Seminar Paper No. 606

OUTPUT GAINS FROM ECONOMIC STABILIZATION

by

Thorvaldur Gylfason

INSTITUTE FOR INTERNATIONAL ECONOMIC STUDIES
Stockholm University
Seminar Paper No. 606

OUTPUT GAINS FROM ECONOMIC STABILIZATION

by

Thorvaldur Gylfason

Seminar Papers are preliminary material circulated to stimulate discussion and critical comment.

January 1996

Institute for International Economic Studies
S-106 91 Stockholm
Sweden
Output Gains from Economic Stabilization

by Thorvaldur Gylfason

University of Iceland; Institute for International Economic Studies,
University of Stockholm; and CEPR.*

Abstract

By driving a wedge between the marginal returns to real and financial capital, inflation distorts production. The elimination of this distortion increases both the level and rate of growth of output. First, increased price stability improves the utilization of capital and thus increases the full-employment level of output in the long run, even though output decreases initially. Second, the static output gain from stabilization is captured in a simple formula in which the gain is approximately proportional to the square of the original inflation distortion. Third, successful stabilization increases the rate of growth of output per head, and not only its level, in the presence of constant returns to capital in a broad sense. Fourth, substitution of plausible parameter estimates into the simple formulae reflecting the gains from stabilization indicate that the static and dynamic output gains can be substantial.

* This paper was written while the author was a Visiting Scholar in the Capital Markets and Financial Studies Division of the Research Department of the International Monetary Fund. He is grateful for the hospitality of the Fund and for comments and suggestions received from colleagues there, from participants in seminars and conferences in Aarhus, Bergen, Budapest, Helsinki, Maastricht, Reykjavik, Stockholm, and Vienna, and from two anonymous referees. Support from the Swedish Council for Humanistic and Social Science Research (HSFR) is also gratefully acknowledged.
1. Introduction

Without exception, the radical economic reforms that have taken place in the formerly planned economies of Central and Eastern Europe since 1989 have been accompanied by a substantial decrease in output thus far as well as a price explosion. Inflation, repressed before through price controls, increased to high double-digit annual rates in Central and Eastern Europe and to triple-digit or even quadruple-digit rates in parts of the former Soviet Union. Unemployment, concealed before, has now become visible, and has jumped to double-digit rates in several countries in the region.

Against this background, inter alia, the purpose of this paper is to consider the reaction of output to economic stabilization. By driving a wedge between the marginal returns to real and financial capital, inflation distorts production. The elimination of this distortion increases both the level and rate of growth of output over time. Specifically, the paper is intended

- To show how stabilization ultimately increases aggregate output at full employment, even though output falls in the short run;
- To develop a simple formula in which the potential static output gain from stabilization is approximately proportional to the square of the original inflation distortion;
- To consider the potential dynamic output gain from stabilization when economic growth is an endogenous variable in the presence of constant returns to capital in a broad sense; and, at last,
- To provide a rough quantitative assessment of the potential static and dynamic output gains from adjustment by numerical simulations of conceivable scenarios.

The path of output suggested by the analysis to follow is described by the sickle-shaped schedule EJHFI in Chart 1. However, the analysis to follow is not confined to the path of output from plan to market in Central and Eastern Europe, where inflation has been only one of several factors (including price
reform, privatization, trade liberalization, and the legacy from the past) influencing the behavior of output. On the contrary, the analysis is intended to be general and thus applicable to the relationship between inflation and economic growth in Latin America, for instance.

The main message of the paper is that sound monetary, fiscal, and financial policies can, by bringing inflation down, play an important role in encouraging the reallocation of resources and the reorganization of production that are necessary to foster a favorable development of output and employment after the initial slump. In particular, macroeconomic stabilization not only helps raise the level of output, but also its rate of growth over time. This is crucial.

2. Static gains from stabilization

Consider an economy characterized initially by full employment of all available resources and by excess aggregate demand (denoted by the horizontal distance EG in Chart 2), repressed inflation, and a general shortage of goods and services. Two types of capital, real and financial, both measured at constant prices, are used as inputs in the production process. Financial capital, including money, is included in the production function on the grounds that it enables firms to economize on the use of other inputs and that it can be expensive to run short of cash or other financial assets (see Fischer 1974). Both types of capital are inefficiently employed initially, because repressed inflation distorts efficiency. Aggregate supply is assumed to be unresponsive to changes in the price level. Aggregate demand is held constant by the monetary and fiscal authorities: this is what is meant here by macroeconomic stabilization.

When prices are set free, the general price level begins to rise towards point H in Chart 2. Inflation rises at first and then recedes. In the initial phase, inflation jumps as prices that were controlled previously are set free. In this inflationary phase, some financial capital is replaced by physical capital in
production. Because physical capital takes time to build and install, output contracts at first as financial capital is removed from the production process, but this output decline is tempered by the gradual accumulation of physical capital. This first phase corresponds to the trajectory of output decline from E to J in Charts 1 and 2. As output declines, unemployment emerges. Sooner or later, however, the second phase sets in as inflation is brought under control and money, credit, and other financial assets are redrawn into production. The business opportunities created by stable prices and by a correspondingly favorable business environment will begin to be exploited by profit-seeking entrepreneurs. As aggregate supply begins to recover from AS' to AS", inflation begins to recede, and increased price stability will reinforce the expansion of output by improving the allocation and utilization of capital and thereby efficiency. As financial capital begins to grease the wheels of trade and production, the economy moves to the right from the unemployment point J towards point F on the production possibility frontier (not shown) corresponding to maximum efficiency in the allocation and utilization of real and financial capital. Gradual adjustment trajectories of this type involving unemployment of labor and other factors of production can be derived from optimal producer behavior, if the adjustment itself is costly (see Mussa 1982).

2.1. A simple formula

How is the ultimate increase in output following stabilization, structural adjustment, and improved allocation and utilization of resources related to the magnitude of the initial inflation problem?

Let there be two types of capital, real and financial, as before. The production function is

\[Y = F(K, M) \]
with the partial derivatives $F_K > 0$, $F_M > 0$, $F_{KK} < 0$, and $F_{MM} < 0$ as usual. One may think of K as tractors, for example, and M as the money balances that are needed to buy spare parts to keep the tractors running. Other factors—labor, land, energy, and so on—are held fixed.

Consider two periods, 1 and 2. A firm starts out in year 1 with a given amount of assets A. It buys tractors K for part of this amount to begin production, and keeps the rest as money balances M. Production in year 2 is $Y = F[A-M, M(1-c)] = F[A-M, M/(1+\pi)]$, where π is the annual rate of inflation and $c = \pi/(1+\pi)$ is the inflation tax rate or distortion. Real capital retains its value in year 2, but inflation causes financial capital to depreciate.\(^1\) The first-order condition for maximum output is $-F_K + F_M/(1+\pi) = 0$. Therefore, the equilibrium ratio of the marginal products of M and K is\(^2\)

\[
\frac{F_M}{F_K} = 1 + \pi
\]

Inflation drives a wedge between the marginal products of the two types of capital (see Easterly 1992, 1993), and thus reduces the output that can be produced by given total capital. To maximize output, the inflation distortion must be eliminated.

In Chart 3, the initial long-run full-employment equilibrium position is described by point E, at which the domestic relative factor price line with slope $-(1+\pi)$ is tangential to the isoquant corresponding to the maximum level of output (per head, because the labor force is fixed) attainable from the initial composition of the capital stock at E. (This point corresponds to its namesakes in Charts 1 and 2.) The flatter line through E with the slope -1 reflects the

\(^1\) For example, financial capital loses two-thirds of its value in a year if the annual rate of inflation rate is 200 percent.

\(^2\) In the Sidrauski model, this condition takes a slightly different form: $F_K = F_M - \pi$. If the net marginal product of real capital equals the real interest rate r, and the net marginal product of financial capital equals the nominal interest rate i, the Sidrauski condition is simply $r = i - \pi$. In the text, the relationship between the marginal products of the two types of capital is formulated in gross terms: $F_M/F_K = (1+i)/(1+r) = (1+\pi)$, so that $r = (i-\pi)/(1+\pi)$.\n
undistorted factor price ratio that prevails when the inflation rate is zero. This line is tangential at point F to a higher isoquant corresponding to the highest level of output attainable from a more efficient composition of the capital stock at F. This line connecting E and F cuts the vertical axis at point N, which indicates national output (i.e., GNP) at factor cost measured in terms of real capital. The parallel price line tangential to the lower isoquant at point G cuts the vertical axis at point Q, which shows the initial lower level of output at factor cost, also in terms of real capital.

The distance between the two points, Q and N, shown by the thick segment of the vertical axis in Chart 3, thus indicates the static output gain from the reallocation of capital from E to F according to the total differential of the production function (1):

\[\Delta Y = F_K \Delta K + F_M \Delta M \]

where \(\Delta Y \), \(\Delta K \), and \(\Delta M \) are the changes in output, real capital, and financial capital that take place between E and F. Our next objective is to find the relationship between the increase in output \(\Delta Y \) and the policy-induced reduction of inflation from \(\pi \) to zero (through currency reform, for example) that triggered the output gain.

The static output gain from moving from E to F in Chart 3 depends on the magnitude of the initial inflation distortion, i.e., the angle between the two relative price lines where they intersect at point E in the chart, and on the curvature of the isoquant. To see this, first invert the production function by writing \(K = f(Y, M) \) where \(f_M = -F_M/F_K < 0 \) and \(f_{MM} > 0 \) by assumption. Next, \(\Delta K \) can be approximated by a second-order Taylor expansion for given \(Y \) (say, around point E in Chart 3):

\[\Delta K = f_M \Delta M - \frac{1}{2} f_{MM} (\Delta M)^2 \]
Substituting this into equation (3) yields

\[\Delta Y = \sum_{p} K \left[f_{M} \Delta M - \frac{1}{2} f_{MM} (\Delta M)^2 \right] + \sum_{p} f_{M} \Delta M = -\frac{1}{2} \sum_{p} f_{K} f_{MM} (\Delta M)^2 \]

At last, we need to relate the change in financial capital ΔM to inflation. At the initial equilibrium point E in Chart 3 the slope of the isoquant equals the slope of the relative price line:

\[\frac{\partial K}{\partial M} = f_{M}(Y,M) = -(1 + \pi) \]

By linearizing this equation we find that

\[\Delta M = \left(\frac{1}{f_{MM}} \right) \Delta \pi = \left(\frac{1}{f_{MM}} \right) \pi \]

because $\Delta \pi = -\pi$ when inflation is brought down from π to 0. By squaring equation (7) and substituting the result into equation (5) we obtain

\[\Delta Y = -\frac{1}{2} \left(\frac{f_{K}}{f_{MM}} \right) \pi^2 \]

In words, the output gain is, to a second-order approximation, directly proportional to the square of the inflation distortion. This formulation is general, and can be applied to any pair of inputs such as capital and energy, for example. Then equation (5) can be used to derive the output gain from bringing the domestic price of energy up to the world market level, ceteris paribus. A similar quadratic formula for the output gain from economic liberalization (i. e., the elimination of a relative price distortion) can be derived from a two-sector general equilibrium model (see Gylfason 1993). To the gains reflecting the intersectoral reallocation of resources can be added the increased

3 The equation shows the change in output measured from the new equilibrium position. Therefore, the negative sign of the output change in equation (5) signifies an increase in output.
efficiency in the use of those resources within each sector over time (see Gylfason 1995). However, the formula abstracts from the distribution of seigniorage: it shows the effect of removing the inflation distortion on total output without taking into account the conceivable consequences of increased public debt or taxation or reduced government spending needed to compensate for the loss of inflation tax revenue.

But what can be said about the proportionality factor, \(-\frac{1}{2}(F_K/f_{MM}) \)?

2.2. Examples and simulations

To make the simple formula (8) operational as a rough guide to the potential magnitude of the reaction of output to economic stabilization, it is necessary to assume the production function to take a particular form.

Consider, for example, the CES function:

\[
Y = \left[\alpha K^\beta + (1-\alpha)M^\beta \right]^{\frac{1}{\beta}}
\]

where the distribution parameter \(\alpha \) is a positive constant between 0 and 1, and \(\beta = 1 - 1/\sigma \), where \(\sigma \) is the constant elasticity of substitution of real for financial capital. In this case, the optimal reaction of producers to reduced inflation is to raise output according to

\[
\frac{\Delta Y}{Y} = \lambda \pi^2
\]

where

\[
\lambda = \frac{-\frac{1}{2} \left(\frac{\alpha^3}{\sigma} \right) \left(\frac{M}{K} \right)^2}{\alpha + (1-\alpha) \left(\frac{M}{K} \right)^{1-\frac{1}{\sigma}} - \frac{1}{\sigma} \left(1-\alpha \right) \left(\frac{M}{K} \right)^{1-\frac{1}{\sigma}}} \]
The proportional increase in output brought about by a more efficient utilization of capital because of less inflation is thus approximately proportional to the square of the initial inflation rate. The proportionality factor, in its turn, is a well-defined function of the parameters of the production function: the elasticity of substitution σ and the distribution parameter α as well as the optimal ratio of financial to real capital, M/K, which in turn depends on the inflation rate by the first-order condition for maximum output (or profit):

$$\frac{M}{K} = \left[\frac{1 - \alpha}{\alpha} \left(\frac{1}{1 + \pi} \right) \right]^\sigma$$

In the special case where $\sigma = 1$, the CES production function (9) boils down to a Cobb-Douglas form: $Y = AK^\alpha M^{1-\alpha}$, where A is a constant of integration. The expression for the proportionality factor in equation (11) simplifies accordingly to

$$\lambda = -\frac{1}{2} \left(\frac{\alpha^3}{1 - \alpha} \right) \left(\frac{M}{K} \right)^2$$

By combining equations (10), (12), and (11'), we can express the optimal output response to economic stabilization as a function solely of the exponents of the Cobb-Douglas function and the inflation distortion:

$$\frac{\Delta Y}{Y} = -\frac{1}{2} \alpha (1 - \alpha) \left(\frac{\pi}{1 + \pi} \right)^2$$

This equation imposes a ceiling on the damage that high inflation can inflict on output by drying up the stock of financial capital: as the rate of inflation approaches infinity, the static output loss tends to $0.5\alpha(1-\alpha)$, which equals 0.125 at most, when $\alpha = 0.5$.
The simple formula (10) makes it possible to map the expansion of output $\Delta Y/Y$ as a function of the underlying parameters of the production structure, factor proportions, and the initial inflation distortion. In particular, the more severe the original inflation distortion, the larger is the correction that is needed and, hence, the greater will be the gain in output. In short, if the proportional expansion of output is denoted by E, the multiplicative proportionality factor by m, and the constant inflation distortion by c, we have $E = mc^2$.

2.2.1. Precedents

The quadratic formula developed above is a variation on a well-known theme in welfare economics. The welfare gain from removing a single distortion (a tax or a tariff, for instance) is proportional to the square of the initial distortion (see Harberger 1964, 1971). The square of the distortion enters the formula, because the welfare gain is measured by an area enclosed by a right triangle whose short sides are both proportional to the tax rate. In the reviews of the theory of optimal taxation provided by Atkinson and Stiglitz (1980) and Dixit (1985), however, the aggregate output gains from improved allocation of resources are not linked to the theory and measurement of deadweight welfare loss from inefficient taxation.

The welfare cost of the status quo is another matter. This cost is measured by the external transfer of resources that would be required at unchanged relative factor prices (i.e., inflation in this case) to lift the economy to the same level of social welfare as could be achieved by economic stabilization. In Chart 3, the welfare cost in terms of real capital is indicated by the horizontal distance between the initial relative factor price line tangential to the lower isoquant at point E and a parallel factor price line (not shown) tangential to the upper isoquant that goes through point F. In general, this hypothetical welfare cost of the status quo is different from the output gain from economic stabilization (or
structural adjustment) denoted by the thick segment NQ of the vertical axis in the chart, and will not concern us further here.

2.2.2. Numbers

To illustrate the possible macroeconomic and empirical significance of price stabilization through increased efficiency in the use of capital, let us now proceed to plug some parameter values into our formula (10) in an attempt to provide a glimpse of the possible magnitudes involved. This is inevitably a highly speculative exercise in view of the simplicity of the formula and of the unavailability of hard evidence on the explanatory parameters. The example that follows is meant as an illustration only.

Let us assume that domestic inflation is initially between 10 percent and 1,000 percent a year, so that the implicit inflation distortion \(c \) ranges from 0.09 to 0.91. This range of values seems reasonable for the purpose of the exercise, because inflation has been measured in tens and hundreds of percent annually in many Central and Eastern European countries since 1990 and also in several Latin American countries for a long time. The distribution parameter \(\alpha \) is assumed to be 0.8. This is consistent with a financial capital/output ratio of \(M/Y = 0.33 \) and a real capital/output ratio of \(K/Y = 1.32 \), so that \(M/K = 0.25 \) if \(\sigma = 1 \) and \(\pi = 0 \), for instance; see equation (12). The elasticity of substitution \(\sigma \) is assumed to range in four steps from 0.25 to 2.0.

The proportional output gains that follow from these assumptions are illustrated in Chart 4. The schedules in the chart indicate that the static output gains from stabilization can be considerable at high rates of inflation.\(^4\) The thick schedule at the top of the chart shows that the elimination of 250 percent annual inflation increases output by 4 percent when \(\sigma = 1 \), for instance.\(^5\) These

\(^4\) The nonlinearity of the relationship between the static output gains and inflation shown in Chart 4 indicates that the output losses from high inflation are considerably larger than they would be if the end points of each schedule in the chart were connected by straight lines.

\(^5\) The schedule at the top of Chart 4 asymptotically approaches \(\Delta Y/Y = 0.08 \) by equation (13).
gains are permanent, other things being equal.6 The financial capital/output ratio rises from 0.12 to 0.33 in this case as more financial assets are drawn into production when inflation goes down, and the real capital/output ratio falls from 1.70 to 1.32. When α is lowered from 0.8 to 0.7, the output gain from eliminating 250 percent inflation increases from 4 percent to 5 percent. When α is raised to 0.9, on the other hand, the output gain from the same experiment falls to 2 percent. The output gains are smaller when σ equals 0.5 or 0.25, because firms then have less scope for replacing physical by financial capital when inflation goes down. The gains are also smaller when σ equals 1.5 or 2, for then the amount of financial capital involved in production is small anyway.

These calibrations must not be taken too literally, however, for three main reasons. First, the results reflect only the effects of the reallocation of real and financial capital in production, but not of increased efficiency in the use of each type of capital. Second, they do not include the possible fiscal ramifications of price stabilization. Third, if the product cycle is short and if product prices rise with inflation, then financial capital will be replenished more quickly (and smaller as well) and its depreciation will be reduced. The first qualification suggests that the effects shown in Chart 4 may be too small, whereas the third suggests that they may be too large; the second one could move the effects in either direction, probably downwards.

Even so, if the numbers above provide an indication of the results that would emerge from detailed empirical case studies, it seems reasonable to conclude that economic stabilization can improve allocative efficiency and, over time, increase output substantially and permanently in individual enterprises and in the economy as a whole, especially if inflation was high at the outset. This finding is consistent with recent empirical evidence that high

6 For comparison, the permanent static output gain expected from the market unification of Europe in 1992 over a period of about six years is also close to four percent according to Cecchini (1988).
inflation seems to reduce economic growth significantly in the long run, while low inflation may not (Gylfason 1991, Bruno and Easterly 1995).

3. **Dynamic gains: Endogenous growth**

To recapitulate, the path output following price stabilization is shown in Chart 1. The economy is stagnant up to time \(t_1 \), when stabilization measures are undertaken. Output falls at first and then rises along the trajectory EJHF. The shaded area enclosed by E, J, and H represents the cumulative decline in output during the adjustment process (or transition, if you prefer). When the transformation is completed at time \(t_2 \), output exceeds its initial level by \(\Delta Y/Y = \lambda \pi^2 \) as in equation (10). This is the static output gain from stabilization.

But where does the economy go from there?

3.1. **Growth with a fixed saving rate**

The CES production function (9) means that output is proportional to a bundle of real and financial capital. This implies constant returns to the capital bundle. The labor force remains constant by assumption. Suppose, moreover, that saving \(S \) is proportional to output (as in Solow 1956), and equals the net accumulation of both types of capital plus depreciation. Then we have \(S = sY = \Delta K + \Delta M + \delta K + cM \). Here \(s \) is the saving rate that is constant by assumption, \(\delta \) is the annual rate of depreciation of real capital, and \(c = \pi/(1+\pi) \) similarly reflects the rate at which financial capital "depreciates" because of inflation.

Along the long-run steady-state equilibrium growth path of the economy, output must expand at the same rate as total capital net of depreciation \(d \), so that \(\Delta Y/Y = sY/(K+M) - d \). This means that

\[
(14) \quad g = sE - d
\]
where \(g = \Delta Y/Y \) is the rate of growth, \(E = Y/(K+M) \) reflects the efficiency of capital, broadly defined, and

\[
(15) \quad d = \left(\frac{K}{K+M} \right) \delta + \left(\frac{M}{K+M} \right) \left(\frac{\pi}{1+\pi} \right)
\]

is a weighted average of the two rates of depreciation, \(\delta \) and \(\pi/(1+\pi) \), both of which are bounded by 0 and 1.

Therefore, economic growth in the long run depends crucially on the saving rate, the efficiency of capital, and depreciation by equation (14). Put differently, growth depends on the quantity and quality of capital. Equation (14) is essentially a restatement of the economic growth theory of Domar (1946, 1947).

Generally, \(E \) reflects the efficiency of resource allocation in the economy. By implication, all improvements in efficiency, including those resulting from price reform, privatization, trade liberalization, education, research and development (as in Grossman and Helpman 1991), and so on, lead not only to a higher level of output once and for all, as we know, but also to a higher rate of growth of output over time by equation (14). This is why the economy follows the path EJHFI rather than EJHFK in Chart 1. The shaded area FIK represents the dynamic output gain from economic reforms, including even stabilization.

This can be seen by first dividing through the production function (9) by real and financial capital, \(K+M \), to find:

\[
(16) \quad E = \frac{\left(\alpha + (1-\alpha) \left(\frac{M}{K} \right) ^\beta \right) ^\frac{1}{\beta}}{1 + \frac{M}{K}}
\]

An increase in the ratio of financial to real capital, \(M/K \), can be shown by differentiation to increase efficiency as long as \(M/K < [(1-\alpha)/\alpha]^{\sigma} \), that is, as
long as inflation remains above zero by equation (13). A decrease in the inflation rate increases M/K by equation (12) as long as $\sigma > 0$, and thus increases the efficiency of capital by equation (16) and thereby also economic growth by equation (14), provided that $\pi > 0$ at the outset. Moreover, a decrease in inflation generally stimulates growth by slowing down the depreciation of the financial part of the capital stock.

Less inflation leads to more growth in this model essentially because the disinflation reduces a distortion in production (as in Easterly 1992, 1993; see also Edwards 1992). The resulting increase in growth is permanent by the construction of the CES production function (9). Specifically, the mechanism that prevents increased efficiency and increased saving from stimulating growth permanently in the neoclassical model (Solow 1956) is absent here, because the production function (9) exhibits constant returns to capital, broadly defined (as in Romer 1986, 1989).

Even so, a link between efficiency and growth is present in the neoclassical growth model. There, as here, increased price stability can be shown to increase the output that can be produced from given inputs, and thus to be tantamount to technological progress that increases the growth of output while the economy moves from one steady-state growth path to another, higher path. This adjustment can take a long time. The medium-term properties of the neoclassical model of Solow may thus be difficult to distinguish empirically from the long-run properties of the Romer version of the endogenous-growth model employed here.

3.2. Growth with a variable saving rate

Thus far, saving behavior has been assumed to be unaffected by inflation and other aspects of the economic environment. This is an unrealistic assumption, especially if inflation is high initially. So how does the model change, if the saving rate is variable?
Suppose consumers choose a path of consumption C_t that maximizes their utility U_t over time. Specifically, they maximize the integral
\[\int_0^\infty U_t(C_t)e^{-\rho t}dt, \]
where ρ is the discount rate, subject to the constraint that gross investment equals output less consumption and the accumulation of financial capital, that is, $\Delta K + \delta K = Y - C - \Delta M - cM$. Using $Y = E(K+M)$ as in equation (16), we see that $\Delta(K+M) = E(K+M) - \delta K - cM - C = (E-d)(K+M) - C$ by equation (15).

Suppose the utility function is isoelastic, $U_t = C_t^{1-1/\theta} / (1-1/\theta)$, where θ is the elasticity of intertemporal substitution. Then the present discounted value of utility over time is at a maximum when

(17) \[g = \theta(E - d - \rho) \]

Here g is the rate of growth of consumption and real and financial capital and, therefore, also of output along the optimal consumption path.7 Equation (17) is the standard solution to the Ramsey problem, except E now plays the role of the marginal product of capital and d is a composite of the depreciation rates of the two types of capital.

Equations (14) and (17) can now be solved for the optimal propensity to save:

(18) \[s = \theta + \frac{(1-\theta)d - \theta \rho}{E} \]

The optimal saving rate is constant for given θ, ρ, d, and E.8 The two taste parameters, θ and ρ, have predictable effects on saving. Increased patience

7 If money is included in the utility function so that $U_t = [C_t^{\lambda}M_t^{\mu}]^{1-1/\theta} / (1-1/\theta)$, where $\lambda + \mu \leq 1$ (as in Fischer 1979), then the optimal rate of growth of consumption, real and financial capital, and output is $g = \theta(E-d-p) / [(\lambda + \mu)(1-\theta) + \theta]$. This is larger than the growth rate shown in the text as long as $\theta > 0$ and $\lambda + \mu < 1$. Without financial capital in the utility function (i.e., with $\lambda = 1$ and $\mu = 0$), the above expression for optimal growth simplifies to the one shown in the text.

8 A fixed saving rate s can also be derived from the standard intertemporal optimization model within the neoclassical constant-returns-to-scale framework without money by
(i.e., a reduction in ρ) raises the saving rate, because $\frac{\partial s}{\partial \rho} = -\frac{\theta}{E} < 0$. Increased flexibility in consumption over time (i.e., an increase in θ) also boosts the saving rate, because $\frac{\partial s}{\partial \theta} = 1 - \frac{(d+\rho)}{E}$, which is positive as long as the growth rate is positive by equation (17).

Inflation affects saving behavior through efficiency and depreciation, E and d. Consider first the simple case where the elasticity of intertemporal substitution is one ($\theta = 1$). This means that the utility function is logarithmic and the optimal saving rate is $s = 1 - \frac{\rho}{E}$ by equation (18). Increased inflation lowers the saving rate unambiguously in this case by reducing efficiency, see equations (13) and (16). When $\theta > 1$, the negative effect of increased inflation on saving is reinforced by more rapid depreciation: consumers then respond to increased financial depreciation by saving less. When $\theta < 1$, however, consumers react to increased financial depreciation by saving more. In this case, the net effect of increased inflation on saving through efficiency and depreciation is ambiguous. This is perhaps the most relevant case in institutionally immature economies (e.g., in Central and Eastern Europe) and in high-inflation countries (e.g., in Latin America), where consumers often face severe borrowing constraints in financial markets and the flexibility of consumption over time is correspondingly restricted.

In sum, then, inflation affects economic growth not only through efficiency and depreciation, but also through saving when the saving rate is variable, see equation (14).

3.3. Numerical simulations

How strong are the links between inflation and growth that have been outlined above? It now remains to attempt to quantify the potential dynamic gains from macroeconomic stabilization.

assuming that $\theta = s$ and $\rho = \alpha - s$, where α is the elasticity of output with respect to capital. See Kurz (1968) and Sala-i-Martin (1990).
Charts 5 and 6 illustrate the relationship between inflation, efficiency, and saving when the elasticity of intertemporal substitution $\theta = 0.2$, the discount rate $\rho = 0.1$, and the distribution parameter $\alpha = 0.8$; see the production function (9). The elasticity of substitution of real for financial capital σ spans the range from 0.25 to 2.0 as before. The benchmark case with $\sigma = 1$ is distinguished by the thick schedules near the middle of the charts. In this case, as inflation rises from zero to 1,000 percent per year along the horizontal axes in the charts, the financial capital/output ratio M/Y decreases from 0.33 to 0.05 and the real capital/output ratio K/Y increases from 1.32 to 2.13. This means that the ratio M/K collapses from 0.25 to 0.02. The total depreciation rate d rises from 0.08 at zero inflation to 0.15 at 150 percent inflation, and then declines gradually to 0.12 as inflation approaches 1,000 percent per year and the depreciable stock of financial capital decreases; see equation (15). The optimal saving rate rises at first from 0.27 at zero inflation to 0.37 at 200 percent inflation to meet the increased depreciation of financial capital, and then stabilizes at 0.36 as the increase in total depreciation is reversed (Chart 5). On the other hand, efficiency (i.e., the average productivity of total capital) decreases uniformly from 0.61 to 0.46, as inflation increases from zero to 1,000 percent (Chart 6).

The positive relationship between the saving rate and inflation at or below 200 percent a year has been built into the simulation by assuming the intertemporal elasticity of substitution θ to be far below unity to reflect borrowing constraints in the banking system. An elasticity of substitution at or above unity would produce a uniformly negative relationship between inflation and the saving rate, other things being equal. It would also entail a very high saving rate ($s = 0.84$, if $\theta = \sigma = 1.0$ and $\pi = 0$) in this model and a growth rate to match ($g = 0.43$) because of the farsightedness of fully rational consumers who live forever and can borrow and lend at will in a flexible and mature banking system.
Inflation influences growth by equation (17), through E and d. Growth can also be viewed as being influenced by inflation through saving, efficiency, and depreciation by equation (14). Either way, the effect is indeterminate in theory. The relationship between inflation and growth is illustrated in Chart 7 for different values of the elasticity of substitution of real for financial capital. The optimal growth rate is directly related to the elasticity of substitution in production at any given rate of inflation: the more flexible the production structure, the higher is the rate of growth.

Like inflation and efficiency (Chart 6), inflation and growth are inversely related throughout (Chart 7). If \(\sigma = 1 \), for example, reducing inflation from 250 percent a year to zero raises the optimal rate of growth of output by 2½ percent per year (from 6 percent to 8½ percent) through the combined effect of greater efficiency (from \(E = 0.55 \) to \(E = 0.61 \)) and reduced depreciation (from \(d = 0.14 \) to \(d = 0.08 \)), even though the saving rate falls from 0.37 to 0.27 in this process (Chart 5). A growth bonus of 2½ percent a year makes a difference: it doubles output every 28 years, other things being equal. The dynamic gains from stabilization are inversely related to the elasticity of substitution in production: the more rigid the production structure, the lower is the initial rate of growth at any given rate of inflation and, therefore, the greater is the growth bonus due to stabilization.\(^9\)

But what if the saving rate is held fixed by short-sighted or otherwise constrained consumers at, say, \(s = 0.2 \)? Then growth becomes quite sensitive to inflation: if the inflation rate exceeds 40 percent per year, the growth rate becomes negative in the model (Chart 7). When inflation is brought down from 250 (or 100) percent to zero the growth rate rises by about 7 percent per year (from -3 percent to 4 percent). The dynamic output gains shown in Chart 5 are greater when the saving rate is fixed then when it is flexible, because the

\(^9\) The nonlinearity of the negative relationship between inflation and growth in Chart 7 indicates that the dynamic output losses from high inflation are considerably larger than they would be if the end points of each schedule in the chart were connected by straight lines.
optimal saving rate decreases in response to the eradication of inflation, when the elasticity of intertemporal substitution θ is low, thus reducing the growth bonus from stabilization. If θ is high, on the other hand, the optimal saving rate rises as inflation goes down: in this case the dynamic gains from stabilization are greater when the saving rate is flexible than when it is fixed. This property is consistent with recent empirical evidence that financial maturity promotes growth (see King and Levine 1993).

One final qualification needs to be made. Because additional financial capital can be created costlessly, the problem with increasing its stock is not that this absorbs real resources, but rather that it leads optimizing agents to compete to swap financial for real capital and in the process generates inflation. If saving had to be diverted into accumulating financial capital when the latter ceases to depreciate as a result of inflation, the dynamic output gains might be smaller than reported above, other things being equal.

In sum, these examples and simulations indicate that economic stabilization may bring substantial dynamic gains through growth on top of the static gains discussed in the preceding section. This calls for close econometric scrutiny in future work on inflation and growth (see Fischer 1991, Gylfason 1991, and Bruno and Easterly 1995).

4. Conclusion

The purpose of this paper has been to attempt to clarify the output gains from economic stabilization. By driving a wedge between the marginal returns to real and financial capital, inflation distorts production. To maximize output, the inflation distortion must be removed. The static output gain from stabilizing prices and thus improving the allocation and utilization of capital at full employment is captured in a simple formula in which the gain is approximately proportional to the square of the original inflation distortion.

10 This point was suggested by a referee.
This formula is analytically equivalent to Harberger's (1964) triangular measure of the deadweight welfare loss from inefficient taxation. Substitution of plausible parameter values into the simple formula indicates that the static output gains from stabilization may be considerable.

The efficiency boost from an improved allocation and utilization of capital is also likely to increase economic growth, either permanently according to the new theory of endogenous growth or at least for a time according to the neoclassical growth model. The stimulating effect of stabilization on growth through increased efficiency is complicated, however, by its interaction with the depreciation of financial capital through inflation and the endogenous determination of optimal saving. All things considered, the numerical simulations of the model under scrutiny for different values of the parameters reflecting institutions, tastes, and technology indicate that the dynamic output gains from economic stabilization may also be substantial.
References

Chart 1. The path of output following economic stabilization
Chart 2. From temporary loss to permanent gain

Price level

Output
Chart 3. Static output gain from stabilization

Real capital (K)

Financial capital (M)

slope = -(1+\pi)

slope = -1

Output before

Output after
Chart 4. Static output gains from stabilization

- Output gains (in percent)
- Initial inflation (in percent)

- $\sigma = 1.0$
- $\sigma = 0.25$
- $\sigma = 2.0$
- $\sigma = 0.5$
- $\sigma = 1.5$
Chart 5. Inflation and saving
Chart 6. Inflation and efficiency

![Graph showing the relationship between inflation (in percent) and efficiency. The graph includes multiple lines representing different values of σ.]
Chart 7. Inflation and growth

Growth (in percent) vs. Inflation (in percent)