u2t
�
=
�2t
�2t
= 1:

The procedure to divide each observation by the standard deviation of
the disturbances is for obvious reasons often called weighted least squares.
The estimates, b�, are found by minimizing
nX
t=1

�
ut
�t

�2
= (y �X�)0��1(y �X�); where �=diag(�21; �

2
2; ::::; �

2
n)

In other words, observations with low �t are considered more reliable and
are weighted more heavily. The observations with high �t however, have
a smaller in�uence on the estimate of �.

In the univariate case one likes to preserve the dynamic structure (au-
tocorrelation) while making the series homoscedastic. Then (3.7) with
index

k =

�
0 if no intercept
1 intercept

would be appropriate. But �t is unknown and must be estimated. With
just one realization of the series this can not be done. A way out is to
estimate �t recursively using a window of observations. As in the GLS
case, appropriate weights would produce estimates that are close to being
BLUE.

For heteroscedastic time series data, ARCH-type models are considered
as benchmarks. They were �rst introduced in the seminal article by Engle
(1982), who was awarded with the price in Economic Sciences in Memory
of Alfred Nobel, 2003. Engle´s original Autoregressive Conditional Het-
eroscedasticity (ARCH) model has afterwards been developed into many
directions, see e.g. Bollerslev et al. (1992) for a exhaustive exposition.
Below follows a short survey of the models used in this thesis.

Consider the �rst-order autoregressive model, AR(1):

yt = �yt�1 + "t;

where "t is i.i.d.(0; �2). This model can be too restrictive in applica-
tions. A more general model allows for time varying variance. As in
heteroscedastic regression (see above), the standard approach to han-
dle heteroscedastic data is to use an exogenous variable to predict the
variance. Engle (1982) proposed the model
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"t = vt
p
ht

ht = w + �1"
2
t�1;

where vt is i.i.d.(0; 1) and ht is the conditional variance. This is essentially
the ARCH(1) model and may be generalized to include q lags of "t :

ht = w +

qX
i=1

�i"
2
t�i; (3.9)

which is the ARCH(q) model. The ARCH model captures the tendency
of volatility clustering. In order to ensure declining weights of the shocks
and to reduce the number of parameters, a linearly declining lag struc-
ture was proposed in ibid. A simple scoring algorithm for the likelihood
function was also provided.

It was soon recognized that the ARCH(q) model was too restrictive in
many cases. Bollerslev (1986) presented an improvement of ARCH by
adding lagged values of ht in equation (3.9):

ht = w +

qX
i=1

�i"
2
t�i +

pX
i=1

�iht�i: (3.10)

This model was called the generalized ARCH, or GARCH(p; q). To en-
sure a well-de�ned process, all the in�nite order AR parameters must be
positive. The GARCH is able to describe the persistence in the condi-
tional volatility. By rearranging terms, (3.10) is interpreted as an ARMA
model for "2t with auroregressive parameters

Pq
i=1 �i+

Pp
i=1 �i, and mov-

ing average parameters, �
Pp
i=1 �i. This idea can be used to �nd the

proper orders of p and q following Bollerslev (1988).

The simple structure of equation (3.10) induces some important limi-
tations on the GARCH models. As �rst noted by Black (1976), stock
returns are negatively correlated with volatility changes in stock returns.
That is, the volatility tends to decline in the response to "good news"
and vice versa. This phenomenon is sometimes called the leverage ef-
fect. ARCH and GARCH are examples of models unable to capture
such asymmetric e¤ects of positive and negative shocks. "Symmetric"
models are usually classi�ed as "linear volatility models". Next to the
ARCH and GARCH models, the best known members of this class of
models include the GARCH-M, FIGARCH and IGARCH models. In or-
der to capture possible leverage e¤ects, various nonlinear extensions of
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the GARCH model have been developed over the years. The earliest,
and also the most commonly used one, is the exponential GARCH, or
EGARCH, model introduced by Nelson (1991). The EGARCH model
describes the relationship between past shocks and the logarithm of the
conditional variance:

ln(ht) = w +

qX
i=1

�ig(vt�i) +

pX
i=1

�i lnht�i; (3.11)

where g(vt) = �vt + � [jvtj � E jvtj] and vt = "t =
p
ht: Because of the log-

linear form of (3.11) there are, unlike the GARCH model, no restrictions
on the parameters �i and �i to ensure nonnegativity of the conditional
variance. As with the class of linear GARCH models, there are numerous
nonlinear parameterizations with exotic names such as the GJR-GARCH,
TGARCH, STGARCH, MSW-GARCH and QGARCH model.

3.4 Paper I: A Simple Heteroscedasticity Removing Filter

Paper I of this thesis suggests another way to handle heteroscedastic time
series namely by simply removing it. This is achieved by dividing the time
series by a moving average of its standard deviations (STDs), smoothed
by a Hodrick-Prescott �lter (HP). The suggested �lter is applied on the
logarithmic, quarterly and seasonally adjusted US, UK and Australian
GDP series. The un�ltered (Di¤ ln) GDP series were all found to be
stationary according to the ADF test, but signi�cantly heteroscedastic
according to the ARCH-LM test. Moreover, they are all characterized by
decreasing volatility over time. Consequently, parameter estimates are
strongly based on an obsolete structure. After �ltering no heteroscedas-
ticity remains. Moreover, it was shown that the �lter does not colour
white noise when applied on 10 000 simulated realizations of white noise
with 200 observations each. That is an important property - we do not
want the �lter to induce spurious characteristics into the series.

Following the discussion in Section 3.3, the most straightforward way to
remove heteroscedasticity in the GDP series could be to divide the het-
eroscedastic series by the conditional volatility estimated from ARCH/GARCH
models or from any of their many generalizations. Besides being more
cumbersome, it is shown to be signi�cantly less e¤ective than the pro-
posed �ltering procedure.
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After applying the proposed �lter, an adequate ARIMA-model is esti-
mated for the �ltered GDP series, and the parameter estimates are then
used in point forecasting the un�ltered time series. The forecasts are com-
pared to those from ARIMA, ARFIMA and GARCH models estimated
from un�ltered data. It is demonstrated that estimating ARIMA mod-
els from the �ltered series generates signi�cantly more accurate forecasts
when pooling across all horizons, according to the Diebold-Mariano test
of equal forecasting performance. Much as seasonality is suppressed by
seasonal adjustment �lters, this simple �lter could be used as a standard
method to remove heteroscedasticity prior to model �tting or just to get a
glimpse of the underlying structure, not corrupted by heteroscedasticity.

4. On �nding and applying the most adequate
probability distributions for heteroscedastic time
series

Paper I is actually the product of an idea to empirically test a reduced
form of the Aghion-Howitt (AH, 1992) model. The AH model is based
on the Schumpeterian idea of creative destruction, i.e. the economy is
driven by welfare augmenting better products (innovations, or shocks)
and temporary declines (Schumpeter, 1942, Chapter 8). AH further as-
sumes that innovations arrive according to a Poisson process with arrival
rate c�; where c is the amount of labour used in research and � > 0 is
the parameter indicating the productivity of the research technology.

Aggregating a Poisson number of shocks (as assumed in the AH model)
will lead to asymmetric distributions. This is true no matter the impact
of the shocks. It is not possible to test this AH hypothesis by trying to
generate realizations from some distribution and compare them to, say
the US GDP series. The �lter proposed in Paper I enables us to work
with mean and variance stationary time series, and thus to make a fair
comparison between the frequency distributions of the GDP growth se-
ries and various probability distributions (notably some asymmetric ones
related to the Poisson distribution). Suitable Kernel functions of these
distributions can then be compared to the Kernel distributions of the
frequency distributions of the �ltered series. In this thesis the Gaussian
Kernel function is used together with the bandwidth proposed in Silver-
man (1986). This combination is considered to be optimal when data are
close to normal as they are here (see the next section).
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4.1 Paper II: On the Probability Distribution of Economic
Growth

The distribution closest to represent the reduced form of the AH model is
the exponential distribution which is the distribution of the time between
innovations in the Poisson process. To also allow for negative growth, the
double exponential (Laplace) distribution obtained as the di¤erence be-
tween two exponentially distributed variables with the same value on the
parameter � is examined. The Laplace distribution is symmetric around
its mean where the left tail describes below average shocks and vice versa.
Due to the expected asymmetries in these series the AH representative is
further modi�ed. Allowing the exponential distribution to take di¤erent
�s in the two tails leads to the asymmetric Laplace (AL) distribution
which is the main model candidate.

The series studied here are the US, UK and the compound G7 GDP
quarterly series. It is �rst recognized that data lend some support to the
AH hypothesis. Signi�cant skewness was found in the un�ltered (Di¤
ln) UK and G7 GDP series. As expected, the mean and standard devi-
ation in these series are stabilized using the �lter in Paper I. Also, the
skewness and kurtosis are more stable to the ones estimated on un�ltered
data. This indicates that the moment estimates are more accurate for
the complete �ltered series, an important property, especially as the pa-
rameters are here estimated using the method of moments (MM). It was
also found that the excess kurtosis in the AL distribution is too large for
the �ltered (and un�ltered) growth series. The AL could therefore not
be the only source of innovations, so Gaussian noise is added, leading to
the weighted mixed Normal-AL (NAL) distribution. This distribution is
capable of generating a wide range of skewness and kurtosis, making the
model very �exible. A convolution of the N and AL distributions (called
c-NAL) and a Normal Mixture (NM) distribution was also considered.
The parameters are estimated using MM by equating the �rst four non-
central sample moments with the theoretical ones and then solving those
equations for the quantities to be estimated. Thus, the theoretical cen-
tral and noncentral moments are provided for the NM, NAL and c-NAL
distributions.

After estimating the NAL parameters it is found that the Gaussian noise
component dominates. The N, NM, NAL and c-NAL distributions are
compared to the empirical distributions at 1 000 equidistant point of
the Kernel distribution in the interval (b�� 4b�; b�+ 4b�). The accuracy is
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measured using four measures (RMSE, MdAPE, sMdAPE and MASE).
It is found that the NAL distribution is superior to the N, NM and the
c-NAL distribution according to every measure, except RMSE for the
US. Kernel estimation is sometimes criticized to be based on too subjec-
tive choices both of function and of bandwidth. But so are goodness of
�t tests and it is well known that tests based on both approaches have
low power. To be on safer ground, �2 tests using three di¤erent num-
bers of bins are performed. The results of this test point in the same
direction as before, the NAL distribution �ts growth best. Thus, the
US, UK and G7 GDP series could be looked upon as samples from a
NAL distribution. According to the AH model, � measures the intensity
of only positive shocks. The technique presented in Paper II provides
a way to estimate related quantities (though buried in Gaussian noise),
and perhaps to compare di¤erent economies.

4.2 Density forecasting

A point forecast of some variable by itself contains no description of the
associated uncertainty. This stand in contrast to the density forecast,
which is an estimate of the probability distribution of the possible future
values of that variable. It thus provides complete information of the un-
certainty associated with a prediction. Between these two extremes is the
interval forecast, i.e. the probability that the outcome will fall within a
stated interval. The density forecast provides information on all possible
intervals.

Density forecasting is rapidly becoming a very active and important area
among both researchers and practitioners of economic and �nancial time
series. E.g. density forecasts of in�ation in the UK are published each
quarter both by the Bank of England in its �fan�chart and the National
Institute of Economic and Social Research (NIESR) in its quarterly fore-
cast.

The need to consider the full density of a time series rather than, say, its
conditional mean or variance has for long been recognized among decision
makers. If the loss function depends asymmetrically on the outcome of
future values of possibly non-Gaussian variables it is important to have
information not only about the �rst two moments, but also full condi-
tional density of the variables.

The issue of density forecasting heteroscedastic time series has been
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treated in some studies. The logical idea to use GARCH-type models
have been used by e.g. Diebold et al. (1998) and Granger and Sin
(2000). Weigend and Shi (2000) instead suggested hidden Markov ex-
perts for predicting the conditional probability distributions. Paper III
of this thesis present yet another way to handle heteroscedasticity in
density forecasting.

4.3 Paper III: Density Forecasting of the Dow Jones Stock
Index

Instead of modeling the conditional variance using the above suggestions,
the data (the daily Dow Jones Industrial Average, DJIA, 1928-2009), are
here divided into three parts of volatility (denoted high, medium and
low). Each part is being roughly homoscedastic which enables the use of
simple distributions to describe each part. For each part, the most ac-
curate density forecast distribution is searched for and the result is used
to provide easy guidelines for the intervening situations of local volatil-
ity. The density forecasting ability of the NM distribution (as used by
e.g. the Bank of England when calculating density forecasts of macro-
economic variables in the UK, albeit using a di¤erent parameterization,
Wallis (1999)), is here compared to the N and NAL distributions. In Pa-
per II, the latter distribution (then originated from the AH model) was
found to accurately �t GDP series and it is interesting to see if the same
applies to stock index returns. To further improve user-friendliness, sim-
pli�ed versions of the NM and NAL (using two �xed parameters) are also
considered. The density forecast ability is evaluated using the probabil-
ity integral transform (PIT). Standard tests signal no autocorrelation in
mean corrected powers of the PIT scores, and �nding the most suitable
distribution for density forecasts is a matter of �nding the distribution
with the most uniform PIT histogram. This is done using goodness of �t
tests for the di¤erent parts of volatility, separately.

It is found that the �tted NAL distributions are superior to the N and
NM on average. Also, there is no great loss of information by using the
simpli�ed NM and NAL distributions, in fact the �t is slightly improved
for the NM. The NM �t is nevertheless inferior to both the NAL and the
N distributions.

This proposed procedure of circumventing strong heteroscedasticity in
the entire series involves taking decisions on how to react to di¤erent
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degrees of local volatility. This could be made either by constantly rees-
timating the parameters using the MM method and the new, local set of
moment estimates. Using the simpli�ed NAL distribution also facilitates
a strict judgmental estimation of the parameters using the estimated dis-
tributions for the high, medium and low volatility parts as guidelines.

Note that the NAL distribution �t both GDP growth in Paper II and
now stock index data. This could hint at a new analogy between the
�nancial sphere and the real economy, further investigated in Paper IV.

5. Completing the circle

Applying the �lter suggested in Paper I on heteroscedastic GDP growth
series not only resulted in better point forecasts. It also enabled a proper
study of their underlying probability distributions. In Paper II, the NAL
distribution was found to be close to these probability distributions and,
interestingly, also accurately �tted the DJIA in Paper III. This indicates
common characteristics in GDP and �nancial data, further investigated
in the concluding Paper IV. Their joint relationship is probably best
explored in the frequency domain using the spectral tools described in
Section 2.1. Both US GDP growth and Dow Jones contain a positive
trend and are heteroscedastic. This must be eliminated before further
investigation. The e¤ectiveness in removing the trend and heteroscedas-
ticity of the �lter proposed in Paper I was shown there. It is logical to
believe that the same �lter conveniently �ts in this application as well.
Thus Paper IV makes use of the results in Paper I, II and III, and thus
in a way, completes the circle.

5.1 Paper IV: Comovements of the Dow Jones Stock Index
and US GDP

As �rst noted by Granger (1966), national product series such as GDP
typically contain a unit root. As shown in Paper IV, the same applies
to the Dow Jones stock index. In the frequency domain, this shows up
as low or in�nite frequency variation in the spectral density. Standard
analysis requires stationarity and hence time series are detrended prior
to further analysis. As mentioned in Section 2, given a �nite time series
it is impossible to design an ideal �lter. Many approximations have been
suggested. The most popular ones are the HP �lter, the BK �lter and
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the �lter suggested by Beveridge and Nelson (BN) (1981). Also, simply
the �rst di¤erence and the centered moving average are frequently used
for detrending purposes.

Surprisingly, none of the above �lters takes the heteroscedasticy into
account. Neglected heteroscedasticity distorts both time domain and
frequency domain results. The �lter proposed in Paper I not only removes
heteroscedasticity, but also the trend in the series and consequently seems
like a good alternative. The univariate and bivariate frequency domain
results of this �lter are compared to the results from the �lters that do
not take heteroscedasticity into account. Hence, the e¤ect of neglected
heteroscedasticity is measured.

No matter which �lter is used, signi�cant comovements exist between
the DJIA and US GDP growth series. It is found that accounting for
heteroscedasticity somewhat shortens the business cycles. The coherency
seems quite robust across �lters, but using the �lter proposed in Paper
I slightly shifts the coherency peak to the left and results in larger than
average coherency values comparing to the other studied �lters. The
phase shift is less robust, especially for the BK �ltered series. Most �lters
report that DJIA leads US GDP at peak coherency frequency (about two
years), but also reveal a feedback from US GDP to DJIA at around half a
year. This is also con�rmed in the time domain using cross correlations
and Granger-causality tests. Using the BK �lter with frequency band
6 to 32 quarters by de�nition does not utilize this information. The
same applies to the BN �lter. It is therefore advisable to extend the
frequency bands to 2 - 32 quarters in comovement studies like this one,
provided that the series are homoscedastic. The �ltered series using the
suggested heteroscedasticity removing �lter induce the longest lead shifts
at the peak coherency frequency, and also above average feedback lag.
When applied on subperiods in accordance with US GDP volatility, most
�ltered series showed scattered �rst order cross correlations, but less so
in the homoscedastic series.

Thus, the choice of detrending �lter a¤ects both univariate and bivariate
frequency domain results. More importantly, heteroscedasticity matters
and must be eliminated prior to comovement studies like this one.
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6. Conclusions and ideas for further development

This thesis provides simple, yet e¤ective, ways to handle heteroscedastic-
ity in economic and �nancial time series. The heteroscedasticity removing
�lter in Paper I allows new and more e¢ cient analysis and applications.
A few are presented in this thesis, such as improving point forecast accu-
racy of linear time series models (Paper I) or rendering a e¢ cient study
of the underlying probability distribution of economic growth possible
(Paper II).

During the work with the thesis many ideas of further development have
crossed my mind. Most of them were dismissed more or less immediately
as simply bad ideas. But some have been stored to mature in my brain
for quite some time. Two of them even resulted in half-�nished papers
awaiting to be completed.

The �rst one involves making the heteroscedasticity removing �lter in
Paper I model-based inspired by the pioneering works on seasonal ad-
justments by Cleveland and Tiao (1976), Burman (1980) and Hillmer
and Tiao (1982), and later by e.g. Maravall (1987 and 1993). These ap-
proaches typically employ ARIMA processes for the trend and seasonal
components and white noise for the irregular component. Most detrend-
ing �lters are ad hoc by nature, and a proper model-based approach,
which jointly models the heteroscedasticity is called for. The maximum
likelihood function quickly gets very complicated rendering maximum
likelihood estimation of the parameters di¢ cult.

The other half-�nished project concerns using the proposed NAL as an
error distribution in linear time series models such as ARIMA. In the
theory of time series analysis it is common practice to assume that the
noise series generating the process is normal. It is widely known that this
is too restrictive in many applications, e.g. modeling �nancial or growth
series as seen in this thesis. Even if the true process is non-normal and
we mistakenly maximize a normal log likelihood for an autoregressive
model of order p, the resulting estimates of the parameters are consis-
tent but, as �rst mentioned by White (1982), the standard errors for the
estimates need not be correct. Any linear time series model applied on
skewed and leptokurtic data will produce skewed and leptokurtic residu-
als, so it is a straightforward idea to investigate the properties of linear
models assuming di¤erent error distributions. This has been done in
some studies, Tiku et al. (2000) and Damsleth and El-Shaarawi (1989)
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used a student´s tmarginal and a double exponential (Laplace) marginal,
respectively. Nielsen and Shepard (2003) investigated the case of expo-
nential noise in the AR(1) model. However, none of the above examples
accounts for the skewness, and this makes it tempting to use the NAL dis-
tribution for the noise. Very recently, Lanne and Lütkepohl (2010) used
a normal mixture distribution for the noise in structural vector autore-
gressions. As before, the maximum likelihood functions get complicated,
and numerical optimization to estimate the parameters is called for.
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