This is the published version of a paper published in *Organic Letters*.

Citation for the original published paper (version of record):

https://doi.org/10.1021/ol3001969

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Reprinted with permission of Organic Letters. Copyright 2012. American Chemical Society

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-76125
Selective Alkylation of (Hetero)Aromatic Amines with Alcohols Catalyzed by a Ruthenium Pincer Complex

Santosh Agrawal, Maud Lenormand, and Belén Martín-Matute*

Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
belen@organ.su.se

Received January 25, 2012

ABSTRACT

A readily available pincer ruthenium(II) complex catalyzes the selective monoalkylation of (hetero)aromatic amines with a wide range of primary alcohols (including pyridine-, furan-, and thiophene-substituted alcohols) with high efficiency when used in low catalyst loadings (1 mol %). Tertiary amine formation via polyalkylation does not occur, making this ruthenium system an excellent catalyst for the synthesis of sec-amines.

Aromatic amines are important building blocks used in the synthesis of a wide range of pharmaceuticals, agrochemicals and bioactive molecules. They also play an important role in organometallic and coordination chemistry. The alkylation of amines with alcohols to give higher order amines and water as sole byproduct is a very attractive and environmentally friendly alternative to other methods, such as alkylation of amines by alkyl halides under basic conditions, hydroamination of alkenes or reductive amination of carbonyl compounds. The principle governing the use of alcohols as alkylating reagents involves their oxidation by a transition metal complex; after in situ

reaction with an amine, the imine formed is reduced by the transition metal hydride formed in the first step, yielding a higher order amine.6 Since the early 80s, transition metal complexes,7–18 in particular iridium and ruthenium, have been shown to be active for this transformation. We have recently used this method to synthesize nitrogen-containing pseudodisaccharides.19 In general, iridium8e,13,14,18 complexes are more reactive than ruthenium-based catalysts, making possible the use of iridium loadings as low as 0.1 mol %.18c

Recently, Williams, Beller and co-workers8f were able to obtain good yields in the N-alkylation of indoles by using 0.2–0.5 mol % of the dimeric Shvo’s ruthenium catalyst (0.4–1 mol % Ru) at 110 °C. Also, Madsen and co-workers reported an elegant synthesis of substituted indoles using readily available RuCl3 (1 mol %) at 170 °C.15p Williams also reported that small loadings of [Ru(p-cymene)Cl2] (1 mol % Ru) afford excellent results in the N-alkylation of sec-amines, forming tert-amines.8c

Baratta and co-workers have communicated that Ru(II)-CNN (C = carbon; N = nitrogen) pincer complex 1 affords impressive TONs (1.7 × 105) in the reduction of ketones under hydrogen transfer conditions.19 However, neither 1 nor the methylated derivative complex 2 have been used in the reduction of imines. Here, we communicate that the readily available Ru(II)-CNN pincer complex 2 (Figure 1) is, however, an excellent catalyst for the alkylation of amines by alcohols, which is thought to proceed by reduction of imine intermediates. Ruthenium complex 2 catalyzes the alkylation of anilines and heteroaromatic amines by alcohols (including pyridine-, furan-, and thiophene-substituted alcohols) with high efficiency, using low catalyst loadings (1 mol %). A large substrate scope is demonstrated, and products derived from polyalkylation are not detected, making this ruthenium system an excellent catalyst for the synthesis of sec-amines.

Aniline (3a) and benzyl alcohol (4) were chosen as model substrates. In the presence of K2CO3 (30 mol %), neither 1 nor 2 (2.5 mol %) afforded the desired product in good yield. However, when KOr-Bu was used instead of K2CO3, complex 2 catalyzed the formation of amine 5 in excellent yield, while only moderate yields were obtained with 1. This is in high contrast with the results obtained by Baratta and co-workers, who found complex 1 to be significantly more reactive than 2 in the reduction of ketones under hydrogen transfer conditions.19 Further optimization allowed us to use catalyst loadings as low as 1 mol % when combined with stoichiometric amounts of KOr-Bu (Scheme 1a, and Table S1, Supporting Information). Similarly, 2-amino pyridine 6a gave the corresponding alkylation amine 7 (in quantitative yield (91% isolated, Scheme 1b). In all cases, higher yields were obtained when MS 4 Å were added to the reaction mixture.

Having established the optimal reaction conditions we turned our attention to the use of a ferrocenyl-substituted alcohol (8) as alkylation reagent. Quantitative yields of the corresponding sec-amines were obtained from a range of substituted anilines (3a–f) as well as heteroaromatic amines (6a–e) with different electronic properties (Scheme 2). The secondary amines obtained (9a–f, 10a–c) were isolated in good to excellent yields.

The catalyst system [Ru 2 (1 mol %)/KOr-Bu] is highly selective and yielded monoalkylated products exclusively, even when excess of alcohol was used (see Supporting Information). Hence, it was of interest to explore whether diamines could be N,N’-dialkylation (i.e., introduction of one substituent on each nitrogen). Few reports on the synthesis of such types of compounds are available in the literature,20 and most of them yield a mixture of products.
due to mono, di, tri and tetra-alkylation. When 2,6-diamino pyridine 11 was treated with either alcohol 4 or 8 (2 equiv) in the presence of complex 2 (1 mol %) and KOt-Bu (1 equiv), N,N'-dialkylation took place exclusively, affording diamines 12 and 13, respectively, in excellent yields (Scheme 3). Interestingly, although two C–N bonds are formed, the catalyst loading could be kept as low as 1 mol %.

The use of heteroaromatic alcohols as latent electrophiles is also a challenging goal. Kempe and co-workers have reported that their iridium-based catalyst afforded from moderate to low yields of higher order amines when using alcohols such as furfuryl alcohol (14) or 2-thiophenemethanol (15). Ruthenium complex 2 is highly active when heteroaromatic alcohols are used as alkylating reagents. Table 1 shows the results obtained in the N-alkylation of aniline 3a and heteroaromatic amine 6a by heteroaromatic alcohols [i.e., furfuryl alcohol (14), 2-thiophenemethanol (15) and 2-pyridinemethanol (16)] using 1 mol % of Ru complex 2. The sec-amines obtained were isolated in good yields (71–86%).

We also tested the alkylation of amines such as benzyllamine and hexylamine under the optimized reaction conditions. However, these substrates afforded the products in trace amounts. Neither the use of amines that cannot be oxidized to imines (e.g., 1-tert-octylamine) gave the desired product (see Supporting Information, Table S2). On the other hand, the lack of reactivity of aliphatic amines under the reaction conditions opens the possibility of using aliphatic amino alcohols as alkylating reagents.

Scheme 1. Ru (2) Catalyzed Alkylation of 3a and 6a by Alcohol 4

Scheme 2. N-Alkylation of Anilines and Heteroaromatic Amines

Scheme 3. Selective Mono N,N'-Dialkylation of 11

Table 1. N-Alkylation of 3a and 6a by Heteroaromatic Alcohols 14–16

<table>
<thead>
<tr>
<th>entry</th>
<th>amine/alcohol</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a / 14</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>3a / 15</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>3a / 16</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>6a / 14</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>6a / 15</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>6a / 16</td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

*All reactions were carried out using Ru (2, 4 mg, 1 mol %), amine (0.5 mmol), alcohol (0.5 mmol), MS 4 Å, KOt-Bu (0.5 M in THF, 1 mL), 0.5 mmol) in dry toluene (0.5 mL), 24 h, 110 °C. *Isolated yield.

Indeed, reaction of aniline 3a with amino alcohol 20 afforded N-arylated diamine 23a, which was isolated in excellent yield (Table 2, entry 1). Branched amino alcohols 21 and 22 also afforded excellent yields (entries 2–3). The reaction was also successful for the N-alkylation of heteroaromatic amine 6a with amino alcohols 20–22 (Table 2, entries 4–6).

In conclusion, ruthenium 2 is able to achieve excellent results, and can be compared with those obtained with the highly reactive iridium catalysts under homogeneous conditions in the alkylation of amines with alcohols. (Hetero)aromatic amines could be alkylationed with alcohols, such as ferrocenyl methanol, heteroaromatic alcohols and amino alcohols. Furthermore, selective N,N'-dialkylation occurred when aromatic diamines were subjected to the reaction conditions. In this way, structural variants of N-substituted aminoferrocenes, N,N'-dialkylamines and N-arylated diamines can be synthesized selectively in excellent yields. We are currently investigating the mechanism and our results will be communicated in due course.

Acknowledgment. Financial support from the Swedish Research Council (Vetenskapsrådet), the Wenner-Gren Foundation, the Swedish Governmental Agency for Innovation Systems (VINNOVA), and the Berzelii Center EXSELENT is gratefully acknowledged. We thank Prof. W. Baratta (Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Via Cotonificio 108, I-33100, Udine, Italy) for helpful discussions.

Supporting Information Available. Detailed experimental procedures and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.