Seminar Paper No. 323

INSIDERS AND OUTSIDERS IN
WAGE DETERMINATION

by

Robert M. Solow

Paper presented at the conference on

TRADE UNIONS, WAGE FORMATION
AND MACROECONOMIC STABILITY

August 26—29, 1984

arranged in conjunction with

THE BANK OF SWEDEN TERCENTENARY FOUNDATION

INSTITUTE FOR INTERNATIONAL ECONOMIC STUDIES

University of Stockholm
Seminar Paper No. 323

INSIDERS AND OUTSIDERS IN
WAGE DETERMINATION

by

Robert M. Solow
Massachusetts Institute of Technology,
Cambridge, MA

Seminar Papers are preliminary material circulated
to stimulate discussion and critical comment.

April, 1985

Institute for International Economic Studies
S-106 91 Stockholm
Sweden
Insiders and Outsiders in Wage Determination

Robert M. Solow*

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

A firm starts with a group of insiders or seasoned workers. There is also a large pool of outsiders who are initially less productive, but are transformed into insiders after one period of employment. The firm gains from having a large pool of insiders, some of whom may be laid off in bad years. Insiders gain from keeping their numbers small. If the insiders set their wage unilaterally, they will choose a path in this extreme case prevents employment of outsiders even if future employment prospects are good. If the wage path is set by bilateral bargaining, the extra advantage to the firm permits employment of some outsiders in some situations.
I. Background

The labor market is still somewhat of a puzzle for mainstream economists. At least since Pigou (1923), it has been clear that mainstream theory that an atomistically competitive labor market could not produce the sort of persistent unemployment we see. (I take the proposal that the real-world labor market is actually in market-clearing equilibrium with respect to some (mis)perceived demand and supply conditions to be a clever jeu d'esprit and not a serious description of modern capitalist economies in prolonged recession.) That still leaves a wide variety of possible market institutions and accompanying "imperfections" to be analyzed.

For a long time mainstream macroeconomics more or less ignored the problem of finding an adequate description of the labor market that would fit comfortably with the rest of accepted theory. In the past decade, however, there has been a true renaissance in this field, with alternative models appearing almost monthly. The result has been a better understanding of the implications that follow from the long-term character of the employment-relation, and from the prevalence of explicit and implicit bargaining. This is surely one of the good effects of the movement to reconcile macroeconomic and microeconomic modes of analysis. Success is not yet at hand, however. Some persistent and macroeconomically significant characteristics of the labor market still elude plausible explanation.

One of the hardest nuts to crack, it seems to me, is to explain why
unemployed workers do not compete for existing jobs by offering to work at jobs for which they are qualified at a wage lower than that currently being paid to incumbents. Some current theories have an answer to that question, but an unacceptable one, at least to me. In some contract theories, firms are allowed to make payments to currently unemployed members of their labor pool. The result is usually the "indifference principle": in the optimal contract, workers are equally well off whether employed or laid off. That answers the question all right, but only by flying in the face of the common observation that laid-off workers are glad to find work, and their families often celebrate the event. This is discussed in the survey by Azariadis Stiglitz (1983).

There are also sensible models that contradict the indifference principle and show why any labor-market equilibrium must exhibit a utility-differential in favor of employed workers. A current favorite rests on the assumption that firms are able only imperfectly to measure the effort being put out by their employees. These "efficiency wage" models are ably outlined by Yellen (1984). If the indifference principle ruled, many workers would presumably rest on the job, since being found out and fired would be painless. The equilibrium utility-differential between employed and unemployed must be enough to induce the equilibrium amount of effort from the employed. There is probably something to this story, though I am not sure how it coheres with the fact that many employment contracts differentiate explicitly between ordinary layoff and discharge "for cause".

The interesting thing about this sort of model is that an unemployed worker would be motivated to offer to work at a bit less than the going wage; it is the employer who would refuse the deal. The reason, of course, is that the employer would reckon that the worker, once employed at a lower wage, would have less than the appropriate reason to fear being
fired, and would therefore be inclined to do less than the appropriate amount of work. The trouble with this story is that the unemployed workers ought to keep trying. There is always the chance that the next firm will be tempted. After all, unemployed workers do try; what they don't do is engage in wage-cutting. If this model were really describing a major part of what happens in labor markets, I would expect to see more wage-cutting offers on the part of the unemployed, especially since many of them can demonstrate that their current unemployment does not result from having been fired for cause.

I hasten to confess that I, personally, do not find this reluctance to be so great an intellectual problem; but that is only because I, personally, do not find it hard to imagine that the unemployed do so little undercutting of the wage because they think it is an improper or undignified thing to do, and because they would not like others to do it unto them if roles were reversed, as they might be next time. But I realize full well that this is not the way economics is supposed to model the world, and so I mention it only as a Galilean remark (i.e., something best muttered to oneself). That leaves us without a good explanation of the behavior of the unemployed, and I will not provide one here.

We have better prospects of modelling the behavior of the other parties in the labor market: employers and employed workers. By itself, that would go some way toward explaining (or explaining away) the reticence of the unemployed. Once they have concluded a formal or informal agreement with their workers and achieved the desired level of employment under that agreement, employers often announce simply that they are not hiring. Unemployed workers, knowing the state of affairs, may not bother to try. Of course an explanation is required of employers'
behavior, but that may be easier. I have already mentioned one such explanation; Lindbeck & Snower (1984); and this paper will provide a third.

Any attempt to model a unionized labor market in anything less than the longest run must start with a strategic choice about the degree of centralization in collective bargaining. Economists in many European economies, such as the Nordic ones gravitate toward the assumption of centralized bargaining between an all-inclusive trade union and a single employer. This is natural in economies where nearly 90% of blue-collar workers belong to a union, and where collective bargaining tends to occur at the national level. My model is more suited to US conditions where only about a third of blue-collar workers and fewer than a quarter of all workers are organized, and even industry-wide bargaining is far from universal. In such a situation, both parties know that there is, out there, a large number of nonunion workers, even if a firm is dealing with a disciplined union. Nonunion workers may, of course, lack some of the skills, especially the firm-specific skills, possessed by union members. The particular problem I want to study is the effect on wage-bargaining of the presence of that unorganized fringe.

This paper shares a basic orientation with Lindbeck & Snower (1984). Most models of bargaining and contracting in the labor market pay attention only to the conflict of interest between the firm-employer and its labor pool or group of attached potential employers. When there is involuntary unemployment, however, the interests of employed and
unemployed workers also diverge. This is obviously the case if the
indifference principle does not hold. Even if it does, there is a
conflict of interest between workers under the contract and those -- new
entrants to the labor force and others -- who are currently without a
contract of any kind, and are seeking long-term membership in a labor
pool. The basic similarity between this paper and the one by Lindbeck &
Snower is that they both focus on this important and neglected aspect of
the labor market; see also McDonald & Solow (1985).

The difference between the present paper and Lindbeck & Snower's is
that the latter focusses mainly on hiring and firing costs and the
incumbent workers' ability to exploit the market power that these costs
confer, whereas here we concentrate on skill differences (which are also
mentioned by Lindbeck & Snower) and longer-run considerations
concerning the ultimate size of the labor pool. In addition, Lindbeck &
Snower focus on the firm's decision whether to replace some or all of its
incumbent workers with outsiders, whereas we take it for granted that the
firm cannot or will not do that, and look only at the firm's decision
whether to make a marginal addition to the size of its labor pool.

Both papers succeed in showing how the wage policy of the incumbent
group of workers is affected by the presence of unemployed outsiders;
neither solves the problem of accounting for the passive behavior of the
outsiders. Lindbeck & Snower observe that outsiders who succeed in
in gaining employment by undercutting and replacing some incumbents might
find themselves ostracized by the remaining insiders. That rings true,
but it is just a particular aspect of the "propriety"-constraint mentioned
earlier. In the part of the field that they cover, the two papers are complementary.

II. Outline of a Model

We now start the formal specification of the model, explaining the notation as we go along.

The story extends over two periods, but we are mainly concerned with what happens in the first. That is because the second period, being the "last" period, has special characteristics that are of no real significance.\(^1\)

The firm starts with a pool of experienced workers, \(n\) in number. If it employs \(e_{11}\) of them in period 1 it will generate an output whose market value is \(s_1 f(e_{11})\). Here \(s_1\) is a parameter describing the state of the firm's product market in the first period. The state is entered multiplicatively for convenience and simplicity. Similarly in period 2, if the firm employs \(e_{12}\) skilled workers they will generate a revenue \(s_2 f(e_{12})\). For now we treat \(s_1\) and \(s_2\) as known; but eventually we will want to think of \(s_2\) as a random variable of known distribution.

There is also available a large supply of workers who belong to no firm's labor pool. Some of these may be new entrants or re-entrants to the labor force; but others may be workers who have held jobs with other firms but have been laid off with no prospect of recall, for the usual reasons. These unemployed workers lack firm-specific skills possessed by members of a labor pool. They are therefore less productive than experienced workers. If the firm we are studying were to hire \(e_{21}\)
inexperienced workers in period 1 along with \(e_{11} \) skilled workers, one might quite generally write the revenue generated as \(s_1 P(e_{11}, e_{21}) \), where \(P \) would have to be given a special property to represent the lower productivity of inexperienced workers. (For example, \(P(x, y) > P(y, x) \) whenever \(x > y \).) We will settle for a simple special case of this assumption, namely that the firm's revenue in the first period will be \(s_1 f(e_{11}) + s_1 \phi f(e_{21}) \) where \(\phi \) is a fixed constant between zero and one. In period 2, the firm's revenue from employing \(e_{12} \) inexperienced and \(e_{22} \) inexperienced workers is \(s_2 f(e_{12}) + s_2 \phi f(e_{22}) \).

We are concerned with the wage rates of skilled workers in periods 1 and 2, called \(w_{11} \) and \(w_{12} \), respectively. Unskilled workers have a reservation wage of \(w_2 \), which we take to be the same in both periods. The reservation wage is determined by some mixture of unemployment compensation, leisure, wages in casual employment, the availability of casual employment, and other such factors.

Labor is the only variable factor of production. Thus the firm's objective is to achieve a large value of

\[
s_1 [f(e_{11}) + \phi f(e_{21})] - w_{11} e_{11} - w_{21} e_{21} + R [s_2 [f(e_{12}) + \phi f(e_{22})] - w_{12} e_{12} - w_{22} e_{22}]
\]

where \(R \) is a discount factor. For reasons touched on earlier, the firm is assumed not to make payments to laid-off members of its labor pool.

If the firm operated in a series of spot markets for the two kinds of labor, facing parametric wages, it would determine \(e_{11}, e_{21}, e_{12}, \) and \(e_{22} \) by four independent marginal productivity conditions. (The discount factor would not matter at all, because there would be no intertemporal implications of any of the firm's actions, so no reason for it to compare one period with another.) But the labor market of the model is not like
that, and so the firm chooses its behavior differently.

The story extends over two periods. As mentioned, the firm starts with a pool of experienced workers, m in number. These workers are organized in a formal or informal union. For a first pass, we assume that the union is able simply to quote wages w_{11} and w_{12} for experienced labor in the two periods, while the firm is able to choose levels of employment unilaterally. Thus firm also decides how many inexperienced workers e_{21} to hire in the first period, if any. They are freely available at the reservation wage w_{2}. (The parallel quantity e_{22} in the second period is unimportant, because the second period is -- artificially -- the last period, and so we forget about it.) Our key assumption is that inexperienced workers hired in period 1 are thereby transformed into experienced workers in period 2. Moreover, they become members in good standing of the union in period 2. In other words, the initial insiders do not care at all about the welfare of outsiders, but any who are hired by the firm are thereafter on a par with other insiders. The central question addressed in this paper is the effect of this intertemporal connection on the firm's employment decision and the union's wage-setting decision.

In the set-up as we have described it, the firm's choice of e_{11} will satisfy

$$s_{11}f'(e_{11})=w_{11},$$

subject to the usual boundary conditions. If "<" holds at $e_{11}=0$, the firm employs no skilled workers; if ">" holds at $e_{11}=m$, the firm employs its whole labor pool in the first period.
Taking the first period by itself, it would be in the firm's interest to hire some inexperienced workers if

\[s_1 \varphi f'(0) > w_2 \]

and the best number to hire, still looking only at the first period, would be determined by the obvious marginal-productivity condition. In fact we assume that this inequality is not satisfied. If the only consideration were first-period profit, the firm would not choose to hire any of the unemployed. This condition is perhaps excessively strong. It can be read as limiting the model to periods in which \(s_1 \) is not too large. It corresponds to what employers often say, especially in not very good years, though that does not guarantee its truth. But the firm has yet another motive to hire inexperienced workers in the first period: to train experienced workers for period 2. This motive becomes effective if the firm anticipates that its second-period employment of experienced workers might profitably exceed \(m \). When this factor is taken into account the firm would be impelled to hire unemployed workers in period 1, even though first-period results by themselves would not justify it, provided that

\[s_1 \varphi f'(0) - w_2 + R[s_2 f'(m) - w_{12}] > 0. \]

(2)

If this inequality is satisfied, \(e_{21} \) is determined by

\[s_1 \varphi f'(e_{21}) - w_2 + R[s_2 f'(m + e_{21}) - w_{12}] = 0. \]

(3)

These are, in summary, the first-order conditions with respect to \(e_{21} \) for the firm's problem of maximizing

\[s_1 [f(e_{11}) + \varphi f(e_{21})] - w_{11} e_{11} - w_{2} e_{21} + R[s_2 [f(e_{12}) + \varphi f(e_{22})] - w_{12} e_{12}] \]

subject to the constraints \(e_{11} \leq m \) and \(e_{12} \leq m + e_{21} \). If, as we suggested earlier, the union is able to impose the condition that \(e_{21} = 0 \) unless \(e_{11} = m \), then that constraint must be observed too. These constraints come into play only if \(s_2 f'(m) > w_{12} \). Otherwise \(e_{12} \) is determined by
These considerations define the demand for labor facing the union, to which it must respond in quoting the wage rates for periods 1 and 2. The next step is to specify the union’s preferences. For the first period, the union’s objective is assumed to be $e_{11}(w_{11}-w_0)/m$, where w_0 is the reservation wage for insiders, possibly larger than w_2. Two immediate observations are called for: (a) it is more usual to write $U(w)-U_0$ with $U(.)$ strictly concave but for now we set $U(w)=w$ for simplicity and leave the general concave utility function for discussion later; cf. also Pencavel (1985); (b) the factor $1/m$ can usually be omitted because it is an exogenous constant, but here it matters because the second-period membership of the labor pool is $m+e_{21}$ and that is endogenous via the union’s choice of w_{12}. Thus the relevant objective in period 2 is $(m+e_{21})^{-1}e_{12}(w_{12}-w_0)$ and the union’s complete objective function is

$$m^{-1}e_{11}(w_{11}-w_0) + R(m+e_{21})^{-1}e_{12}(w_{12}-w_0).$$

The union is assumed to discount utility at the same rate that the firm uses to discount profit. The important thing about this formulation is that the union suffers a direct utility-loss when its members are unemployed. For given employment in any period, the union is worse off the larger its membership.

In principle, now, the union knows e_{11}, e_{12}, and e_{21} as functions of w_{11} and w_{12}. It chooses w_{11} and w_{12} to maximize (5) where e_{11} is defined as a function of w_{11} by (1) and either $e_{21}=0$ and e_{12} is defined by (4) or e_{21} is defined by (3) and $e_{12}=m+e_{21}$.

Our strategy is to maximize for the union and search out the circumstances under which the union will set values of w_{11} and w_{12} which induce the firm to choose $e_{21}=0$. When will the current incumbents select a wage policy that excludes outsiders from employment? It is to be
emphasized that the insiders take full account of the fact that outsiders hired this period will be insiders next period. In fact, what may induce the incumbents to set a wage that has the effect of excluding outsiders from current employment is precisely the realization that enlarging the pool of insiders now will lead in the future to a higher unemployment rate among members, and/or to the setting of lower wages in the future in order to avoid that unemployment. The device that the incumbents use to diminish or eliminate the current employment of outsiders is the setting of a high enough wage for next period so that employers foresee no need to enlarge the pool of skilled workers. Since the current productivity of outsiders is assumed to be low, that is enough to exclude them from current employment.

The interpretation we have in mind can be restated from another point of view. The industry is subject to fluctuating demand for its product. Since the firm assumes no long-run responsibility for its workers, it will hire outsiders at their reservation wage any time their current (marginal) productivity exceeds that wage. Suppose market conditions in period 1 are not so good (i.e., s_1 not so large) that outsiders can be profitably employed on that basis. The possibility exists that they might be hired anyway if period 2 is expected to be prosperous enough (i.e., s_2 large enough) so that the firm will need an enlarged pool of skilled workers then. This possibility will be frustrated if the insiders choose to convert the improving market prospects into a sufficiently high wage for period 2 that the firm's demand for labor can be satisfied out of its existing pool of trained workers. If that is the general outcome, then we have a partial explanation of the persistence of unemployment in a mildly cyclical economy.
III. Details

In this section it is shown that the model described does have the general property just mentioned. Under unrestrictive assumptions, the wage policy of the insiders will exclude the employment of unskilled outsiders unless their current productivity exceeds the wage at which they are available. Thus outsiders will be hired, even at the reservation wage, only in very good states.

It is the virtue (or the vice) of additivity that e_{12} and e_{21} are independent of w_{11}. If only period 1 were at stake, insiders would have no reason to worry about the hiring of outsiders because — in this formulation — they do not compete with e_{11}. We can restrict attention to the second term of (5) and consider the insider-union as choosing w_{12} to maximize the expression

$$V(w) = (m + e_{21})^{-1} e_{12} (w - w_0).$$

(6)

What does V look like as a function of w? (I omit the subscript 12 occasionally when the emphasis is on the running variable.)

To begin with, it is obvious that (2) determines a critical value w^*, say, with the property that $e_{21} > 0$ if and only if $w_{12} < w^*$. Analogously, (4) provides another critical value of w, namely $w = s_2 f'(m)$, with the property that $e_{12} < m$ if and only if $w_{12} > s_2 f'(m)$. Since I have all along assumed s_1 to be such that $s_1 f'(0) - w_2 < 0$, it follows from (2) that $w^* < s_2 f'(m)$. These observations can be summarized in the following way. For very high values of w_{12}, specifically those higher than $s_2 f'(m)$, the firm will not fully employ even its initial labor pool in period 2, given the state s_2 expected to rule then. That being so, $e_{21} = 0$. For values of w_{12} a bit
below $s_2 f'(m)$ the initial labor pool will be fully employed in period 2, i.e., $e_{12} = m$, but still $e_{21} = 0$ because the net gain from having an extra skilled worker available in period 2, though positive, is not large enough to cover the loss from employing an unseasoned worker in period 1. (This loss can be thought of as a kind of training cost, but its size depends on w_2 and s_1.) When w_{12} falls to w^*, e_{21} becomes positive, and increases further for still lower values of w_{12}.

The lowest possible value of w_{12} is w_0, the reservation wage for seasoned workers. For higher values, through w^* and all the way to $s_2 f'(m)$ there is full employment of union members in period 2. In that range, from (6), $V(w) = w - w_0$. This is shown in Figures 1a and 1b as the ray with unit slope emanating from w_0.

Now let $g(.)$ be the inverse function of $f'(.)$. Thus, from (4),

$g(w/s_2)$ is the conventional demand function for seasoned labor in period 2; it is a decreasing function of its argument. Now consider the function $g(w/s_2)(w - w_0)/m$. It represents (see (6)) the branch of $V(w)$ where $e_{12} = 0$, and therefore $e_{21} = 0$, and I shall simply call it $V(w)$ for now. Clearly, $V(w_0) = 0$. Moreover $V(w) = 0$ again for all w large enough to drive the demand for skilled labor to zero. Whether any such wage exists depends on the elasticity of $g(w/s_2)$ at high wages, of course. The natural and typical assumption is that $V(w)$ is unimodal, whether or not it actually reaches zero at the right-hand end. I need two more geometric facts about $V(w)$.

By direct calculation $V'(w_0) = g(w_0/s_2)/m$. If this quantity is no bigger than one, it means that the firm's demand for skilled labor in period 2 is not as big as m even if the union asks only for the reservation wage of its members. Employment will be even lower at higher wage rates. In that circumstance there can never be employment of outsiders. It must
therefore be taken that $V'(w_0) > 1$. Finally, $V(s_2 f'(m)) = s_2 f'(m) - w_0$ because $w = s_2 f'(m)$ is precisely the wage that yields $e_{12} = m$. The curve for $V(w)$ is superimposed on Figure 1a-b, which exhibits the two possible configurations.

In both diagrams, the effective $V(w)$ facing the union of initial insiders coincides with the ray from w_0 up until its intersection with the unimodal curve at $w_{12} = s_2 f'(m)$. Further to the right it coincides with the unimodal curve. In Figure 1a, the union sets $w_{12} = s_2 f'(m)$. In Figure 1b, it sets $w_{12} = w^*$. In both cases $e_{21} = 0$. The difference is that in the configuration of Figure 1a, $e_{12} = m$; the original group of insiders is fully employed in period 2, though their wage is high enough to render the employment of outsiders unprofitable in period 1. In the configuration of Figure 1b, w_{12} is set high enough so that even some of the initial insiders are laid off in period 2. A fortiori no outsiders are hired in period 1.

The comparative-static analysis of variations in s_2 is simple. The unit ray from w_0 is obviously independent of s_2. The unimodal curve is also anchored at w_0, and it shifts upward with higher values of s_2 because $g(.)$ is a decreasing function of w/s_2. It is no surprise that the skilled wage w_{12} is higher in better states. Further calculation shows that a better state s_2 is more likely to lead to a situation like that shown in Figure 1b. In other words, the insiders divide the benefit from a better state between higher wage and higher employment until the initial membership is fully employed. For still better states, only the wage is higher.

This is a sharp result, but I want to emphasize that it is not a deep one. In the model, the union cares about the unemployment rate of its
members and about the wage that employed members receive. Once the second-period state is good enough to insure full employment for the initial labor pool any further improvement is translated entirely into a higher wage. Because outsiders are initially unskilled, it would take a discrete reduction in the wage below the level giving full employment of insiders to induce the firm to hire outsiders. (Notice that small variations in w_0 or s_1 have no effect on the union wage.) The insiders are not motivated to enlarge the labor pool in that way, or in any way. Thus outsiders can only achieve employment in states where their initial productivity is high enough to justify it instantaneously. (Insiders might wish to exclude outsiders even then, but that is the province of the Lindbeck & Snow paper.)

IV. Long-run Size of the Labor Pool

So far the size of the union membership (m) has been treated as exogenous, and the second-period state (s_2) has been assumed known. Over the longer run, one can imagine that the union has some control over the number of its members. The best size, from the union's point of view, might depend on the frequency distribution of states. (The firm has no long-run obligations to its workers in this model, so the firm would always like the labor pool to be very large. That has to be recognized as an over-simplification.)

Suppose the "typical" period is like the "second" period in the model of Sections II-III. The "first" period is just an artificial start-up. The model defines a best wage $w^* (s)$ as a function of the "second" period state s. From earlier calculation we know that $w^* = sf'(m)$ in states good enough to look like Figure 1a; and w^* satisfies the equation
\[g(x^*_s/s) = (w^*_s - w_0)g'(w^*_s/s)s^{-1} = 0 \] for smaller \(s \). The dividing-line comes at

a value of \(s \) such that the intersection in Figure 1 is right at the

maximum-point of \(V(w) \). It is straightforward to show that the critical

value of \(s \) is \(w_0/(f'(m) + mf''(m)) = s_0 \) say. Thus the union achieves a level

of utility which depends on the state in the following way:

\[V = (w^*_s - w_0) = sf'(m) - w_0 \text{ for } s > s_0 \]

\[= m^{-1} g(w^*_s/s)(w^*_s - w_0) \text{ for } s < s_0. \]

Now suppose that the state \(s \) has a probability distribution \(P(s) \). If the

union can limit its membership in the long run, it might choose \(m \) to

maximize the expected value of \(V \) as given by (7). This expected value can

be written as

\[m^{-1} \int_0^s g(w^*_s/s)(w^*_s - w_0) dP(s) + \int_{s_0}^{\infty} (sf'(m) - w_0) dP(s). \]

Here \(s_0 \) is itself a function of \(m \) but that makes no difference because the

two branches of the integrand coincide at \(s_0 \). Obviously, then, (8) is a
decreasing function of \(m \).

The conclusion is that the abstract group of insiders is better off

the smaller it is. So far as the model is concerned, the "original"

insiders ought never to want to add to their number or even to offset

attrition. Again there is nothing subtle about this implication. The

model offers the union no reward for absolute size. A larger number of

members can only increase the probability of unemployment for some of them

and decrease the full-employment wage.
V. Notes and Comments

(1) Naturally, if the union's objective function included the absolute size of the membership as an argument along with the unemployment rate of members, the result would be softened and some outsiders would be admitted in good states. Even so, the qualitative message of the model would remain: concern about future unemployment of members motivates insiders to limit the expansion of employment. In the real world, unions usually want to expand. Very likely the main reason, though not the only one, is to protect themselves against competition from non-union employers. This could be formalized; but formalization would only exhibit the outcome as dependent on the trade-off between absolute size of membership and the wage and employment-rate of members in the union's objective function. Since we have no grounds for intuition about that, there seems to be little point in grinding out the formalities here. In view of the importance of the issue, it would be worthwhile to model an industry with coexisting union and non-union firms, with some choice about which kind to be.

(2) One easy generalization can be taken care of briefly. It is more conventional to write the union's second period objective as

\[\frac{\epsilon_1}{m+\epsilon_2} [U(w)-U(w_0)] \]

with \(U(.) \) strictly concave. If that is done in the model of Section II, nothing much changes. The unit-slope ray from \(w_0 \) is replaced by the graph of \(U(w)-U(w_0) \). It remains true that the natural
assumption $s_2f'(m) > w_0$ implies $V'(w_0) > U'(w_0)$ so that the picture in Figures 4a-b is qualitatively unchanged. The only complications is that multiple intersections are "more likely". (Even when $U(w)$ is linear, multiple intersections because $V(w)$ is only assumed to be unimodal, not necessarily concave.) When there is more than one intersection in Figure 1, it is always the furthest to the right that matters, whether it leads to the configuration of Figures 4a or 4b. One could justify the intuitive remark that a strictly concave $U(w)$ biases the model toward the outcome described in Figure 4a.

(3) I can also relax the assumption of within-period additive separability of the firm's revenue. The separability assumption has the objectionable consequence, visible in (1), that e_{11} is independent of w_{12}, and therefore of e_{21}. Employment of outsiders in period 1 is not a substitute for employment of insiders in period 1. The appropriate generalization is to interpret $y = f(e_{11}) + s_1 f(e_{21})$ as output, not revenue, and to make revenue a strictly concave function of output, $Q(y)$. I can then proceed as before, only with rather more complication.

The comparative-static analysis of the firm's demand for labor leads to the conclusion that

$$\frac{\partial e_{11}}{\partial w_{11}} < 0, \quad \frac{\partial e_{21}}{\partial w_{11}} > 0$$

$$\frac{\partial e_{11}}{\partial w_{12}} > 0, \quad \frac{\partial e_{21}}{\partial w_{12}} < 0.$$

The last two derivatives are precisely the intuitive improvement being sought: insiders and outsiders are rivals in period one. The rest of the analysis for the wage-setting union goes much as before. The firm will employ outsiders in period 1 only if $Q'(s_1 f(m))s_1 f'(0) + R[Q'(s_2 f(m))] s_2 f'(m) - w_{12} > 0$, and this defines a critical value w^*. The critical value
\(w^* \) at which the original insiders will be fully employed in period 1 is
\[Q'(s_2f(m))s_2f'(m). \] It is easily checked that \(w^* \) if and only if it is unprofitable for the firm to employ any outsiders from the standpoint of period 1 alone. But this conclusion now requires the subsidiary assumption that the firm may not, or will not, employ any outsiders in period 1 unless its initial group of insiders is fully employed. This leaves open the possibility of replacing insideness by outsiders.

(4) The two-period model is intended as a crude approximation to one with a long sequence of periods. A more detailed representation would have to find room for a number of facts of common observation. The ones that have occurred to me are (a) attrition of membership and the consequent need for recruitment of replacements, not necessarily equal in number; (b) the scheduling of layoffs in order of seniority; (c) the scaling of wages in order of seniority; (d) the gradual acquisition of skills with continued employment, and possibly the gradual deterioration of skills with prolonged unemployment; (e) the possibility that labor pools will differ in the relative weight they assign to employment security and high wages as objectives, including the likelihood that the weighting might be affected by the objective stability of demand; (f) the holding of inventories of goods as a short-run substitute for a larger labor pool. Modelling any or all of these might be very complicated. I suppose it is unlikely that any simple sharp results could survive all those complications. That may be just as well, because the simple sharp result found in the two-period model is probably too simple and too sharp. Nevertheless I would expect the general message to persist, with conflict.
of interest between senior and junior members of the labor pool added to conflict of interest between insiders and outsiders.

(5) If the two-period structure of the labor market is taken literally, a time-consistency problem arises. Once the second period has rolled around, it is too late for the firm to enlarge the pool of skilled labor. If the insiders had, in period one, set a second-period wage higher than they would otherwise prefer, in order to discourage recruitment of outsiders, then at the beginning of period two they should be happy to renegotiate a lower wage. At that stage the employers would agree, but of course the anticipation of this outcome would react back on their first-period decision, and the union's. If contracts made in the first period are to be enforced, it will have to be done by a third party. Alternatively one can informally assume that the unions follow through because they are actually engaged in a many-period process and have to maintain credibility. Admittedly it would be better to formalize these considerations.

(6) The considerations discussed so far are all partial-equilibrium in character, confined to the state of the labor market conditional on the state of market demand. From a broader macroeconomic point of view the state \(s_2 \) is endogenous, surely sensitive to employment decisions and perhaps to wage decisions. If aggregate demand is more elastic with respect to the level of employment than it is with respect to the wage rate for seasoned workers, then the mechanism analyzed in this paper is likely, on the whole, to be contractionary in its bias. But this ought to be worked out precisely.

(7) In this model, wage flexibility is used, by insiders, to stabilize employment. 3) For someone, like me, who thinks that the main aggregative fact
to be explained about U.S. labor markets is the variability of employment and
the stability of real wages, this might be thought to be paradoxical, to
put it kindly. I do not take the implied criticism lightly; my tentative
response is that in a model of a segmented labor market, like this one, it
might not be out of line to have insiders stabilizing their own employment
at the expense of outsiders.

VI. A Bargaining Model

Models in which a union sets the wage unilaterally and an employer
decides the level of employment unilaterally have been criticized as
inefficient in the sense that other wage-employment combinations could
make both parties better off. Leontief (1946) pointed out that this
inefficiency could be removed if the parties were to bargain over both
wages and employment. The macroeconomic implications of wage-employment
bargaining have been explored by McDonald & Solow (1981). This idea
has in turn been criticized by Nickell & Andrews (1983) on the grounds
that one does not generally observe explicit bargaining about the level
of employment. McDonald & Solow suggested that intense bargaining over
"work rules", which is certainly observed, may amount to a device for
limiting the employer's discretion about employment. And explicit
bargaining about "job security" has now become common in the U.S.
Nickel & Andrews instead proposed that the employer's unilateral
control of employment be taken for granted, and that the parties
bargain over wages subject to that stipulation. This will
yield a certain "second-best" efficiency. I adopt that proposal here, to see if it can reduce the barrier against employment of outsiders.

To do so, however, I have to cheat a little on the model. In any straightforward application of bargaining theory, the parties' gains from bargaining will include both periods. This adds a lot of complication; what is worse, it implicates the first-period outcome essentially. That will make it hard to compare the results with those of the earlier model, where additive separability of each party's objectivity function effectively isolated the second period. For example, second-period strategies can be expected to depend on \(s_1 \), as they do not in the wage-setting model. I try to evade this difficulty by looking only at the second-period outcome. (And I therefore put the discount factor \(R=1 \).)

This is a genuine violation of the logic of the model, but I hope it will give some indication of the direction in which a valid application of bargaining theory would pull.

The underlying assumption is that the firm will react to the negotiated wage, whatever it is, by employing the profit-maximizing quantity of labor for the state \(s_2 \). The firm's realized profit is thus a function of the negotiated wage, say \(Z(w) \). The functional form of \(Z(w) \) depends on the negotiated wage: it has one form if \(w>s_2 f'(m) \), another if \(w_\star<w<s_2 f'(m) \), and still a third form if \(w<w_\star \). (It will be recalled that \(w_\star=s_1 f'(0) - s_2 f'(m) \), the highest wage at which it pays to employ outsiders in period 1.) If we call these intervals Region 1, Region 2 and Region 3, then

\[
Z(w) = s_2 f(g(w/s_2)) - wg(w/s_2) \text{ in Region 1}
\]

\[
= s_2 f(m) - wm \quad \text{in Region 2}
\]
and

\[Z(w) = s_1 \phi f(h(w)) - w_2 h(w) + s_2 f(m+h(w)) - w(m+h(w)) \text{ in Region 3.} \]

Here the equation

\[s_1 \phi f'(e_{21}) - w_2 + s_2 f'(m+e_{21}) - w = 0 \]

defines \(e_{21} = h(w) \). Since \(g(f'(m)) = m \) and \(h(w^*) = 0 \), \(Z(w) \) is continuous throughout. Moreover, since \(Z(w) \) is a profit function, duality theory applies and

\[
\begin{align*}
Z'(w) &= -g & \text{in Region 1} \\
&= -m & \text{in Region 2} \\
&= -(m+h) & \text{in Region 3.}
\end{align*}
\]

Thus \(Z(w) \) is actually continuously differentiable.

As for \(V(w) \),

\[V(w) = g(w/s_2) (w - w_0)^{-1} \text{ in Region 1} \]
\[= w - w_0 \text{ in Regions 2 and 3} \]

so that

\[
V'(w) = m^{-1} \left[g(w/s_2) + (w - w_0) g'(w/s_2)(1/S_2) \right] \text{ in Region 1} \\
= 1 \text{ in Regions 2 and 3}
\]

and \(V(w) \) is continuous throughout, but not differentiable at \(w = s_2 f'(m) \).

As usual I adopt the symmetric Nash solution to the bargaining problem. Thus if the solution is determined by the first-order conditions for a maximum of \(Z(w)V(w) \), we need only consult the sign of \(Z'(w)/Z(w) + V'(w)/V(w) \) to see which way the wind is blowing. For the limited purposes of this paper I propose only to show that it is possible for this expression to be negative at \(w = w^* \). Then it must be possible to cook up cases in which the bargaining model leads to a negotiated wage at which
the firm hires some outsiders for training purposes even when it is not
instantaneously profitable to do so.

To see this, note that
\[V^{-1}V' + Z^{-1}Z' = (w - w_0)^{-1} - m[s_2f(m) - w_0]^{-1} \] in Region 2
\[= (w - w_0)^{-1} - (m + h)[s_1f - w_0 + s_2f(m + h) - w(m + h)]^{-1} \] in Region 3.

V and Z are both continuously differentiable at \(w = w^* \), so we need only look at the first of these expressions at \(w^* \). Hence \(V(w)Z(w) \) is decreasing at \(w^* \) if
\[w^* - w_0 > s_2f(m)/m - w^* \]
or if
\[w^* > h_1[s_2f(m)/m + w_0]. \]

Using the definition of \(w^* \), this inequality boils down to
\[s_2[f'(m) - k_2f(m)/m] > h_1w_0 - w_0 - s_1df'(0). \] (8)

Thus if \(mf'(m)/f(m) > k_2 \), which is not a very stringent requirement, (8) will hold for all \(s_2 \) larger than a critical value. This condition is hard to interpret; it is in any case special to the symmetric Nash solution to the bargaining problem. But it says clearly that there will be a wide class of cases in which unskilled workers will be employed in sufficiently good "second" years.

Remember that this whole section is based on a corruption of the model. Nevertheless I think it at least makes credible the proposition that the wage-bargaining market form is more favorable than the wage-setting market form to the employment of outsiders. This is intuitively plausible because bargaining gives more power to the firm,
whose interest is in a large labor pool, and less to the insiders, whose
interest is in exclusiveness. In the class of "generalized Nash"
solutions to the bargaining problem, as one would expect, the outcome is
more favorable to outsiders the larger the bargaining-power parameter
associated with the employer's side. For instance, \(\frac{mf'(m)}{f(m)} = \alpha \frac{m^{1-a}v}{v^{1-a}\alpha} \). Of course, in a
model which, with more realism, gave the employer some longer-run
obligations to the members of the labor pool the situation would be more
complicated still.

VII. Concluding Remark

This is a very difficult and delicate part of macroeconomic theory.
It does not pay to demand too much of model-building in a field where
reality is so full of nuances, some of which may be important. I would be
happy to have made a credible case for the following proposition: one
reason for the persistence of unemployment over a wide range of
fluctuations of aggregate demand is the willingness and ability of
insiders to convert higher demand into higher wages for themselves
rather than into increased access to jobs for outsiders, rather than into increased access to jobs for outsiders.
References

Footnotes

* Any interesting ideas in this paper are part of a larger project on which I am collaborating with Frank Hahn. The faulty execution is all mine. I thank Lars Calmfors, Henrik Horn, Andrew Oswald and the discussants for both helpful and disturbing comments. I have tried to take account of some of their suggestions, but have not had time to follow up all of them.

1) If this model is to be developed further, it would have to encompass a fairly large number of periods, of which all but the last few would count.

2) This is a simplification that could easily be dispensed with.

3) This was pointed out at the conference by Andrew Oswald.

4) I owe to Lars Calmfors and Henrik Horn the observation—raised at the conference—that the two-period bargaining problem can have alternative structures, and therefore alternative equilibria, depending on who plays when. For example, if the firm can pre-empt by hiring outsiders before the first-and second-period wage rates are determined, the firm becomes, at least in part, a Stackelberg leader. Intertemporal bargaining with wages and (two kinds of) employment at stake is bound to have a multi-stage structure, so there are many possibilities for leadership and followership.
Fig. 1a-b.