This is the accepted version of a paper published in *ChemCatChem*. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):
Mild and Selective Hydrogenation of Nitro Compounds using Palladium Nanoparticles Supported on Amino-Functionalized Mesocellular Foam.
ChemCatChem, 6(11): 3153-3159
http://dx.doi.org/10.1002/cctc.201402488

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:diva-110164
Mild and Selective Hydrogenation of Nitro Compounds Using Palladium Nanoparticles Supported on Amino-Functionalized Mesocellular Foam

Oscar Verho¹*, Karl. P. J. Gustafson¹, Anuja Nagendiran¹, Cheuk-Wai Tai² and Jan-E. Bäckvall¹*

¹ Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, S-106 91 Stockholm, Sweden
² Department of Materials and Environmental Chemistry, and Berzelii Center EXSELENT on Porous Material, Stockholm University, Arrhenius Laboratory, S-106 91 Stockholm, Sweden

*Corresponding authors: Jan-E. Bäckvall, Oscar Verho
Address: Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, S-106 91 Stockholm, Sweden.
Tel.: +46 (0)8-674 7178 Fax: +46 (0)8-15 49 08
E-mail address: jeb@organ.se, oscar@organ.su.se

Abstract

Herein, we present the utilization of a heterogeneous catalyst comprised of Pd nanoparticles supported on aminopropyl-functionalized siliceous mesocellular foam (Pd⁰-AmP-MCF) for the selective hydrogenation of aromatic, aliphatic and heterocyclic nitro compounds to the corresponding amines. In general, the catalytic protocol exclusively affords the desired amine products in excellent yields within short reaction times, when the reactions are performed at room temperature under ambient pressures of H₂. Moreover, the reported Pd nanocatalyst displayed excellent structural integrity for this transformation as it could be recycled multiple times without any observable loss of activity or leaching of metal. In this work, we also demonstrate that the Pd nanocatalyst can be easily integrated into a continuous flow device and used for the hydrogenation of 4-nitroanisole on a 2.5 g scale, where the product p-anisidine was obtained in 95% yield within 2 h with a Pd content of less than <1 ppm.

1. Introduction

Aromatic and heterocyclic amines are fundamental building blocks in industrial-scale organic synthesis, as they are frequently used as intermediates for the production of various dyes, pharmaceuticals, pigments, and polymers.[1] Classical methods for the preparation of amines involve the reduction of the corresponding nitro compounds by the use of stoichiometric Fe²⁺ or Zn³⁺ reagents in the presence of various proton sources, or by other catalytic protocols
employing toxic reducing agents, such as H$_2$S4, N$_2$H$_4$,5 or NaBH$_4$.6 During the past decades, catalytic hydrogenation protocols utilizing Pd/C, Pt/C or Raney Ni as catalysts have become the methods of choice for the reduction of nitro compounds.7 Although, these heterogeneous catalysts generally display good performance in nitro group reduction, they are unfortunately associated with chemoselectivity issues when other reducible groups are present in the substrate.

Consequently, significant attention has been dedicated to the development of new catalytic hydrogenation systems that display higher selectivity towards the reduction of the nitro functionality.$^7,^8$ More recently, metal nanoparticle-based catalysts have emerged as attractive and green alternatives for the hydrogenation of nitro compounds, as they have shown to exhibit excellent activities and selectivities under mild reaction conditions and low H$_2$ pressures.9 In addition, heterogeneously supported nanocatalysts offers several practical advantages, such as simpler procedures for separation and recycling, as well as reduced amount of metal impurities in the final products, which make these catalysts attractive from an economic and environmental point of view.10 Also, an appropriately chosen support material for the nanometal species can provide an opportunity for the catalyst to be integrated into a device for flow chemistry, which enables the catalytic protocol to be scaled-up and streamlined.

Our group recently reported on the development of a heterogeneous catalyst comprised of Pd nanoparticles immobilized on amino-functionalized siliceous mesocellular foam (Pd$_0$-AmP-MCF, Figure 1a) and its successful application in a wide range of organic transformations.11 In all cases, the Pd nanocatalyst has exhibited excellent activity and recyclability, which can be ascribed to its small and well-dispersed Pd nanoparticles, predominantly in the size range of 1.6-3.0 nm (Figure 1b), and the ideal properties of the mesoporous MCF material. The MCF support consists of a three-dimensional network of pores, which provides a large surface area that enables high catalyst loadings, together with shielding of the Pd nanoparticles from mechanical grinding, thus reducing the leaching of metal into solution. Moreover, the large pore windows (\sim14 nm) of the MCF allow for efficient transfer of organic molecules in and out of the material, granting unhindered access to the Pd nanoparticles supported within the pores.
Recently, we disclosed the use of Pd0-AmP-MCF as a selective and recyclable catalyst for the transfer hydrogenation of a variety of nitro compounds into the corresponding amines, utilizing the cheap and readily-available natural product γ-terpinene as the hydrogen donor.$^{[11a]}$ Although, the catalytic protocol displayed satisfying activity for most of the tested substrates, it required the use of elevated temperatures (80 °C) and an excess of the hydrogen donor to give high yields of the desired amine products. Moreover, this protocol was not ideal from an atom-economical perspective as p-cymene was formed as the byproduct in stoichiometric quantities, which required the use column chromatography for obtaining the pure amine products. To circumvent this problem and concurrently achieve a more efficient and eco-friendly catalytic system for the reduction of nitro compounds, we therefore sought to evaluate the performance of the Pd0-AmP-MCF in combination with H$_2$ as the reducing agent.

In this work, we report on the use of Pd0-AmP-MCF as a highly efficient catalyst for the hydrogenation of a wide range of nitro compounds into the corresponding amines. As will be demonstrated herein, all reactions were performed at room temperature under an atmospheric pressure of H$_2$, where the amine products were generally obtained in excellent yields and high purity after only a simple separation of the Pd nanocatalyst by centrifugation and concentration of the reaction solution in vacuo. Furthermore, the Pd nanocatalyst is suitable for integration into continuous flow hydrogenation reactors, which enables the present catalytic protocol to be scaled up in a straight-forward fashion.
2. Results and Discussion

2.1. Initial screening. The catalytic evaluation of the Pd nanocatalyst commenced with a solvent screening, using 4-nitroanisole (1a) as the model substrate (Table 1). In a typical reaction, 1a (1.60 mmol) and Pd nanocatalyst (0.5 mol%) were suspended in 2 mL of solvent and vigorously stirred under 1 atm of H₂ at room temperature. The conversion of each reaction was determined after 30 min by the withdrawal of an aliquot, which was analyzed by ¹H-NMR. In general, the Pd nanocatalyst was found to be compatible with a broad range of solvents, including both polar and unpolar solvents. Interestingly, the green solvents[12] 2-methyl-tetrahydrofuran (Me-THF) and EtOAc were demonstrated to be some of the most efficient ones for this catalytic system, affording 62% and 64% conversion, respectively (Table 1, Entries 1 and 2). The hydrogenation was also found to proceed efficiently in solvents such as toluene, α,α,α-trifluorotoluene (TFT) and MeCN, which all resulted in conversion exceeding 50% (Table 1, Entries 3-5). Moderate conversions were obtained in the alcoholic solvents MeOH, EtOH and 2-BuOH (Table 1, Entries 6-8), while solvents such as DMF, dioxane, and H₂O gave significantly lower amounts of amine 1b (Table 1, Entries 9-11).

A control reaction with commercially-available Pd/C was carried out in toluene to allow for a direct comparison of its activity with that of Pd⁰-AmP-MCF (Table 1, Entry 12). It was found that Pd/C displayed a substantially lower activity than the Pd nanocatalyst, demonstrating the advantage of using a heterogeneous catalyst that possesses a well-defined nanostructure and a higher surface-to-volume ratio of metal. In addition, a blank experiment without the Pd nanocatalyst was performed, and as expected it resulted in no conversion of the starting material (Table 1, Entry 13).
Table 1. Solvent screening of the Pd⁰-AmP-MCF catalyzed hydrogenation of 4-nitroanisole (1a).[a]

![Diagram of solvent screening reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Conv. (%)[^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me-THF</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>EtOAc</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>MeCN</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Toluene</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>TFT</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>MeOH</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>EtOH</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>2-BuOH</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>DMF</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Dioxane</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>H₂O</td>
<td>17</td>
</tr>
<tr>
<td>12[^c]</td>
<td>Toluene</td>
<td>14</td>
</tr>
<tr>
<td>13[^d]</td>
<td>Toluene</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] Reaction Conditions: 1.60 mmol substrate 1a and 0.5 mol% Pd⁰-AmP-MCF (with respect to Pd content) were suspended in 2 mL solvent and the reaction was vigorously stirred at room temperature for 30 min under 1 atm of H₂ (using balloon). [^b] Conversion determined by ¹H-NMR analyses (conv. (%) = (integral amine 1b / (integral nitro compound 1a + integral amine 1b)) × 100%). [^c] Performed with 0.5 mol% Pd/C. Two different batches (one 5 wt% and one 10 wt% Pd) were tested and both gave similar results. [^d] Performed without Pd⁰-AmP-MCF.

2.2. Reaction scope. Having identified EtOAc as the most suitable solvents for this catalytic system, we next chose to study the substrate scope, which was designed to cover a range of aromatic, aliphatic and heteroaromatic nitro compounds (Table 2). Generally, the amine products were obtained in excellent yields and high purities after a simple purification procedure involving separation of the Pd nanocatalyst by centrifugation and concentration of the reaction solution in vacuo. This straightforward purification of the reaction was made possible by the high selectivity exhibited by Pd nanocatalyst, which allowed for the exclusive formation of the desired amines over other intermediary reduction products such as azo compounds, hydroxyl amines, oximes and nitrones.

For the reaction of model substrate 1a, it was possible to achieve quantitative yield of 1b by simply extending the reaction time to 1 h (Table 2, Entry 1). In the case of unsubstituted nitrobenzene 2a, the hydrogenation was found to proceed faster and full conversion was reached already after only 45 min; however, as a result of the volatility of product 2b it could only be
isolated in a yield of 90% (Table 2, Entry 2). The catalytic system was shown to tolerate a variety of para-substituted nitrobenzene derivatives, bearing fluoro, chloro, ketone, ester, cyano and carboxylic acid functional groups, giving the corresponding anilines 3-8b in excellent yields within short reaction times ranging from 45 min to 2 h (Table 2, Entries 3-8). Interestingly, in the case of substrate 9a having a p-benzyloxy group, the Pd nanocatalyst was found to selectively reduce the nitro group without giving rise to any debenzylated products, and consequently aniline 9b could obtained in 96% yield after 8 h. (Table 2, Entry 9). By performing the hydrogenation for 4 h under slightly diluted conditions in a 1:1 mixture of EtOAc/MeOH, it was also possible to quantitatively reduce 4-nitrobenzenesulfonamide 10a into 4-aminobenzene-sulfonamide 10b, which constitute an important fragment in several anti-microbial agents (Table 2, Entry 10).[13] Nitroarenes substituted in one or both ortho positions, as exemplified with 2-nitrophenyl 11a, 2-nitrophenol 12a, 2-nitro-m-xylene 13a and 2-nitro-4-(trifluoromethyl)aniline 14a could all be converted to the corresponding aniline products 11-14b in 95-99% yield (Table 2, Entry 11-14). Among these substrates, the double ortho-methylated 13a gave the slowest reaction and needed 5 h to reach completion, demonstrating the importance of unhindered access of the nitro functionality to the catalyst surface. Consequently, the hydrogenation of the bulky 1-nitronaphthalene 15a was also found to proceed slowly, requiring the use of elevated catalyst loadings and longer reaction times to give satisfactory yields of 15b (Table 2, Entry 15). To our delight, the catalytic protocol also proved effective in the hydrogenation of both heterocyclic and aliphatic nitro compounds, allowing for the preparation of amines 16b-20b in excellent yields (Table 2, Entries 16-20). In the case of the heterocyclic substrates 17a-19a, the slower rate of reduction can be ascribed to a combination of large steric bulk and inhibition of the Pd nanocatalyst by the additional heteroatom functions.

Table 2. Substrate scope of the Pd\(^0\)-AmP-MCF catalyzed hydrogenation of nitro compounds.\[^{[a]}\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)[^{[b]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td> 1a</td>
<td> 1b</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td> 2a</td>
<td> 2b</td>
<td>0.75</td>
<td>90</td>
</tr>
</tbody>
</table>
3 \[\text{NO}_2\] \[\text{F}\] \[3a\] \[\text{NH}_2\] \[\text{F}\] \[3b\] 1 97

4 \[\text{NO}_2\] \[\text{Cl}\] \[4a\] \[\text{NH}_2\] \[\text{Cl}\] \[4b\] 2 91[c]

5 \[\text{NO}_2\] \[\text{C}=\text{O}\] \[5a\] \[\text{NH}_2\] \[\text{C}=\text{O}\] \[5b\] 0.75 99

6 \[\text{NO}_2\] \[\text{EtO}\text{C}=\text{O}\] \[6a\] \[\text{NH}_2\] \[\text{EtO}\text{C}=\text{O}\] \[6b\] 0.75 98

7 \[\text{NO}_2\] \[\text{CN}\] \[7a\] \[\text{NH}_2\] \[\text{CN}\] \[7b\] 2 99

8 \[\text{NO}_2\] \[\text{C}=\text{O}\text{OH}\] \[8a\] \[\text{NH}_2\] \[\text{C}=\text{O}\text{OH}\] \[8b\] 1.5 99
Unfortunately, the Pd nanocatalyst proved to be incapable of selectively reducing the nitro group of substrates containing olefin, acetylene, bromo and formyl substituents under the optimized reaction conditions (results not shown in Table 2). In the hydrogenations of 4-nitrophenylacetylene and 3-nitrostyrene, the carbon-carbon multiple bonds were found to undergo a faster reduction than the nitro functionality and consequently the corresponding ethyl nitroarenes were formed almost exclusively after 5-10 min as determined by 1H-NMR.\footnote{14} For the reaction of 1-bromo-4-nitrobenzene, nitro group reduction and debromination were observed to occur simultaneously, and thus it was only possible to obtain aniline 2b selectively. The selective formation of aminobenzaldehydes in adequate yields by this catalytic protocol was prevented by a fast condensation reaction between amine- and formyl-containing products, which resulted in a complex mixture of polymeric byproducts. However, we identified that this latter reactivity could be exploited to yield monoalkylated amine products as previously demonstrated by Sreedhar et al. using gum acacia stabilized Pd nanoparticles.\footnote{15} To demonstrate that our Pd0-AmP-MCF could also function as a catalyst for this transformation, a reaction was set-up where nitroarene 1a was first reduced into the corresponding aniline 1b using the standard conditions, which was followed by addition of pentanal (1.3 equiv) to form the imine condensation product

[9]
that was rapidly reduced by the Pd nanocatalyst into the desired monoalkylated amine in 85% yield (Scheme 1).

![Scheme 1. Pd\(^0\)-AmP-MCF catalyzed one-pot sequential transformation to access monoalkylated amine \(1c\) from nitroarenes \(1a\).](image)

2.3. Recyclability and stability studies. To provide for an initial assessment on the reusability of the Pd nanocatalyst, a recycling study was conducted where the hydrogenation of nitroarene \(1a\) was investigated over five cycles in EtOAc for 1 h. In conformity with our previous work on the Pd\(^0\)-AmP-MCF,\(^{[11]}\) an excellent recyclability was observed also for this transformation as the catalyst afforded amine \(1b\) quantitatively over all cycles. Furthermore, to gain insights into how the rate of the reaction was affected upon consecutive re-use of the Pd nanocatalyst, a kinetic study was conducted on the first and fifth cycle, where the conversion of \(1a\) was monitored over time (Figure S2). By comparing the slope of the two curves during the first 30 min, it could be concluded that the recycled Pd\(^0\)-AmP-MCF maintained \(~88\%\) of the original activity, demonstrating its high stability under the present reaction conditions. Another interesting observation that can be made upon inspection of Figure S2 is that the kinetic profile belonging to the reaction of the unused catalyst seems to remain linear up to 95% conversion. This behavior is uncommon for catalytic reaction, which normally display an exponential decline in reaction rate over time as the substrate concentration gets lower. A possible explanation for the zero order kinetics could be that the nitro substrate binds in strongly to the catalyst surface, and in this way the catalyst may become saturated. The rate of the reaction is proportional to the substrate bound to the catalyst, and this amount would then become constant and independent of the substrate concentration between 0 and 95% conversion. By following the reactions by \(^1\)H-NMR over time, we could in almost all cases observe that the unreacted nitro compound and the product amine constituted the major species in solution during the entire course of the reaction, whereas the corresponding nitroso and hydroxylamine intermediates were typically present in trace amounts at most. This observation suggests that these intermediates are not readily released into solution by the catalyst, and once formed they are most likely quickly reduced all the way to the aniline product.

Further evidence for the robustness of the Pd\(^0\)-AmP-MCF was obtained from TEM analyses of catalyst recovered from the fifth cycle. As depicted in Figure S1, the majority of the Pd nanoparticles were still found to be in the 1.6-3.0 nm size range and only a small degree of agglomeration into larger clusters could be seen. The retained Pd nanoparticle size indicates that the reaction proceeds through a heterogeneous mechanism. A “boomerang”-type mechanism\(^{[16]}\)
where homogeneous and catalytically-active Pd species are continuously released and re-deposited seems less likely. This hypothesis was further supported by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analysis of a liquid aliquot taken from the Pd\(^0\)-AmP-MCF catalyzed hydrogenation of 1a, which showed no detectable amounts of Pd in the reaction solution (<0.1 ppm).

2.4. Flow Study. To demonstrate the practical utility and scalability of the developed catalytic protocol, we chose to evaluate the applicability of the Pd\(^0\)-AmP-MCF nanocatalyst for integration into a continuous flow hydrogenation reactor (H-Cube\(^\circledR\), ThalesNano, Figure 2).\(^{[17]}\) The substrate solution (2.50 g 1a in 163 mL EtOAc) was delivered into the device through an HPLC-like platform, the H\(_2\) was generated \textit{in situ} by electrolysis of water and the cartridge container was charged with 70 mg of Pd\(^0\)-AmP-MCF (12 wt% Pd, 0.48 mol% Pd) and equipped with a heating device. The substrate solution was mixed with H\(_2\) in the reactor before it was allowed to flow through the Pd nanocatalyst, which was pre-packed in replaceable cartridges (30 mm × 8 mm), at a flow rate of 1.5 mL/min. Gratifyingly, this methodology furnished aniline 1b in excellent yield (1.92 g, 95%) and purity after concentration of the collected liquid phase \textit{in vacuo}. Furthermore, ICP-OES analysis of the isolated amine product determined the Pd content to 0.2 ppm, demonstrating that the Pd\(^0\)-AmP-MCF is highly stable under these continuous flow conditions and only leaches minor amounts of Pd.

![Figure 2. Continuous flow chemistry experiment using a H-Cube\(^\circledR\) hydrogenation reactor and pre-packed cartridge with Pd\(^0\)-AmP-MCF nanocatalyst.](image)

2.5. Comparison with other catalytic nitro reduction systems. The Pd\(^0\)-AmP-MCF nanocatalyst compares favorably with previously reported systems for the hydrogenation of nitro compounds. It has the advantage of working efficiently under mild reaction conditions, whereas some of the other catalytic systems require elevated temperatures and long reaction times to give
high yields of the desired amine products.[8] Moreover, the Pd nanocatalyst constitutes an environmentally-friendly option as it allows for hydrogen gas to be utilized as the reducing agent, in contrast to many other catalytic systems that require the use of less green alternatives, such as H\textsubscript{2}S,[4] N\textsubscript{2}H\textsubscript{4},[5] NaBH\textsubscript{4}[6] and silanes.[18] Another benefit of the present catalytic system is that it shows a relatively broad substrate scope, enabling for instance both heterocyclic and aliphatic nitro compounds to be reduced into the corresponding amines. This substrate scope has not been demonstrated with some of the previously reported hydrogenation protocols, which have only been evaluated for the reduction of nitroarenes.[9b,c-g,i,j]

3. Conclusions

We have reported on the application of a heterogeneous catalyst consisting of Pd nanoparticles immobilized on aminopropyl-functionalized siliceous mesocellular foam (Pd0-AmP-MCF) for the selective hydrogenation of a wide range of nitro compounds to amines in green solvents at room temperature and under ambient pressure of hydrogen gas. The catalytic protocol reported herein is highly efficient and environmentally friendly as the desired amine products can be obtained in excellent yield and purity after a simple purification procedure involving separation of the catalyst by centrifugation and subsequent concentration of the reaction solution \textit{in vacuo}. Moreover, the Pd nanocatalyst exhibited high stability and low metal leaching, which allowed it to be re-used multiple times without any significant loss of activity. It was also demonstrated that the Pd nanocatalyst could be easily integrated into a continuous flow hydrogenation reactor, which makes it a highly attractive and economical process for nitro compound reduction on an industrial scale. Future work in our group will be dedicated to the continued examination of this Pd nanocatalyst for other chemical transformations in flow.

4. Acknowledgement

The Berzelius Center EXSELENT, the European Research Council (ERC AdG 247014), and the Swedish Research Council are gratefully acknowledged for financial support. The Knut and Alice Wallenberg Foundation is acknowledged for an equipment grant for the electron microscopy facilities. We also thank AstraZeneca R&D Mölndal, Medicinal Chemistry, for assisting in the flow chemistry experiment.

5. Experimental Section

\textit{General Information}

Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Flash chromatography was performed on an automated flash chromatography instrument using silica-based cartridges with UV detection for fraction collection. 1H-NMR, 13C-NMR and 19F-NMR were recorded on a Bruker Avance 400MHz instrument. Chemical shifts in 1H-NMR and 13C-NMR are
reported in ppm, relative to solvent peaks (1H δ$_H$: CDCl$_3$ 7.26 or d$_6$-DMSO 2.50 and 13C δ$_C$: CDCl$_3$ 77.0 or d$_6$-DMSO 39.5). Chemical shifts in 19F-NMR are reported in ppm, relative to the internal standard fluorobenzene (19F δ$_F$: -113.2). The following abbreviations were used to explain multiplicities: s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet. HRMS data were recorded using TOF-ESI detection. The Pd0-AmP-MCF catalyst (7.90 wt% Pd) was analyzed for palladium leaching by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES, Medac Ltd, Analytical and Chemical Consultancy Services, United Kingdom) and the size/distribution of the palladium nanoparticles was determined by Scanning Transmission Electron Microscopy (STEM). The high-angle annular dark-field (HAADF)-STEM, also known as Z-contrast, images was taken at room temperature using a JEOL JEM-2100F field-emission microscope equipped with a JEOL ADF detector. The microscope was operated at 200 kV. The probe size and camera length used are 0.20 nm and 8 cm, respectively. Flow experiments were performed in a H-Cube® provided by ThalesNano. The cartridge used in the flow experiment was packed by ThalesNano with Pd0-AmP-MCF (70 mg Pd nanocatalyst containing 12 wt% Pd). Consequently, 0.48 mol% Pd in regards to the substrate 4-nitroanisole 1a was used in the flow experiment.

General procedure for the solvent screen of the Pd0-AmP-MCF catalyzed hydrogenation of 1-nitroanisole (Table 1)

4-Nitroanisole (1.60 mmol) and Pd0-AmP-MCF (7.90 wt% Pd, 12.7 mg Pd nanocatalyst, 8.0 μmol Pd, 0.50 mol% Pd to substrate) were suspended in appropriate solvent (2 mL) in a Screw-capped Radley carousel tube. The reaction vessel was then evacuated and filled with hydrogen gas from a balloon, in three repeating cycles. The reaction was allowed to vigorously stir at room temperature for 30 min with the H$_2$ balloon attached, after which the reaction was stopped, diluted with CDCl$_3$ (2 mL), transferred to a 50 mL Falcon tube and centrifuged for 5 min at 4000 rpm. An aliquot was withdrawn from the supernatant and the outcome of the reaction was determined by 1H-NMR (conv. (%)) = (integral amine 1b / (integral nitro compound 1a + integral amine 1b)) × 100%).
General procedure for the substrate scope investigation of the Pd0-AmP-MCF catalyzed hydrogenation of 1-nitroanisole (Table 2)

Nitro compound (0.40 mmol-1.60 mmol) and Pd0-AmP-MCF (7.90 wt% Pd, 3.2-12.7 mg Pd nanocatalyst, 2.0-8.0 \(\mu\)mol Pd, 0.50-1.00 mol% to substrate) were suspended in Solvent A (2 mL) in a Screw-capped Radley carousel tube. The reaction vessel was then evacuated and filled with hydrogen gas from a balloon, in three repeating cycles. The reaction was allowed to vigorously stir at room temperature for an appropriate time with the \(\text{H}_2\) balloon attached, after which the reaction was stopped, transferred to a 50 mL Falcon tube and centrifuged for 5 min at 4000 rpm. The supernatant was collected and the Pd0-AmP-MCF was washed with Solvent B (2 \(\times\) 10 mL) using centrifugation technique. The wash fractions were pooled with the original supernatant and the combined organic solution was concentrated \textit{in vacuo} to yield the pure amine product (no further purification required). The alipathic amine 20b was not isolated due to its high volatility and instead it was quantified by \(^1\text{H}-\text{NMR}\) against 1,3,5-trimethoxybenzene that was used as internal standard. Shown in Table S1 is a list of all relevant experimental parameters that were used in the reactions of each substrate.

Synthesis of N-(4-methoxyphenyl)-N-pentylamine 1c through a one-pot sequential reaction

4-Nitroanisole (1.60 mmol) and Pd0-AmP-MCF (7.90 wt% Pd, 12.7 mg Pd nanocatalyst, 8.0 \(\mu\)mol Pd, 0.50 mol% Pd to substrate) were suspended in EtOAc (2 mL) in a shortened Screw-capped Radley carousel tube. The reaction vessel was then evacuated and filled with hydrogen gas from a balloon, in three repeating cycles. The reaction was allowed to vigorously stir at room temperature for 60 min with the \(\text{H}_2\) balloon attached, after which pentanal (2.08 mmol) in EtOAc (0.5 mL) was injected and the reaction was allowed to stir for an additional hour. The reaction was transferred to a round-bottomed flask, concentrated in vacuo and diluted with DCM (4 mL), before it was charged onto a silica column cartridge. Purification by column chromatography was carried out on an automated flash chromatography instrument with UV detection for fraction collection, using a Pentane/EtOAc solvent gradient (90:10\(\rightarrow\)80:20\(\rightarrow\)0:100). The desired N-(4-methoxyphenyl)-N-pentylamine 1c was afforded as a yellow oil (263 mg) in 85% yield.
Flow Experiment

A 0.1 M solution of 4-nitroanisole 1c (2.50 g, 16.3 mmol) was prepared in EtOAc (163 mL) and passed through the H-cube® (ThalesNano), equipped with a cartridge packed with Pd⁰-AmP-MCF (12 wt% Pd, 70 mg Pd nanocatalyst, 0.48 mol% Pd in regards to 1c), at 30°C and 1 atm in situ hydrogen pressure (full hydrogen mode, 60 mL H₂ per min) with a flow rate of 1.5 mL/min. After passing through the flow instrument, the solution was collected and solvents were removed in vacuo to afford pure 4-methoxyaniline (1.90 g, 15.4 mmol, 95%) without the need of any further purification.

References

[14] It is also possible to achieve full reduction of both functional groups and afford the corresponding ethyl anilines by simply allowing the hydrogenation to continue for prolonged reaction times.

