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Abstract

This thesis concerns inference problems in balanced random effects mod-
els with a so-called block circular Toeplitz covariance structure. This class of
covariance structures describes the dependency of some specific multivari-
ate two-level data when both compound symmetry and circular symmetry
appear simultaneously.

We derive two covariance structures under two different invariance re-
strictions. The obtained covariance structures reflect both circularity and
exchangeability present in the data. In particular, estimation in the bal-
anced random effects with block circular covariance matrices is considered.
The spectral properties of such patterned covariance matrices are provided.
Maximum likelihood estimation is performed through the spectral decom-
position of the patterned covariance matrices. Existence of the explicit max-
imum likelihood estimators is discussed and sufficient conditions for ob-
taining explicit and unique estimators for the variance-covariance compo-
nents are derived. Different restricted models are discussed and the corre-
sponding maximum likelihood estimators are presented.

This thesis also deals with hypothesis testing of block covariance struc-
tures, especially block circular Toeplitz covariance matrices. We consider
both so-called external tests and internal tests. In the external tests, vari-
ous hypotheses about testing block covariance structures, as well as mean
structures, are considered, and the internal tests are concerned with testing
specific covariance parameters given the block circular Toeplitz structure.
Likelihood ratio tests are constructed, and the null distributions of the cor-
responding test statistics are derived.

Keywords: Block circular symmetry, covariance parameters, explicit max-
imum likelihood estimator, likelihood ratio test, restricted model, Toeplitz
matrix
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1. Introduction

A statistical model can be considered as an approximation of a real life phe-
nomenon using probabilistic concepts. In the general statistical paradigm,
one starts with a specification of a relatively simple model that describes re-
ality as close as possible. This may be according to substantive theories or
based on a practitioners’ best knowledge. The forthcoming issue concerns
statistical inference of the specified model, which can be a multivariate type
when modeling multiple response variables jointly, e.g. parameter estima-
tion and hypothesis testing.

1.1 Background

In statistics, the concept of covariance matrix, also called dispersion ma-
trix or variance-covariance matrix, plays a crucial role in statistical mod-
elling since it is a tool to describe the underlying dependency between two
or more sets of random variables. In this thesis, patterned covariance ma-
trices are studied. Briefly speaking, a patterned covariance matrix means
that besides the restrictions, symmetry and positive semidefiniteness, there
exist some more restrictions. For example, very often there exists some the-
oretical justification, which tells us that the assumed covariance structure
is not arbitrary but following a distinctive pattern (Fitzmaurice et al., 2004).
For example, in certain experimental designs, when the within-subject fac-
tor is randomly allocated to subjects, the model assumption may include a
covariance matrix, where all responses have the same variance and any pair
of responses have the same covariance. This type of covariance matrix is
called compound symmetry (CS) structure, which also is called equicorrela-
tion structure, uniformly structure or intraclass structure. In some longitu-
dinal studies, the covariance matrix can assume that any pair of responses
that are equally separated in time have the same correlation. This pattern is
referred to as a Toeplitz structure. There are some special kinds of Toeplitz
matrices that are commonly used in practice. One is the first-order autore-
gressive structure, abbreviated as AR(1), where the correlations decline over
time as the separation between any pairs of observations increases. The
other is a banded Toeplitz matrix, also called q-dependent structure, where
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all covariances more than q steps apart equal zero. A third special case of
a Toeplitz matrix is the symmetric circular Toeplitz (CT) matrix, where the
correlation between two measurements only depends on their distance, or
we may say it depends on the number of observations between them.

Considerable attention has been paid to studies of patterned covariance
matrices because comparing with the p(p+1)

2 unknown parameters in a p×p
unstructured covariance matrix, many covariance structures are fairly par-
simonious. It follows that both CS and AR(1) covariance structures only
have 2 unknown parameters, while the Toeplitz matrix has p parameters,
the banded Toeplitz matrix has q parameters (q < p) and the symmetric
circular Toeplitz matrix has

[ p
2

]+1 parameters, where [•] denotes the inte-
ger function. In models including repeated measurements, the number of
unknown parameters in the covariance matrix increases rapidly when the
number of repeated measurements is increasing. The parsimony is impor-
tant for a statistical inference, especially when the sample size is small.

The study of the multivariate normal models with patterned covariance
matrices can be traced back to Wilks (1946), in connection with some educa-
tional problems, and was extended by Votaw (1948) when considering med-
ical problems. Geisser (1963) considered multivariate analysis of variance
(MANOVA) for a CS structure and tested the mean vector. Fleiss (1966) stud-
ied a “block version" of the CS structure (see 2.9 in Chapter 2) involving a
test of reliability. In the 1970’s, this area was intensively developed by Olkin
(1973b,a), Khatri (1973), Anderson (1973), Arnold (1973) and Krishnaiah and
Lee (1974), among others. Olkin (1973b) considered a multivariate normal
model with a block circular structure (see (2.12) in Chapter 2) which the co-
variance matrix exhibits as circularity in blocks. Olkin (1973a) gave a gen-
eralized form of the problem considered by Wilks (1946), which stemmed
from a problem in biometry. Khatri (1973) investigated the testing prob-
lems of certain covariance structures under a growth curve model. Ander-
son (1973) dealt with multivariate observations where covariance matrix is
a linear combination of known symmetric matrices (see (2.1) in Chapter 2).
Arnold (1973) studied certain patterned covariance matrices under both the
null and alternative hypotheses which can be transformed to “products" of
problems where the covariance matrices are not assumed to be patterned.
Krishnaiah and Lee (1974) considered the problems of testing hypotheses
when the covariance structure follows certain patterns, and one of the hy-
potheses considered by Krishnaiah and Lee (1974) contains, among others,
both block CS structure and block CT structure as special cases.

Although multivariate normal models with patterned covariance matri-
ces were studied entensively many decades ago, there is a variety of ques-
tions still to be addressed, due to interesting and challenging problems aris-
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ing in various applications such as medical and educational studies. Viana
and Olkin (2000) considered a statistical model that can be used in medi-
cal studies of paired organs. The data came from visual assessments on N
subjects at k time points, and the model assumed a correlation between fel-
low observations. Let yt1 and yt2 be the observation of the right and left
eyes from one person, respectively, at any time points t and u which are
vision-symmetric, t ,u = 1, . . . ,k. Here “symmetry" means that the left-right
labeling is irrelevant at each time point, i.e., Cov(yt1, yu2) = Cov(yt2, yu1).
The covariance structure will exhibit a block pattern corresponding to time
points with different CS blocks inside.

Nowadays, it is very common to collect data hierarchically. In particular,
for each subject, there may be p variables measured at different
sites/positions resulting in doubly multivariate data, i.e., multivariate in two
levels (Arnold, 1979; Roy and Fonseca, 2012). The variables may have vari-
ations that differ within sites/positions and across dependent subjects. In
some clinical trial studies for each subject, the measurements can be col-
lected on more than one variable at different body positions repeatedly over
time, resulting in triply multivariate data, i.e., multivariate in three levels
(Roy and Leiva, 2008). Similar to the two-level case, in three-level multivari-
ate data the variables may have different variations within sites and across
both subjects and times, which should be taken into account. This implies
the presence of different block structures in the covariance matrices and the
inference should take care concerning this.

Now, a balanced random effects model under a normality assumption,
which has been studied intensively in this thesis, will be introduced. The
model is assumed to have a general mean and a specific covariance struc-
ture of the pattern for which derivation will be motivated in Chapter 5, The-
orem 5.1.1. Let yi j k be the response from the kth individual at the j th level
of the random factor γ2 within the i th level of the random factor γ1, i =
1, . . . ,n2, j = 1, . . . ,n1 and k = 1, . . . ,n. The model is represented by

yi j k =µ+γ1,i +γ2,i j +εi j k , (1.1)

where µ is the general mean, γ1,i is the random effect, γ2,i j is the random
effect which is nested within γ1,i and εi j k is the random error. A balanced
case of model (1.1) means that the range of any subscript of the response
yk = (yi j ) does not depend on the values of the other subscripts of yk .

Let y1, . . . ,yn be a independent random sample from Np (1pµ,Σ), where
p = n2n1. Put Y = (y1, . . . ,yn). Then, model (1.1) can be written as Y ∼
Np,n(µ1p 1′

n ,Σ, I n), where

yk = 1pµ+ (I n2 ⊗1n1 )γ1 +γ2 +ε, k = 1, . . . ,n, (1.2)
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where yi is a p ×1 response vector and 1n1 is the column vector of size n1,
having all elements equal to 1. Here, γ1 ∼ Nn2 (0,Σ1), γ2 ∼ Np (0,Σ2) and
ε∼ Np (0,σ2I p ) are assumed to be mutually independent. Furthermore, we
assume that bothΣ1 andΣ2 are positive semidefinite. Denote Z 1 = I n2⊗1n1 .
The covariance matrix of yk in (1.2) is Σ, where Σ = Z 1Σ1Z ′

1 +Σ2 +σ2I p .
In many applications, such as clinical studies, it is crucial to take into ac-
count the variations due to the random factor of γ2 (e.g., sites/positions)
and across the random factor γ1 (e.g., time points), in addition to the vari-
ations of γ1 itself. Moreover, the dependency that nestedness creates may
cause different patterns in the covariance matrix, which can be connected
to one or several hierarchies or levels.

The covariance matrix of yk in (1.2), i.e.,Σ, may have different structures
depending on Σ1 and Σ2. In this thesis, we assume that the covariance Σ
from model (1.2), equals

Σ= Z 1Σ1Z ′
1 +Σ2 +σ2I p , (1.3)

where
Σ1 = σ1I n2 +σ2(J n2 − I n2 ), (1.4)

Σ2 = I n2 ⊗Σ(1) + (J n2 − I n2 )⊗Σ(2), (1.5)

J n2 = 1n2 1′
n2

and Σ(h) is a CT matrix, h = 1,2, (see also Paper II, Equation
(2.5), p.85 or Paper III, p.3). Furthermore, it can be noticed that Σ has the
same structure as Σ2 but with more parameters involved. It is worth ob-
serving that model (1.2) is overparametrized, and hence the estimation of
parameters in Σ faces the problem of identifiability. A parametric statisti-
cal model is said to be identified if there is one and only one set of param-
eters that produces a given probability distribution for the observed vari-
ables. Identifiability of model (1.2) will be one of the main concerns in this
thesis (see Paper III).

The usefulness of the covariance structure given in (1.3) can appear when
modelling phenomena in physical, medical and psychological contexts. Next,
we provide some examples arising from different applications that illustrate
potential utilization of the model (1.2).

Example 1 Olkin and Press (1969) studied a physical problem concerning
modelling signal strength. A point source with a certain number vertices
from which a signal received from a satellite is transmitted. Assuming that
the signal strength is the same in all directions along the vertices, and the
correlations only depend on the number of vertices in between (see Figure
1.1), one would expect a CT structure for underlying dependency between
the messages received by the receivers placed at these vertices. Moreover,
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those messages could be recorded from a couple of exchangeable geocen-
ters which are random samples from a region so that the data can have the
circulant property in the receiver (vertices) dimension and a symmetric pat-
tern in the geocenter dimension.

V-3 V-1

V-4

V-2

Figure 1.1: A circular structure of the signal receiver with 4 vertices: V-i repre-
sents the i th vertex, i = 1, . . . ,4.

Example 2 Louden and Roy (2010) gave one example of the use of the circu-
lar symmetry model, which aimed to facilitate the classification of patients
suffering in particular from Alzheimer’s disease using positron emission to-
mography (PET) imaging. A healthy brain shows normal metabolism levels
throughout the scan, whereas low metabolism in the temporal and parietal
lobes on both sides of the brain is seen in patients with Alzheimer’s dis-
ease. In their study, the three measurements have been taken from temporal
lobes, i.e. the anterior temporal, mid temporal and post temporal regions of
each temporal lobe. Viewed from the top of the head these three regions in
the two hemispheres of the brain seem to form a circle inside the skull, and
Louden and Roy (2010) suggested that these six measurements have a CT
covariance matrix. The response consists of six measurements (metabolism
levels) from the i th patient within kth municipality. Assuming that those
patients who received PET imaging are exchangeable and the municipali-
ties are independent samples, the covariance structure can be assumed to
have the pattern in (1.3). Although, PET imaging from different patients are
independent of each other, i.e., Σ(2) in Σ is zero matrix.

Example 3 The theory of human values proposed by Schwartz
(Schwartz, 1992) is that the ten proposed values, i.e., achievement, hedo-
nism, stimulation, self-direction, universalism, benevolence, tradition, con-
formity, security, and power, form a circular structure (see Davidov and Dep-
ner, 2011, Figure 1), in which values expressing similar motivational goals
are close to each other and move farther apart as their goals diverge (Stein-
metz et al., 2012). Similarly, there exists a “circle reasoning" when study-
ing interpersonal psychology, e.g., classifying persons into typological cate-
gories defined by the coordinates of the interpersonal circle (see Gurtman,
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2010, Figure 18.2). Those substantive theories result in, when some assess-
ments are conducted from the sampling subjects, the collected measure-
ments, e.g., the scores of the ten values for an individual; these will be circu-
larly correlated within subjects and equicorrelated between subjects.

1.2 Aims of the thesis

The general purpose of this thesis is to study the problems of estimation
and hypothesis testing in multivariate normal models related to the specific
block covariance structureΣ in model (1.2), namely a block circular Toeplitz
structure, which can be used to characterize the dependency of some spe-
cific two-level multivariate data.

The following specific aims have been in focus.

• The first aim is to derive a block covariance structure which can model
the dependency of a specific symmetric two-level multivariate data.
Here the concept of symmetry or, in other words, invariance, means
that the covariance matrix will remain unchanged (invariant) under
certain orthogonal transformations (e.g. permutation).

• The second aim is to obtain estimators for the parameters of model
(1.2) with the block circular Toeplitz covariance structure given in (1.3).
The focus is on deriving explicit maximum likelihood estimators.

• The third aim is to develop tests for testing different types of symmetry
in the covariance matrix as well as testing the mean structure.

• The fourth aim is to construct tests for testing hypotheses about spe-
cific parameters in the block circular Toeplitz covariance structure.

1.3 Outline of the thesis

This thesis is organized as follows. In Chapter 1, a general introduction and
background of the topic considered in the thesis are given. Chapter 2 fo-
cuses on various patterned covariance matrices, especially block covariance
structures, which are of primary interest in this thesis. The concept of the
symmetry (invariance) model with some simple examples are presented.
Chapter 3 provides some existing results on the explicit MLEs for both mean
and (co)variance parameters in a multivariate normal model setting. Fur-
thermore, spectral properties of the covariance structures are studied here
since they play crucial roles for statistical inference in these models. Chap-
ter 4 provides existing results of the likelihood ratio test (LRT) procedure on
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some block covariance structures as well as the approximation of the null
distributions of the corresponding test statistics. Then some existing meth-
ods of testing variance parameters will also be introduced. Summaries of
the four papers are given in Chapter 5 where the main results of this thesis
will be highlighted. Concluding remarks together with some future research
problems appear in the last chapter.
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2. Patterned covariance matrices

This chapter is devoted to a brief presentation of the patterned covariance
matrices used in statistical modelling. We start with an introduction of both
linear and non-linear covariance structures.

2.1 Linear and non-linear covariance structures

According to Anderson (1973), a linear covariance structure is a structure
such that the covariance matrixΣ : p×p can be represented as a linear com-
bination of known symmetric matrices:

Σ=
s∑

i=1
σi G i , (2.1)

where G1, . . . ,G s are linearly independent, known symmetric matrices and
the coefficients σi are unknown parameters. Moreover, there is at least one
set σ1, . . . ,σs such that (2.1) is positive definite. The linear independence of
G i leads to all unknown parameters being identifiable means that they can
be estimated uniquely.

The concept of linear covariance structure will now be illustrated with
the following examples. Recall the various covariance matrices introduced
in Chapter 1. The CS structure has the form

ΣC S =


a b · · · b

b a
. . .

...
...

. . .
. . . b

b · · · b a

 ,

where a is the variance, b is the covariance and Σ is nonnegative definite if
and only if a ≥ b ≥− 1

p−1 a. The CS structure can be written as

ΣC S = aI p +b(J p − I p ) = [
a + (p −1)b

]
P 1p + (a −b)(I p −P 1p ), (2.2)

where P 1p is the orthogonal projection onto the column space of 1p . Ex-
pression (2.2) shows that the CS structure is a linear covariance structure.
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The Toeplitz structure is of the form

ΣToep =


t0 t1 t2 · · · tp−1

t1 t0 t1 · · · tp−2

t2 t1 t0 · · · tp−3
...

...
...

. . .
...

tp−1 tp−2 tp−3 · · · t0

 ,

where t0 is the variance for all observations and the covariance between any
pair of observations (i , j ) equals ti− j . Next, let us define a so-called sym-
metric Toeplitz matrix ST (p,k) in the following way:

ST (p,k) = Toep(

p︷ ︸︸ ︷
0, . . . ,0︸ ︷︷ ︸

k

,1,0, . . . ,0),

or equivalently

(ST (p,k))i j =
{

1, if |i − j | = k,

0, otherwise,

where k ∈ {
1, . . . , p −1

}
. For notational convenience denote ST (p,0) = I p .

The Toeplitz structure can then be expressed as

ΣToep =
p−1∑
k=0

tk ST (p,k),

and ST (p,k) are linearly independent, k = 1, . . . , p−1. Therefore, the Toeplitz
structure is a linear structured covariance matrix and it is also called a linear
Toeplitz structure (Marin and Dhorne, 2002). As one of the special cases of
the Toeplitz structure, the CT structure can be expressed as

ΣC T =



t0 t1 t2 · · · t1

t1 t0 t1 · · · t2

t2 t1 t0 · · · ...
...

...
...

. . .
...

t1 t2 · · · t1 t0

 , (2.3)

where t0 is the variance for all observations and the covariance between any
pair of observations (i , j ) equals tmi n{i− j ,n−(i− j )}. The CT structure can be
expressed as

ΣC T =
[p/2]∑
k=0

tk SC (p,k), (2.4)
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where SC (p,k) is called a symmetric circular matrix and is defined as fol-
lows:

SC (p,k) = Toep(

p︷ ︸︸ ︷
0, . . . ,0︸ ︷︷ ︸

k

,1,0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
k−1

) (2.5)

or equivalently

(SC (p,k))i j =
{

1, if |i − j | = k or |i − j | = p −k,

0, otherwise,

where k ∈ {
1, . . . , [p/2]

}
. For notational convenience denote SC (p,0) = I p .

A non-linear covariance structure basically refers to the non-linear struc-
ture of the covariance matrix Σ in its parameters. One example is the AR(1)
structure:

σ2


1 ρ ρ2 · · · ρp−1

ρ 1 ρ · · · ρp−2

ρ2 ρ 1 · · · ρp−3

...
...

...
. . .

...
ρp−1 ρp−2 ρp−3 · · · 1

 ,

where ρk = Cor(y j , y j+k ) for all j and k and ρ ≥ 0.
For some of the above mentioned covariance structures it is not pos-

sible to obtain explicit MLEs, for example, the AR(1) and the symmetric
Toeplitz covariance matrices. Estimation of both linear and non-linear co-
variance structures under a normality assumption has been considered by
several authors. Ohlson et al. (2011) proposed an explicit estimator for an
m-dependent covariance structure that is not MLE. The estimator is based
on factorizing the full likelihood and maximizing each term separately. For
models with a linear Toeplitz covariance structure, Marin and Dhorne (2002)
derived a necessary and sufficient condition to obtain an optimal unbiased
estimator for any linear combination of the variance components. Their re-
sults were obtained by means of commutative Jordan algebras. In Chapter 3,
the explicit estimation of patterned covariance matrices will be considered
in detail.

2.2 Symmetry models

To have a specific covariance structure in a model means that certain re-
strictions are imposed on the covariance matrix. In this thesis, we are in-
terested in some specific structures when certain invariance conditions are
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fulfilled, i.e. when the process generating is supposed to follow a probability
distribution whose covariance is invariant with respect to certain orthogo-
nal transformations. Andersson (1975) and Andersson and Madsen (1998)
have presented a comprehensive theory of group invariance in multivari-
ate normal models. In the review article of Perlman (1987), the terminology
“group symmetry” is used to describe group invariance. The following defi-
nition describes the concept of invariance more formally.

Definition 2.2.1 (Perlman, 1987) Let G be a finite group of orthogonal trans-
formations. A symmetry model determined by the group G is a family of mod-
els with positive definite covariance matrices

SG = {Σ|GΣG ′ =Σ for all G ∈G}. (2.6)

The covariance matrix Σ defined in (2.6) is said to be G-invariant. If y
is a random vector with Cov(y) = Σ, then Cov(Gy) = GΣG ′. Thus, the con-
dition GΣG ′ = Σ in (2.6) implies that y and Gy have the same covariance
matrix. The general theory for symmetry models specified by (2.6) is pro-
vided by Andersson (1975). It tells us how SG should look like, but does not
tell us how to derive the particular form of SG (Eaton, 1983). It is not ob-
vious, given a structure for the covariance matrix, to find the correspond-
ing G, or even to decide whether there is a corresponding G. Nevertheless,
given the group, it is possible to find the corresponding G-invariant struc-
ture of Σ (Marden, 2012). Perlman (1987) discussed and summarized re-
sults related to group symmetry models, in which some cases were studied
in detail such as spherical symmetry (Mauchly, 1940), complete symmetry
(Wilks, 1946), compound symmetry (CS) (Votaw, 1948), circular symmetry
(Olkin and Press, 1969), and block circular symmetry (Olkin, 1973b). More-
over, Nahtman (2006), Nahtman and von Rosen (2008) and von Rosen (2011)
studied properties of some patterned covariance matrices arising under dif-
ferent symmetry restrictions in balanced mixed linear models.

Our next examples illustrate two symmetry models with different covari-
ance structures: the CS structure and the CT structure given by (2.2) and
(2.3), respectively. In order to connect the concept symmetry model with
the following examples, we first need to define P (2) to be an n ×n arbitrary
permutation matrix, which is an orthogonal matrix whose columns can be
obtained by permuting the columns of the identity matrix, e.g.,

P (2) =
 0 1 0

1 0 0
0 0 1

 .
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We also define P (1) to be an n×n arbitrary shift-permutation (SP) matrix (or
cyclic permutation matrix) of the form

p(1)
i j =

{
1, if j = i +1−n1(i>n−1),

0, otherwise,
(2.7)

where 1(.) is the indicator function, i.e. 1(a>b) = 1 if a > b and 1(a>b) = 0 oth-
erwise. For example, when n = 3 and n = 4, the SP matrices are 0 1 0

0 0 1
1 0 0

 and


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Example 4 Let n measurements be taken under the same experimental con-
ditions, and y = (y1, . . . , yn)′ denote the response vector. In some situations,
it may be reasonable to suppose that the yi s are exchangeable (with proper
assumptions about the mean of y). Thus, (y1, . . . , yn)′ and (yi1 , . . . , yin )′, where
(i1, . . . , in)′ is any permutation of indices (1, . . . ,n), should have the same co-
variance structure. Let Σ be the covariance matrix of y . It has been shown
(see Eaton, 1983; Nahtman, 2006) that Σ is invariant with respect to all or-
thogonal transformations defined by P (2) if and only if Σ = (a −b)I n +b J n ,
where a and b are constants.

Example 5 (Eaton, 1983) Consider observations y1, . . . , yn , which are
taken at n equally spaced points on a circle and are numbered sequentially
around the circle. For example, the observations might be temperatures at
a fixed cross section on a cylindrical rod when a heat source is present at the
center of the rod. It may be reasonable to assume that the covariance be-
tween y j and yk depends only on how far apart y j and yk are on the circle.
That is, Cov(y j , y j+1) does not depend on j , j = 1, . . . ,n, where yn+1 ≡ y1;
Cov(y j , y j+2) does not depend on j , j = 1, . . . ,n, where yn+2 ≡ y2; and so
on. Assuming that Var(y j ) does not depend on j , this assumption can be
expressed as follows: let y = (y1, . . . , yn)′ and Σ be the corresponding covari-
ance matrix. Nahtman and von Rosen (2008) have shown thatΣ is invariant
with respect to all orthogonal transformations defined by P (1) in (2.7) if and
only if Σ is a CT matrix given in (2.3). For example, when n = 5, Σ is P (1)-
invariant if and only if

Σ=


t0 t1 t2 t2 t1

t1 t0 t1 t2 t2

t2 t1 t0 t1 t2

t2 t2 t1 t0 t1

t1 t2 t2 t1 t0

 .
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In the next section, more examples of symmetry models will be given in
terms of block structures when certain invariant conditions exist at certain
layers of the observations.

2.3 Block covariance structures

The simplest block covariance structure may consist of the following block
diagonal pattern:

Σ=


Σ0 0 0 . . . 0
0 Σ0 0 . . . 0
0 0 Σ0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Σ0

 , (2.8)

where Σ is a up × up matrix and Σ0 is an p × p unstructured covariance
matrix for each subject over time. To reduce the number of unknown pa-
rameters, especially when p is relatively large,Σ0 is usually assumed to have
some specific structures, e.g. CS or Toeplitz. The covariance matrix in (2.8)
can be considered as a trivial symmetry model, i.e. it is invariant with respect
to the identity matrix I u ⊗ I p . The block structure ofΣ can also be extended
to other patterns, for example, the off-diagonal blocks can be included into
Σ to characterize the dependency between subjects, i.e.,

ΣBC S =


Σ0 Σ1 Σ1 . . . Σ1

Σ1 Σ0 Σ1 . . . Σ1

Σ1 Σ1 Σ0 . . . Σ1
...

...
...

. . .
...

Σ1 Σ1 Σ1 . . . Σ0

 , (2.9)

= I u ⊗Σ0 + (J u − I u)⊗Σ1,

whereΣ0 is a positive definite p×p covariance matrix andΣ1 is a p×p sym-
metric matrix, and in order to have ΣBC S to be a positive definite matrix,
the restriction Σ0 >Σ1 >−Σ0/(u −1) has to be fulfilled (see Lemma 2.1 Roy
and Leiva, 2011, for proof), where the notation A > B means that A −B is
positive definite. The structure of Σ in (2.9) is called block compound sym-
metry (BCS) and it has been studied by Arnold (1973, 1979) in the general
linear model when the error vectors are assumed to be exchangeable and
normally distributed. A particular example considered by Olkin (1973a) was
the Scholastic Aptitude Tests (SAT) in the USA. Let yiV and yiQ be the score
of the verbal part and quantitative part of the SAT test from the i -th year. If
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the SAT examinations during the successive u years are exchangeable with
respect to variations, it implies that

var(yiV ) = var(yiQ ), for ∀ i -th year,

cov(yiV , y jV ) = cov(yiQ , y jQ ), for ∀ i 6= j -th year,

cov(yiV , y jQ ) = cov(y jQ , yiV ), for ∀ i , j -th year,

where i , j = 1, . . . ,u. Hence, the joint covariance matrix has the structure
given in (2.9).

Recall the concept symmetry model in Section 2.2, it can be shown that
ΣBC S is invariant with respect to all transformations P (2) ⊗ I p , where P (2) is
an arbitrary permutation matrix with size u ×u.

There is another type of covariance structure which we call double com-
plete symmetric (DCS) structure, i.e.,

ΣDC S = I u ⊗ [
aI p +b(J p − I p )

]+ (J u − I u)⊗ c J p . (2.10)

One extension of ΣDC S is the following block double complete symmetric
(BDCS) structure, which is called “jointly equicorrelated covariance" matrix
(Roy and Fonseca, 2012):

ΣBDC S = I v ⊗ΣBC S + (J v − I v )⊗ J u ⊗W , (2.11)

whereΣBC S is given by (2.9) and W is a p×p symmetric matrix. In the study
of Roy and Fonseca (2012), the matrix ΣBDC S is assumed when modelling
multivariate three-level data, whereΣ0 characterizes the dependency of the
p responses at any given location and at any given time point and Σ1 char-
acterizes the dependency of the p responses between any two locations and
at any given time point. The matrix W represents the dependency of the
p responses between any two time points and it is the same for any pair of
time points. When v = 2, we have

ΣBDC S =



Σ0 Σ1 . . . Σ1 W W . . . W
Σ1 Σ0 . . . Σ1 W W . . . W

...
...

. . .
...

...
...

. . .
...

Σ1 Σ1 . . . Σ0 W W . . . W
W W . . . W Σ0 Σ1 . . . Σ1

W W . . . W Σ1 Σ0 . . . Σ1
...

...
. . .

...
...

...
. . .

...
W W . . . W Σ1 Σ1 . . . Σ0


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Olkin (1973b) might be the first to discuss circular symmetry in blocks,
as an extension of the circularly symmetric model (the CT structure) con-
sidered by Olkin and Press (1969). Olkin (1973b) considered the following
block circular Toeplitz (BCT) structure:

ΣBC T =



Σ0 Σ1 Σ2 . . . Σ2 Σ1

Σ1 Σ0 Σ1 . . . Σ3 Σ2

Σ2 Σ1 Σ0 . . . Σ4 Σ3
...

...
...

. . .
...

...
Σ2 Σ3 Σ4 . . . Σ0 Σ1

Σ1 Σ2 Σ3 . . . Σ1 Σ0


, (2.12)

where every matrix Σi is a p × p symmetric matrix, and Σ0 is positive def-
inite. It can be shown that ΣBC T is invariant with respect to all orthogonal
transformations P (1)⊗I p , where P (1) is the SP matrix given in (2.7). The BCT
structure considered in Olkin (1973b) was justified by a physical model in
which signals are received at the vertices of a regular polygon. When the sig-
nal received at each vertex is characterized by p components, we may have
the assumption that the variation coming from each p component depends
only on the number of vertices in between. The problem is a “multivariate
version" of Example 1 in Chapter 1.

Nahtman (2006) and Nahtman and von Rosen (2008) studied symmetry
models arising in K-way tables, which contain k random factors γ1, . . . ,γk ,
where each factor γk takes value in a finite set of factor levels. In particular,
in the context of a 2-way layout model, Nahtman (2006) studied the covari-
ance structure, with a second-order interaction effect, expressed as

ΣBC S−C S = I u ⊗ [
aI p +b(J p − I p )

]+ (J u − I u)⊗ [
c I p +d(J p − I p )

]
. (2.13)

Nahtman (2006) has shown that the matrix in (2.13) is invariant with respect
to all orthogonal transformations P (2)

1 ⊗P (2)
2 . It is a special case of the BCS

structure when both Σ0 and Σ1 in (2.9) have the CS structures, whereas it
has the DCS structure in (2.10) as a special case.

As a follow up study, Nahtman and von Rosen (2008) examined shift per-
mutation in K-way tables. Among others in 2-way tables, it leads to the study
of the following block circular Toeplitz matrix with circular Toeplitz blocks
inside, denoted as BCT-CT structure:

ΣBC T−C T =
[u/2]∑
k2=0

[p/2]∑
k1=0

tk SC (u,k2)⊗SC (p,k1), (2.14)

where k = ( p
2 +1)k2+k1 and SC (•,•) is the symmetric circular matrix defined
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by (2.5). For example, when u = 4 and p = 4, we have

ΣBC T−C T =


Σ0 Σ1 Σ2 Σ1

Σ1 Σ0 Σ1 Σ2

Σ2 Σ1 Σ0 Σ1

Σ1 Σ2 Σ1 Σ0



=



τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4 τ6 τ7 τ8 τ7 τ3 τ4 τ5 τ4

τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5 τ7 τ6 τ7 τ8 τ4 τ3 τ4 τ5

τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4 τ8 τ7 τ6 τ7 τ5 τ4 τ3 τ4

τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3 τ7 τ8 τ7 τ6 τ4 τ5 τ4 τ3

τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4 τ6 τ7 τ8 τ7

τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5 τ7 τ6 τ7 τ8

τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4 τ8 τ7 τ6 τ7

τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3 τ7 τ8 τ7 τ6

τ6 τ7 τ8 τ7 τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4

τ7 τ6 τ7 τ8 τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5

τ8 τ7 τ6 τ7 τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4

τ7 τ8 τ7 τ6 τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3

τ3 τ4 τ5 τ4 τ6 τ7 τ8 τ7 τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1

τ4 τ3 τ4 τ5 τ7 τ6 τ7 τ8 τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2

τ5 τ4 τ3 τ4 τ8 τ7 τ6 τ7 τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1

τ4 τ5 τ4 τ3 τ7 τ8 τ7 τ6 τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0



.

It turns out that the BCT-CT structure in (2.14) is a special case of the BCT
structure where every matrix Σi in (2.12) is a p ×p CT matrix with [p/2]+1
parameters, i = 0, . . . , [u/2]. It has been shown by Nahtman and von Rosen
(2008) that ΣBC T−C T is invariant with respect to all orthogonal transforma-
tions P (1)

1 ⊗P (1)
2 , where P (1)

1 and P (1)
2 are two different SP matrices with sizes

u ×u and p ×p, respectively.

The study of the patterned covariance matrices with Kronecker struc-
ture Σ⊗Ψ, where Σ(p × p) and Ψ(q × q), has raised much attention in re-
cent years. Among others, this structure can be particularly useful to model
spatial-temporal dependency simultaneously, whereΣ is connected to tem-
poral dependency andΨmodels the dependency over space (see Srivastava
et al., 2009, for example). From an inferential point of view, the Kronecker
structure makes the estimation more complicated since the identification
problem should be resolved and some restrictions have to be imposed on
the parameter space. Then it results in non-explicit MLEs which depend
on the choice of restrictions imposed on the covariance matrix (Srivastava
et al., 2008).

One interesting extension is when there can be some patterns imposed
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on matrices Σ andΨ , e.g. the CS structure:

ΣC S−C S = Σ⊗Ψ= (
aI p +b(J p − I p )

)⊗ (
c I q +d(J p − I q )

)
,

= I p ⊗a
(
c I q +d(J p − I q )

)+ (J p − I p )⊗b
(
c I q +d(J p − I q )

)
.

Thus, it can be seen that ΣC S−C S is also connected to the BCS-CS structure
in (2.13).
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3. Explicit maximum likelihood
estimators in balanced models

One of the aims in this thesis is to discuss the existence of explicit MLEs
of the (co)variance parameters for the random effects model presented in
(1.2). Explicit estimators are often meaningful, because one can study basic
properties of the estimators straightforwardly such as the distributions of
estimators, without worrying about convergence problems as in the case of
numerical estimation methods. In this chapter, the results derived by Sza-
trowski (1980) regarding the existence of explicit MLEs for both means and
covariances in multivaraite normal models are presented. Szatrowski’s re-
sults are applicable when the data is balanced, and in this thesis only bal-
anced models are considered.

3.1 Explicit MLEs: Szatrowski’s results

A result by Szatrowski, which provides the necessary and sufficient condi-
tions for the existence of explicit MLEs for both means and (co)variance ma-
trices with linear structures, can be applied in the context of the following
general mixed linear model (Demidenko, 2004), of which model (1.2) is a
special case:

y = Xβ+Zγ+ε, (3.1)

where y : n × 1 is a response vector; matrices X : n ×m and Z : n × q are
known design and incidence matrices, respectively; β : m ×1 is a vector of
fixed effects; γ : q ×1 is a vector of random effects; and ε : n ×1 is a vector of
random errors. Moreover, we assume that E(γ) = 0, E(ε) = 0 and

V ar

(
γ

R

)
=

(
G 0
0 R

)
,

where G is positive semidefinite and R is positive definite. Under a normal-
ity assumption on ε, we have y ∼ Nn(Xβ,Σ), where Σ = Z G Z ′+R and Σ is
assumed to be nonsingular. Usually, the term Zγ in (3.1) can be partitioned
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as

Zγ= (Z 2, . . . , Z s)

 γ2
...
γs

 , (3.2)

where γi can be a main effects factor, a nested factor or an interaction ef-
fects factor. Let ni denote the number of levels of γi . If the dispersion of γi
is Var(γi ) =σ2

i I ni , for all i , and Cov(γi ,γ′
h) = 0, i 6= h, then

G = Diag(σ2
2I n2 , . . . ,σ2

s I ns ),

and R = σ2
1I n may also be assumed. Define γ1 = ε, n1 = n and Z 1 = I n .

The covariance matrix of y can be written as a linear structure in (2.1), i.e.
Σ=∑s

i=1θi V i , where V i = Z i Z ′
i . Since Σ is a function of θ, it is denoted by

Σ(θ), where θ comprise all unknown parameters in the matrices G and R .
In practice, the estimation of both β and θ is of primary interest. Sev-

eral estimation methods can be used, e.g. ML estimation and REML estima-
tion which both rely on the normal distributional assumption, analysis of
variance estimation (ANOVA) and minimum norm quadratic unbiased esti-
mation (MINQUE). We may also use Bayesian estimation, which starts with
prior distributions for β and θ and results in a posterior distribution of the
unknown parameters after observing the data.

The likelihood function for y, which is the function of β andΣ(θ) equals

L(β,θ|y)=(2π)−n/2|Σ(θ)|−1/2exp
[−(y−Xβ)′Σ(θ)−1(y−Xβ)/2

]
,

where | • | denotes the determinant of a matrix. Let X β̂ denote the MLE of
Xβ. Using the normal equation X ′Σ(θ)−1Xβ= X ′Σ(θ)−1y, we have

X β̂= X (X ′Σ(θ̂)−1X )−1X ′Σ(θ̂)−1y, (3.3)

where θ̂ is the MLE of θ.
For (3.3), several authors have discussed the conditions of loosening de-

pendence on θ (and hence θ̂) in X β̂; for example, see Zyskind (1967), Mitra
and Moore (1973) and Puntanen and Styan (1989). If X β̂ does not depend
on θ, then X β̂ results in an ordinary least square estimator (OLS) in model
(3.1).

According to the result in Szatrowski (1980), a necessary and sufficient
condition for

(X ′Σ(θ̂)−1X )−1X ′Σ(θ̂)−1 = (X ′X )−1X ′

is that there exists a subset of r orthogonal eigenvectors of Σ which form a
basis of C(X ), where r = rank(X ) and C(•) denotes the column vector space.
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Alternatively, one can state thatC(X ) has to beΣ-invariant in order to obtain
explicit estimators, i.e. β in (3.1) has explicit MLE if and only if C(ΣX ) ⊆
C(X ). Shi and Wang (2006) obtained an equivalent condition, namely P XΣ

should be symmetric, where P X = X (X ′X )−1X .
In the context of the growth curve model (Kollo and von Rosen, 2005,

Chapter 4), Rao (1967) have showed that for certain covariance structures,
the unweighted estimator (LSE) for the mean is the MLE. This fact was pre-
sented by Puntanen and Styan (1989) as an example. Consider the following
mixed model:

y = Xβ+Xγ+Zξ+ε, (3.4)

where Z is a matrix such that X ′Z = 0, γ, ξ and ε are uncorrelated random
vectors with zero expectations and covariance matrices Γ, C and σ2I , re-
spectively. In model (3.4) the covariance matrix of y belongs to the class of
so-called Rao’s simple covariance structure (Pan and Fang, 2002), i.e.,

Var(y) = XΓX ′+Z C Z ′+σ2I .

Now we are going to present Szatrowski’s result of explicit MLEs for
(co)variance parameters. The result assumes that the covariance matrix sat-
isfies a canonical form, i.e. there exists a value θ∗ ∈ Θ such that Σ(θ∗) = I ,
where Θ represents the parameter space, or can be transformed into this
form. Moreover, the following result given by Roebruck (1982) indicates that
the study of the spectral decomposition (or eigen-decomposition) of pat-
terned covariance matrices is crucial when finding explicit MLEs of the co-
variances.

Theorem 3.1.1 (Roebruck, 1982, Theorem 1) Assume that the matrix X is of
full column rank m. Model (3.1) has a canonical form if and only if there
exists a set of n linearly independent eigenvectors ofΣ(θ), which are indepen-
dent of θ and m of which span the column space of X .

The following theorem provides necessary and sufficient conditions for the
existence of explicit MLEs for the (co)variance parameters θ.

Theorem 3.1.2 (Szatrowski, 1980) Assume that the MLE of β has an explicit
representation and that V ’s inΣ=∑s

i=1θi V i are all diagonal in the canonical
form. Then, the MLE of θ has an explicit representation if and only if the
diagonal elements ofΣ consist of exactly s linearly independent combinations
of θ.

Note that Σ in Theorem 3.1.2 is diagonal due to the spectral decomposi-
tion. Hence, the diagonal elements of Σ are actually the eigenvalues of the
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original covariance matrix. Theorem 3.1.2 is essential when studying ex-
plicit MLEs of (co)variance parameters and hence has been referred to sev-
eral times in this thesis (Papers II-III). Illustrations of this result as well as
discussions can be found in (Szatrowski and Miller, 1980). For inference in
unbalanced mixed models, for example, see Jennrich and Schluchter (1986),
which described Newton-Raphson and Fisher scoring algorithms for com-
puting MLEs of β and Σ, and generalized EM algorithms for computing re-
stricted and unrestricted MLEs.

3.2 Spectral decomposition of pattern covariance matri-
ces

The importance of the spectral decomposition when making inference for
patterned covariance matrices has been noticed in many previous studies
(see Olkin and Press, 1969; Arnold, 1973; Krishnaiah and Lee, 1974; Sza-
trowski and Miller, 1980, for example). In this section we summarize the
spectral decompositions for different block covariance structures that are
used to derive explicit estimators. To be more accurate, here the term “spec-
tral decomposition" means not only eigenvalue decomposition but also eigen-
block (eigenmatrix) decomposition. The following eigenvalues or eigen-
blocks can be considered as the reparametrization of the original block struc-
tures and they are one-to-one transformations of the parameter spaces, which
play an important role in both estimation and construction of likelihood ra-
tio tests (see Chapter 4).

In order to present the results we will first define two orthogonal matri-
ces that will be used in the following various spectral decompositions. Let
K be a Helmert matrix, i.e. an u ×u orthogonal matrix such that

K u = (u−1/21u
...K 1), (3.5)

where K ′
11u = 0 and K ′

1K 1 = I u−1. Let V be another p×p orthogonal matrix
such that

V p = (v 1, . . . , v p ), (3.6)

where the vectors v 1, . . . , v p are the orthonormal eigenvectors of the CT ma-
trix in (2.3). For the derivation of the matrix V p , we refer readers to Basilevsky
(1983).

The CS matrix of size p ×p in (2.2) can be decomposed as

ΣC S = K p Diag(λ)K ′
p ,
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where Diag(λ) is a diagonal matrix with the diagonal elements a + (p −1)b
or a − b, i.e. the eigenvalues of the CS matrix. The CT matrix in (2.3) can
be decomposed asΣC T =V p Diag(λ)V ′

p , where Diag(λ) is a diagonal matrix
with the diagonal elements

λk =
p−1∑
j=0

t j cos

(
2π

p
(k −1)(p − j )

)
, k = 1, . . . , p, (3.7)

where t j is the element of ΣC T in (2.3).
In Chapter 2, we presented different block covariance structures as well

as their potential utilization. Now the spectral decompositions of those struc-
tures will be given, and the results are crucial from an inferential point of
view. The matrix in (2.9) can be block-diagonalized as follows (Arnold, 1979):

(K ′
u ⊗ I p )ΣBC S(K u ⊗ I p ) =

(
Σ0 + (u −1)Σ1 0

0 I u−1 ⊗ (Σ0 −Σ1)

)
, (3.8)

where Σ0 and Σ1 are the matrices given in (2.9). Here the matrices
Σ0 + (u −1)Σ1 and Σ0 −Σ1 are called eigenblocks.

The matrix in (2.13) can be diagonalized as follows (Nahtman, 2006):

(K ′
u ⊗V ′

p )ΣBC S−C S(K u ⊗V p ) = Diag(λ), (3.9)

where K u is given in (3.5), V p is given in (3.6), and Diag(λ) is a up ×up
diagonal matrix with elements

λ1 = a + (p −1)b + (u −1)
[
c + (p −1)d

]
,

λ2 = a −b + (u −1)(c −d) ,

λ3 = a + (p −1)b − [
c + (p −1)d

]
,

λ4 = a −b − (c −d) ,

of multiplicity

m1 = 1, m2 = p −1, m3 = u −1 and m4 = (u −1)(p −1),

respectively. It is seen from (3.9) that the eigenvalues of ΣBC S−C S can be
expressed as linear combinations of the eigenvalues of the blocks, when Σ0

and Σ1 are CS structures.
The matrix in (2.10) can be diagonalized as follows:

(K ′
u ⊗V ′

p )ΣDC S(K u ⊗V p ) = Diag(λ),

23



where K u is given in (3.5), V p is given in (3.6), and Diag(λ) is a up ×up
diagonal matrix with the elements

λ1 = a −b +p(b − c)+puc,

λ2 = a −b,

λ3 = a −b +p(b − c),

(3.10)

of multiplicity

m1 = 1, m2 = u(p −1) and m3 = u −1,

respectively. Additionally, we have the restriction c < b− b−a
p to preserve the

positive definiteness of ΣDC S .
The block diagonalization of the matrix ΣBDC S in (2.11) refers to the re-

sult of Roy and Fonseca (2012), and it has the following three distinct eigen-
blocks:

Λ1 = (Σ0 −Σ1)+u(Σ1 −W )+uvW ,

Λ2 =Σ0 −Σ1,

Λ3 = (Σ0 −Σ1)+u(Σ1 −W ),

(3.11)

of multiplicity 1, v(u−1) and v−1, respectively. Comparing (3.11) and (3.10),
similar structures can be observed, and (3.11) will degenerate to (3.10) when
both Σ0 and Σ1 are two different scalars instead of matrices.

The matrix in (2.12) can be block-diagonalized as follows (Olkin, 1973b):

(V ′
u ⊗ I p )ΣBC T (V u ⊗ I p ) = Diag(ψ1,ψ2, . . . ,ψu), (3.12)

where Diag(ψ1,ψ2, . . . ,ψu) is a block diagonal matrix with the matrices ψ j
which are positive definite and satisfy ψ j =ψu− j+2, j = 2, . . . ,u.

The matrix in (2.14) can be diagonalized as follows (Nahtman and von
Rosen, 2008):

(V ′
u ⊗V ′

p )ΣBC T−C T (V u ⊗V p ) =
[u/2]∑
k2=0

Diagk2
(λ)⊗DiagC T,k2

(λ), (3.13)

where Diagk2
(λ) is a diagonal matrix with the diagonal elements are the

eigenvalues of the symmetric circular matrix SC (u,k1) (as a special case of
the CT matrix) in (2.14), and DiagC T,k2

(λ) is another diagonal matrix with

the diagonal elements the eigenvalues of the CT matrix
∑[p/2]

k1=0 tk SC (p,k1),

where k = ( p
2 +1)k2 +k1.

Here a similar relationship between (2.9) and (2.13) can be observed
when comparing with (3.12) and (3.13). The eigenvalues of ΣBC T−C T is ex-
pressed as linear combinations of the eigenvalues of the blocksψ j whenψ j
in (3.12) has the CT structures, j = 1, . . . ,u.
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Seen from the spectral decompositions above, the patterned matrices
are either diagonalized or block-diagonalized by the orthogonal matrices,
which are not a function of the elements in those matrices, and which will
be very useful when connecting with other covariance structures, deriving
likelihood ratio tests as well as studying their corresponding distributions.
In this thesis, the spectra of our new block covariance structures have also
been obtained in a similar way, see the summary of Papers I-II in Chapter 5.
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4. Testing block covariance
structures

It is very often necessary to check whether the assumptions imposed on
various covariance matrices are satisfied. Testing the validity of covariance
structures is crucial before using them for any statistical analysis. Paper IV
in this thesis focuses on developing LRT procedures for testing certain block
covariance structures, as well as the (co)variance parameters of the block
circular Toeplitz structure. In this chapter we focus on the introduction of
the likelihood ratio test (LRT) procedure together with the approximations
of the null distributions of the LRT statistic following Box (1949).

4.1 Likelihood ratio test procedures for testing covari-
ance structures

4.1.1 Likelihood ratio test

LRT plays an important role in testing certain hypotheses on mean vectors
and covariance matrices under various model settings, for example ANOVA
and MANOVA models (Krishnaiah and Lee, 1980). This regards an LRT cri-
terion Λ for testing the mean µ and the covariance matrix Σ under the null
hypothesis H0 : Θ0 versus the alternative hypothesis Ha : Θ, assuming the
restricted parameter spaceΘ0 ⊂Θ, is constructed by

Λ= maxµ,Σ∈Θ0 L(µ,Σ)

maxµ,Σ∈ΘL(µ,Σ)
,

where max is the maximization function. The null hypothesis H0 is rejected
if Λ ≤ c, where c is chosen such that the significance level is α. It is well
known that under the null hypothesis H0, the quantity −2lnΛ is asymptot-
ically χ2 distributed with degrees of freedom equal to the difference in the
dimensionality ofΘ0 andΘ.

When the multivariate normality assumption is assumed, there is a com-
prehensive study of likelihood ratio procedures for testing the hypotheses of
the equality of covariance matrices, and the equality of both covariance ma-
trices and mean vectors (e.g. see Anderson, 2003, Chapter 10). The study of

27



testing the block CS covariance matrix can be traced back to Votaw (1948).
He extended the testing problem of CS structure (Wilks, 1946) to the “block
version" and developed LRT criteria for testing 12 hypotheses, e.g. the hy-
pothesis of the equality of means, the equality of variances and the equality
of covariances, which were applied to certain psychometric and medical re-
search problems. Later Olkin (1973b) considered the problem of testing the
circular Toeplitz covariance matrix in blocks, which is also an “block" exten-
sion of the previous work by Olkin and Press (1969).

Besides LRT, Rao’s score test (RST) has also been discussed in the litera-
ture, and for RST we only need to exploit the null hypothesis, i.e. calculate
the score vector and Fisher information matrix evaluated at the MLEs under
the null hypothesis. Chi and Reinsel (1989) derive RST for a AR(1) struc-
ture. Computationally intensive procedures for testing covariance struc-
tures have also been developed, such as parametric bootstrap tests and per-
mutation tests.

4.1.2 Null distributions of the likelihood ratio test statistics and Box’s
approximation

As mentioned above, it is well known that the asymptotic null distribution of
−2lnΛ is a χ2-distribution with degrees of freedom equal to the difference
in dimensionality ofΘ andΘ0, see Wilks (1938), for example.

However, in many situations with small sample sizes, the asymptotic χ2

distribution is not an adequate approximation. One way to improve the χ2

approximation of the LRT statistic is the Box’s approximation. Box (1949)
provided an approximate null distribution of −2lnΛ in terms of a linear
combination of centralχ2 distributions. Once the moments of the LRT statis-
ticΛ (0 ≤Λ≤ 1) is derived in terms of certain functions of Gamma functions,
then Box’s approximation can be applied. The result of Box can be expressed
as follows:

Theorem 4.1.1 (Anderson, 2003, p.316) Consider a random variable Λ(0 ≤
Λ≤ 1) with s-th moment

E(Λs) = K

∏b
j=1 y

y j

j∏a
k=1 xxk

k

s ∏a
k=1Γ[xk (1+ s)+δk ]∏b
j=1Γ[y j (1+ s)+η j ]

, s = 0,1, . . . ,

where K is a constant such that E(Λ0) = 1 and
∑a

k=1 xk =∑b
j=1 y j . Then,

P (−2ρ lnΛ≤ t ) = P (χ2
f ≤ t )+O(n−2),
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where O(n−2) denotes any quantity that if there exist M and n0, |O(n−2)/n−2| <
M for all n > n0,

f =−2

[
a∑

k=1
δk −

b∑
j=1

η j − a −b

2

]
,

and ρ is the solution of

a∑
k=1

B2(βk +δk )

xk
=

b∑
j=1

B2(ε j +η j )

y j
,

where βk = (1−ρ)xk , ε j = (1−ρ)y j and B2 is the Bernoulli polynomial of
degree 2, i.e. B2(x) = x2 −x +1/6.

Many LRT statistics concerning testing in multivariate normal models
have the moments expressed in the form given of Theorem 4.1.1 and they
have the null distributions expressed in terms of the products of indepen-
dent beta random variables, for example, when testing the equality of sev-
eral mean vectors, the equality of several covariance matrices or the spheric-
ity of the covariance matrix (Muirhead, 1982; Anderson, 2003) as well as test-
ing circularity of the covariance matrix (Olkin and Press, 1969; Olkin, 1973b).

4.2 F test and likelihood ratio test of variance compo-
nents

Exact tests for testing variance components started from Wald (1941, 1947).
He derived exact tests for one-way and two-way cross-classification mod-
els without interactions. Seely and El-Bassiouni (1983) considered exten-
sions of Wald’s variance component test in context of ordinary mixed linear
models and provided necessary and sufficient conditions for the test pro-
posed by Wald to be applicable. Later Gallo and Khuri (1990) presented
exact tests concerning the variance components in the unbalanced two-
way cross-classification model. Öfversten (1993) presented two kinds of
exact F-tests for variance components in unbalanced mixed linear models
for which derivation was based on a preliminary orthogonal transformation
and a subsequent resampling procedure.

It has been noticed that zero-variance hypothesis is not a standard test-
ing problem since the hypothesis is on the boundary of the parameter space.
Self and Liang (1987) derived a large sample mixture of chi-square distri-
butions of LRT using the usual asymptotic theory for a null hypothesis on
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the boundary of the parameter space. Crainiceanu and Ruppert (2004) de-
veloped finite samples and asymptotic distributions for both LRT and re-
stricted LRT concerning mixed linear models with one variance component.

Some of the hypotheses of testing (co)variance parameters in Paper IV
of this thesis are also on the boundary of the parameter space. The tests we
have constructed which are based on the likelihood ratios, however, do not
need any restrictions on the parameter space of the (co)variance parame-
ters. Srivastava and Singull (2012) considered hypothesis testing for a paral-
lel profile model with a CS random-effects covariance structure ΣC S , given
in (2.2), and it has been clarified that only the distinct eigenvalues of ΣC S

are necessary to be estimated rather than the original (co)variance parame-
ters. Moreover, Srivastava and Singull (2012) concluded that the restriction
of the positiveness of the variance parameter is unnecessary when dealing
with hypothesis testing.

For some of the testing problems for the (co)variance parameters con-
sidered in this thesis, it can be shown that to test each hypothesis of interest
requires nothing but testing the equality of several variances. In this case, we
can rely on existing methods such as Bartlett’s test (Bartlett, 1937). However,
there are some tests where the testability (identifiability) problem has to be
investigated carefully before a test can be constructed, see the summary of
Paper IV in Chapter 5.
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5. Summary of papers

The results in this thesis consist of the derivation of specific block covari-
ance structures and more importantly, the inferential results of multivariate
normal models with block circular Toeplitz structures. In this chapter, the
main results will be highlighted across relevant sections.

5.1 Paper I: Block circular symmetry in multilevel mod-
els

Compound symmetry and circular symmetry are two different ways to model
data. Considering the situations of Examples 4 and 5, when they appear si-
multaneously, what is the corresponding covariance structure in order to
characterize this type of dependency?

Paper I deals with a particular class of covariance matrices that are in-
variant under two types of orthogonal transformations, P (2) ⊗ P (1) and
P (1) ⊗ P (2), where P (2) is any permutation matrix and P (1) is any
shift-permutation matrix given in (2.7). It was shown that the two orthogo-
nal actions imply two different block symmetric covariance structures. The
following necessary and sufficient conditions reveal the corresponding co-
variance structures.

Theorem 5.1.1 (Theorem 3.3, Paper I, p.10) The covariance matrix Σ21 :
n2n1 ×n2n1 is invariant with respect to all orthogonal transformations de-
fined by P 21 = P (2) ⊗P (1), if and only if it has the following structure:

Σ21 = I n2 ⊗
[n1/2]∑
k1=0

τk1 SC (n1,k1)+ (J n2 − I n2 )⊗
[n1/2]∑
k1=0

τk1+[n1/2]+1SC (n1,k1),(5.1)

where τk1 and τk1+[n1/2]+1 are constants, and the matrices SC (n1,k1) are sym-
metric circular matrices defined in (2.5), k1 = 0, . . . , [n1/2].

Theorem 5.1.2 (Theorem 3.5, Paper I, p.14) The covariance matrix Σ12 :
n2n1 ×n2n1 is invariant with respect to all orthogonal transformations de-
fined by P 12 = P (1) ⊗P (2) if and only if it has the following structure:

Σ12 =
[n2/2]∑
k2=0

[
SC (n2,k2)⊗Σ(k2)

]
, (5.2)
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whereΣ(k2) = τk2 I n1+τk2+[n2/2]+1(J n1−I n1 ),τk2 and τk2+[n2/2]+1 are constants.
SC (n2,k2) is the symmetric circular matrix given in (2.5).

The results given above are useful for characterization of the depen-
dency in the context of multivariate two-level data. The structureΣ21 in (5.1)
extends the covariance structures given by (2.9) and considers CT structures
in each block, while the structureΣ12 in (5.2) is an extension of the structure
in (2.12) when the CS structure is imposed in each block. The structures are
also called mixed block structures, and the terminology “mixed block" refers
to combining two different invariant properties, which was introduced by
Barton and Fuhrmann (1993) when describing the dependency of array sig-
nal processing data.

Moreover, in Paper I we also demonstrated the relationship between
these two structures by utilizing the commutation matrix (Kollo and von
Rosen, 2005, Definition 1.3.2, p.79), which is used to relabel observations,
see Theorem 3.7, Paper I, p.17. This simplifies the situation when discussing
estimation of the model parameters since it is enough to consider only one
covariance structure, which will beΣ21 in the follow-up statistical inferential
studies, Papers II-IV. It is worth noting that even though this thesis is inter-
ested in multivaraite two-level data, it does not have to be nested in order to
use the derived covariance structures.

The spectra, i.e. the set of eigenvalues of the two types of block circu-
lar symmetric covariance matrices are also obtained. Moreover, it can be
seen that the two matrices Σ21 and Σ12 have the same spectra since they
are similar matrices. The spectral property of the covariance matrix given in
Theorem 5.1.1 can be derived directly by using the following theorem.

Theorem 5.1.3 (Theorem 4.1, Paper I, p.21) Let the covariance matrix Σ21 :
n2n1 × n2n1 have the structure obtained in Theorem 5.1.1. Let λ(i )

h be the

eigenvalue of Σ(i ) : n1 ×n1 with multiplicity mh , i ,= 1,2,h = 1, . . . , [n1/2]+1.
The spectrum ofΣ21 consists of the eigenvalues λ(1)

h −λ(2)
h , each of multiplicity

(n2 − 1)mh , and λ(1)
h + (n2 − 1)λ(2)

h , each of multiplicity mh . The number of
distinct eigenvalues is 2([n1/2]+1).

The novelty of our results concerning the spectra of block circular sym-
metric matrices is that the eigenvalues of these block matrices can be ex-
pressed as linear combinations of the eigenvalues of the blocks instead of
direct calculations using the matrix elements. The provided results describe
the eigenvalues of patterned covariance matrices in a systematic way. Dur-
ing the proof, we use such properties as commutativity and simultaneous
diagonalization, i.e. if two normal matrices commute then they have a joint
eigenspace and can be diagonalized simultaneously. The multiplicities of
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eigenvalues, and the number of distinct eigenvalues of the two types of pat-
terned covariance structures presented in Theorems 5.1.1-5.1.2, are also given.

5.2 Paper II: On estimation in multilevel models with block
circular symmetric covariance structure

Paper II considers the MLE of parameters in model (1.2) when the covari-
ance matrix Σ in (1.3) is block circular symmetric with CS patterned blocks.
As noted in Chapter 1, this covariance structure can be used to characterize
data with the features of circularity and exchangeability. The derived results
can be considered as a complement to earlier works (Olkin and Press, 1969;
Olkin, 1973b) in the sense of studying the estimation of a new type of multi-
variate two-level data together with circular symmetric models.

Recall the covariance matrix Σ in model (1.2). The next example illus-
trates a block covariance structure Σ in (1.3) when n2 = 3 and n1 = 4, where
n2 and n1 are the number of factor levels for γ1 and γ2, respectively.

Example 6 Suppose a measurement is made at each of n1 factor levels among
n2 factor levels and assume there are n independent units available. When
n2 = 3 and n1 = 4, for each unit, the covariance matrix Σ : 12×12 in (1.3) has
the following form:

Σ = I 3 ⊗


σ2 +σ1 +τ1 σ1 +τ2 σ1 +τ3 σ1 +τ2

σ1 +τ2 σ2 +σ1 +τ1 σ1 +τ2 σ1 +τ3

σ1 +τ3 σ1 +τ2 σ2 +σ1 +τ1 σ1 +τ2

σ1 +τ2 σ1 +τ3 σ1 +τ2 σ2 +σ1 +τ1



+ (J 3 − I 3)⊗


σ2 +τ4 σ2 +τ5 σ2 +τ6 σ2 +τ5

σ2 +τ5 σ2 +τ4 σ2 +τ5 σ2 +τ6

σ2 +τ6 σ2 +τ5 σ2 +τ4 σ2 +τ5

σ2 +τ5 σ2 +τ6 σ2 +τ5 σ2 +τ4

 , (5.3)

where the diagonal blocks represent the 4× 4 variances and covariances of
the 4 measurements coming from the same level of γ1 and the off-diagonal
blocks represent the 4×4 covariances of the 4 measurements between any pair
of levels of γ1.

The spectral properties of block circular symmetric covariance matrixΣ
with patterned blocks are derived. We also give the actual number of all dis-
tinct eigenvalues and their expressions. The covariance matrix Σ of model
(1.2) given in (1.3) is a sum of three symmetric matrices Z 1Σ1Z ′

1, Σ2 and
σ2I p , which has been shown to commute (see Lemma 2.1, Paper II), and
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hence can be simultaneously diagonalized. This fact is utilized to obtain the
eigenvalues of Σwhich are presented in the next theorem.

Theorem 5.2.1 (Theorem 3.1, Paper II, p.89) Let the matrix Σ be defined as
in (1.3). There exists an orthogonal matrix Q = K ⊗V such that Q ′ΣQ = D ,
where K and V are defined in (3.5) and (3.6), respectively, and D is a diagonal
matrix containing the eigenvalues of Σ. Moreover,

D = Diag
(
D1, I n2−1 ⊗D2

)
,

where

D1 = Diag (σ2 +n1a +n1(n2 −1)b +λ11,σ2+λ12, . . . ,σ2+λ1n1 ),

D2 = Diag (σ2 +n1(a −b)+λ21,σ2 +λ22, . . . ,σ2 +λ2n1 ),

and λi h are the eigenvalues given in Theorem 5.1.3, i = 1,2, h = 1, . . . ,n1.

By using the spectral decomposition, it is shown to be a covariance ma-
trix with a linear structure (Anderson, 1973). The spectral decomposition of
Σ has been utilized to obtain explicit MLEs for the mean parameter µ and
the covariance matrix Σ. Recall the mean structure of model (1.2), i.e. 1pµ,
and we have that C(Σ1p ) = C(1p ) holds. According to the result presented
in Szatrowski (1980), the MLE of µ is just the average of the total np obser-
vations. The MLE for Σ has been derived through the MLEs of the distinct
eigenvalues of Σ, see Theorem 4.1, Paper II, p.93.

Under the existence of the explicit MLE of µ, our main concern is the
existence of the explicit MLE of the (co)variance parameters contained in
Σ, denoted as θ. According to Theorem 3.1.2, it is noted that explicit MLEs
for r (co)variance parameters in the balanced linear model exist if and only
if all distinct eigenvalues of Σ are r linearly independent combinations of
(co)variance parameters. We proved that the difference between the num-
ber of distinct eigenvalues of Σ and the number of unknown (co)variance
parameters equals 3, i.e.,

Σ= Z 1Σ1Z ′
1︸ ︷︷ ︸

2 parameters

+ Σ2︸︷︷︸
2r parameters

+ σ2I︸︷︷︸
1 parameter

. (5.4)

Thus, there are 2r +3 unknown parameters in Σ, whereas there are only
2r distinct eigenvalues of Σ (see Table 5.1), where r = [n1/2]+1 and [•] de-
notes the integer function. Therefore, explicit MLEs for all (co)variance pa-
rameters do not exist in the considered model.
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Table 5.1. Distinct eigenvalues ηi of Σ given in (1.3) with corresponding
multiplicities mi .

mi

ηi odd n1 even n1

η1 1 1
η2, . . . ,η[

n1
2 ]+1 2 2, η n1

2
has multiplicity 1.

η[
n1
2 ]+2 n2 −1 n2 −1

η[
n1
2 ]+3, . . . ,η2([

n1
2 ]+1) 2(n2 −1)

2(n2 −1), ηn1+1 has
multiplicity n2 −1.

At the end of this paper, we claim that the only possibility to obtain ex-
plicit MLEs is to put constraints on elements of Σ and consider a constraint
model. The choice of different constraints should be considered in detail,
for example, these constraints should not violate the invariance assump-
tion.

5.3 Paper III: On estimation in hierarchical models with
block circular covariance structures

Paper III concerns the explicit MLEs of the (co)variance parameters in model
(1.2) with a block circular covariance structure, which is the natural con-
tinuation of Paper II. As noted from (5.4) the model has three (co)variance
parameters more than distinct eigenvalues of the covariance matrix Σ, and
we have to put at least three restrictions on the parameter space to estimate
θ uniquely (and in this case explicitly). Besides guaranteeing the identifi-
ability of the (co)variance parameters, the challenge we face is to preserve
the mixed block structure of Σ when constraining some of the parameters,
which is the main concern of Paper III.

We refer again to Theorem 3.1.2, when the set of covariance parameters
can be parameterized by a linear function of canonical parameters, and the
number of θ equals the number of distinct eigenvalues η in Σ, the MLE for
θ has an explicit expression, which is obtained by solving the linear system
η= Lθ, where L is a non-singular coefficient matrix representing how η can
be expressed by θ.

Theorem 5.3.1 (Theorem 1, Paper III) Let η be a vector of the 2r distinct
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eigenvalues of Σdefined in(1.3). Then η can be expressed as:

η = Lθ,

where

L = (B 1
... B 2),

and

B 1 =


1 n1 n1(n2 −1)
1r−1 0r−1 0r−1

1 n1 −n1

1r−1 0r−1 0r−1

 , B 2 =
(

A (n2 −1)A
A − A

)
,

0r−1 is a column vector of size r −1 with all elements equal to zero, and A =(
ai j

)
is a square matrix of size r with

ai j =
{

2I (1< j<r ) cos(2π(i −1)(n1 − j +1)/n1), if n1 is even,

2I (1< j≤r ) cos(2π(i −1)(n1 − j +1)/n1), if n1 is odd.
(5.5)

where I (·) is the indicator function and i , j = 1, . . . ,r .

It is worth observing that the matrix L : (2r +3)×2r is of rank r (L) = 2r .
Our task is to put some restrictions on θ in (5.5), i.e. Kθ = 0, which is equiva-
lent to θ = (K ′)oθ∗, where (K ′)o: (2r +3)×2r is a matrix from which columns
generate the orthogonal complement to the column vector space of K ′ and
θ∗i : 2r × 1 is the vector of unknown covariance parameters in model (1.2).
Hence, η = Lθ = L(K ′)oθ∗. If L(K ′)o is invertible then θ∗ can be estimated,
which can be obtained by θ̂

∗ = (L(K ′)o)−1η̂.
We utilize the fact that η in (5.5) is not only a function of unknown co-

variance parameters in θ, η=η(θ), but also a function of the distinct eigen-
values

λΣ1 = (λΣ1
1 ,λΣ1

2 ),λΣ2 = (λΣ2
11 , . . . ,λΣ2

1r ,λΣ2
21 , . . . ,λΣ2

2r ), and λI

of Σ1 in (1.4), Σ2 in (1.5) and σ2I , respectively, i.e. η=η(λΣ1 ,λΣ2 ,λI ):

ηi =λI +n1λ
Σ1

h I (i ∈ {1,r +1})+λΣ2

h j ,

where h = 1+ I (i ≥ r +1), j = i − r (h −1) and i = 1, . . . ,2r .

It turns out that instead of putting constraints on θ, it is reasonable to
impose constraints on the eigenvalues of the covariance matrices of γ1 and
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γ2, i.e. Σ1 and Σ2. Hence we have the following model restrictions, which
are called Scenario 1 and Scenario 2:
Scenario 1: One constraint is imposed on the spectrum of Σ1 and two con-
straints on the spectrum of Σ2. The two possibilities for imposing con-
straints are given by

(i) λΣ1
g = 0, λΣ2

g 1 = 0 and λ
Σ2

h1 = 0, g ,h ∈ {1,2}, g 6= h;

(ii) λΣ1
g = 0, λΣ2

h1 = 0 and λ
Σ2
i j = 0, g ,h, i ∈ {1,2}, g 6= h, j ∈ {2, . . . ,r }.

Scenario 2: Three constraints are imposed on the spectrum of Σ2:

(iii) λΣ2
g 1 = 0 and λ

Σ2

h j = 0, g = 1,2, h ∈ {1,2}, j ∈ {2, . . . ,r }.

Using the relationship between the eigenvalues λΣ2 of Σ2 and the ele-
ments of Σ2 (see Paper II, Corollary 2.6), with the three different conditions
in (i)-(iii), the matrix K i in K iθ = 0 can be expressed explicitly, where

K 1 =
 0 1 (n2 −1) 0r 0r

0 0 0 a1 (n2 −1)a1

0 0 0 a1 −a1

 , (5.6)

K 2 =
 0 1 (n2 −1) 0r 0r

0 0 0 a1 −a1

0 0 0 a j −(1−n2)2−h a j

 , (5.7)

K 3 =
 0 0 0 a1 (n2 −1)a1

0 0 0 a1 −a1

0 0 0 a j −(1−n2)2−h a j

 , (5.8)

and a1: r ×1 and a j: r ×1 are the corresponding rows of the matrix A defined
via (5.5), h ∈ {1,2} and j ∈ {2, . . . ,r }.

In order to have a better understanding of the meaning of the restric-
tions, their implications on the factors γ1 and γ2 in model (1.2) has been
studied.
Scenario 1: (alternative formulation)
(iv) 1′

n2
γ1=0, 1′

pγ2=0 and (v ⊗1n1 )′γ2=0;

(v) 1′
n2
γ1=0, (v ⊗1n1 )′γ2=0 and (v h−1 ⊗v j )′γ2=0, h∈{1,2}, j ∈{2, . . . ,r }.

Scenario 2: (alternative formulation)
(vi) (v g−1⊗1n1 )′γ2=0 and (v h−1⊗v j )′γ2=0, g =1,2, h ∈{1,2}, j ∈ {2, . . . ,r }.

The obtained alternative formulations of Scenarios 1-2 are advantageous
since it is clearly seen that when imposing the restrictions on the eigen-
values of Σ1 and Σ2, the corresponding eigenvectors will specify the con-
straints to be imposed on the corresponding factors, which are easily inter-
pretable, and the original symmetry assumptions will be preserved. Naht-
man (2006) studied the reparametrization constraints in linear models and
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demonstrated that in the presence of permutation invariance the classical
“sum-to-zero" reparametrization condition of a random factor can be ex-
pressed through the spectrum of the corresponding covariance matrix.

Finally, we give the following sufficient conditions for obtaining explicit
MLEs of θ:

Theorem 5.3.2 Model (1.2) has explicit and unique MLEs for θ if one of the
conditions (i)–(iii) given in Scenarios 1-2 holds.

The MLEs for the vector of the unknown parameters θ∗i in model (1.2)
under any restriction given by Scenario 1 or Scenario 2 are the following

θ̂
∗
i = (L(K ′

i )o)−1η̂, (5.9)

where K i is given in (5.6)–(5.8). We have also shown that the estimator θ̂
∗
i ,

i = 1,2,3, is a linear combination of independent χ2-distributed random
variables.

It is seen from (5.9) that the MLE θ̂
∗
i is a linear function of η̂, which are

independently χ2 distributed random variables, see Proposition 1, Paper III.
Hence, the distribution of each element in θ̂

∗
i will be correspondingly a lin-

ear function of independent χ2 distributions. The distributional property
of Chi-squareness can also be utilized when dealing with hypothesis testing
problems.

5.4 Paper IV: Testing in multivariate normal models with
block circular covariance structures

As mentioned at the beginning (Chapter 1), this thesis aims to study both
estimation and hypothesis testing of a block circular Toeplitz covariance
structure for multivariate two-level data. In Paper IV, we have focused on
the problem of hypothesis testing, including so-called external tests and in-
ternal tests.

5.4.1 External tests

Consider

Y = (y1,y2, . . . ,yn) ∼ Np,n((1n2 ⊗µ)1′
n ,Σ, I n), (5.10)

where Np,n((1n2 ⊗µ)1′
n ,Σ, I n) denotes the p ×n matrix normal distribution

with mean matrix (1n2 ⊗µ)1′
n and p ×p covariance matrix between rows Σ

and n independent columns.
Three specific structures of Σ, namely, ΣI , ΣI I and ΣI I I , were of interest

when dealing with hypothesis testing.
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(i) ΣI = I n2 ⊗Σ(1)+(J n2 −I n2 )⊗Σ(2), whereΣ(h) : n1×n1 is an unstructured
matrix, h = 1,2.

(ii) ΣI I = I n2 ⊗Σ(1) + (J n2 − I n2 ) ⊗Σ(2), where Σ(h), h = 1,2, is a CT ma-
trix which depends on r parameters, r = [n1/2]+1, and the symbol [•]
stands for the integer part. For simplicity, the CT matrices can be writ-
ten as

Σ(1) = Toep(τ1,τ2,τ3, . . . ,τ2),

Σ(2) = Toep(τr+1,τr+2,τr+3, . . . ,τr+2).

(iii) ΣI I I = I n2 ⊗Σ(1) + (J n2 − I n2 )⊗Σ(2), where Σ(h), h = 1,2, is a CS matrix
and can be written as Σ(h) =σh1I n1 +σh2(J n1 − I n1 ).

Observing that the number of unknown parameters in ΣI , ΣI I and ΣI I I are
n1(n1+1), 2r and 4, respectively. We are first interested testing both meanµ
and a block structure of Σ simultaneously.

H 0
1 :µ=µ1n1 ,Σ=ΣI I versus H a

1 :µ ∈Rn1 ,Σ=ΣI ,

H 0
2 :µ=µ1n1 ,Σ=ΣI I I versus H a

2 :µ ∈Rn1 ,Σ=ΣI .

Furthermore, the following hypotheses about patterned covariance matri-
ces, i.e.,

H 0
3 :Σ=ΣI I I versus H a

3 :Σ=ΣI I , given µ=µ1n1 ,

H 0
4 :Σ=ΣI I versus H a

4 :Σ=ΣI , given µ ∈Rn1 ,

H 0
5 :Σ=ΣI I I versus H a

5 :Σ=ΣI , given µ ∈Rn1 ,

or patterned means, i.e.,

H 0
6 :µ=µ1n1 versus H a

6 :µ ∈Rn1 , given Σ=ΣI I ,

H 0
7 :µ=µ1n1 versus H a

7 :µ ∈Rn1 , given Σ=ΣI I I ,

can be of interest in various applications.
The LRT statisticsΛi for testing the null hypotheses H 0

i versus the alter-
native hypotheses H a

i , i = 1, . . . ,7, have been derived. We have also shown
that under the null hypothesis H 0

i , the distribution of Λi has the same dis-
tribution as a product of independent Beta random variables. Here we only
present the results for the first testing situation; the other results of the ex-
ternal test are referred to in Paper IV.

Theorem 5.4.1 (Theorem 3.1, Paper IV) Let Y be defined in (5.10) and K in
(3.5). Put

X 1 = (n−1/2
2 1′

n2
⊗ I n1 )Y , X 2 = (K ′

1 ⊗ I n1 )Y , X ′
2 = (X ′

21, . . . , X ′
2(n2−1)).
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The LRT statistic for testing H 0
1 versus H a

1 is given by

Λ2/n
1 = 2n2(n1−1−1even) |S1| |S2|n2−1

t21

r∏
i=2

t mi

1i

2r∏
i=r+1

t mi

2i

, (5.11)

where 1even is the indicator function that n1 is even, S1 = X 1Qn X ′
1,

S2 = ∑n2−1
i=1 X 2i X ′

2i , t1i = tr((X 1X ′
1)(v i v ′

i + v n1−i+2v ′
n1−i+2)), t21 = tr(S1P n1 ),

t2,r+i = tr(S2(v i v ′
i +v n1−i+2v ′

n1−i+2)), i = 2, . . . ,r −1, and for i = r ,

t1r =
{

tr((X 1X ′
1)(v r v ′

r +v n1−r+2v ′
n1−r+2)), if n1 is odd,

tr((X 1X ′
1)(v r v ′

r )), if n1 is even,

t2,2r =
{

tr(S2(v r v ′
r +v n1−r+2v ′

n1−r+2)), if n1 is odd,

tr(S2v r v ′
r ), if n1 is even.

Theorem 5.4.2 (Theorem 3.4, Paper IV) Under the null hypothesis H 0
1 , the

distribution ofΛ1, given in (5.11), follows

Λ2/n
1

d∼
n1−1∏
i=1

B1i B n2−1
2i , (5.12)

where B1i and B2i are independent distributed, i = 1, . . . ,n1 −1,

B1i ∼
{
β( n−i−1

2 , i+1
2 ), for i = 1, . . . , [n1/2],

β( n−i−1
2 , i+2

2 ), for i = [n1/2]+1, . . . ,n1 −1,

B2i ∼
{
β( n(n2−1)−i

2 , i
2 ), for i = 1, . . . , [n1/2],

β( n(n2−1)−i
2 , i+1

2 ), for i = [n1/2]+1, . . . ,n1 −1.

Based on the null distribution of each test statistic, the asymptotic ex-
pansion for the distribution function of LRT statistic as given by Box (1949)
can be given.

5.4.2 Internal test

In this section, we consider testing hypotheses about (co)variance parame-
ters of Σ in model (1.2).

Our main concern is devoted to the discussion of the testability con-
cerning the (co)variance parameters of V (θ) in model (1.2). Here we change
the notation in order to distinguish withΣ in model (5.10). The testability of
the fixed effects in the framework of the linear model has been investigated
see Roy and Roy (1959) and Das Gupta (1977), for example. However, the
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testability of the random effects is rarely paid attention to and has even not
been well defined. Here, the testability is only restricted to the “possibility"
of testing (co)variance parameters, which can be done through the linear
restrictions of the eigenvalues of V (θ). Our underlying idea is to make use
of the knowledge of the eigenvalues of Σ, i.e. η in Table 5.1, when develop-
ing the test procedures concerning the three restricted models Mi given by
Paper III, i = 1,2,3.

We consider the hypothesis testing problems ofΣ1 andΣ2 separately for
each restricted model M1, M2 and M3. In model M1 and M2 we will test

H01 :σ2 = 0 versus Ha1 :σ2 < 0,

and in M3 we will test

H02 :σ2 = 0 versus Ha2 : − σ1

n2 −1
≤σ2 ≤σ1.

The hypothesis H01 implies that there is no random effect γ1 in model M1

and M2, while the hypothesis H02 means that the factor levels of γ2 are un-
correlated.

Then, testing H01 versus Ha1 in model M1 is equivalent to testing

H01,M1
: η1 = ηr+1 versus Ha1,M1

: η1 < ηr+1, (5.13)

and testing H01 versus Ha1 in model M2 is equivalent to testing

H01,M2
: ηl = ηr+1 versus Ha1,M2

: ηl < ηr+1, (5.14)

for some l ∈ {2, . . . ,r,r +2, . . . ,2r } .

In model M3, testing H02 versus Ha2 is equivalent to testing

H02 : η1 = ηr+1 versus Ha2 : η1 6= ηr+1. (5.15)

Concerning the covariance matrix Σ2 in (1.5), we will test for M1, M2

and M3

H03 : τ1 = 0 versus Ha3 : τ1 6= 0.

The hypothesis H03 means that there is no random effect γ2 in all restricted
models, and it implies that testing H03 versus Ha3 in the restricted models
M1 and M2 is equivalent to testing

H03,Mi
: ηl =σ2 versus Ha3,Mi

: none of ηl is equal, i ∈ {1,2} , l 6= r +1,(5.16)

and in model M3, the testing problem can be formulated as

H03,M3
: ηl =σ2 versus Ha3,M3

: none of ηl is equal, l 6= 1,r +1. (5.17)
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It can be observed that the hypotheses H01 and H03 are on the bound-
aries of the parameter space, since we haveσ1 =−(n2−1)σ2, whereσ1 is the
variance ofΣ1, and τ1 is the variance ofΣ2. The derived results above are es-
sential since it shows that the original parameter spaces of the (co)variance
parameters do not need to be taken into account, and it indicates that test-
ing the hypotheses of H01, H02 and H03 is nothing but testing the equality
of several distinct eigenvalues which are in fact the variances in the context
of the canonical form of model (1.2), see (5.13)-(5.17). Hence we can con-
struct Bartlett’s test statistics (or other alternatives for testing the equality of
variances) and the results are given in Section 4, Paper IV.
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6. Concluding remarks,
discussion and future research

6.1 Contributions of the thesis

The main contribution of this thesis is that a new block covariance structure
for characterizing the dependency of specific multivariate two-level data
has been introduced, and inferential results including both explicit MLEs
and hypothesis testing have been obtained. The contributions of each pa-
per are summarized as follows:

• In Paper I, two patterned covariance matrices are derived under spe-
cific invariance assumption. The derivation extends the specification
of covariance structures within the group invariance framework and
the spectra of the two types of patterned covariance matrices are ob-
tained.

• A random effects model with a block circular Toeplitz covariance struc-
ture is considered in Paper II. The spectral properties of the corre-
sponding covariance matrix are derived and the canonical parame-
ters can be expressed as linear functions of (co)variance parameters.
It is proved that explicit MLEs of (co)variance parameters do not exist
without imposing constraints on the parameter space.

• The discussion of explicit estimation in model (1.2) with block circu-
lar Toeplitz covariance structures is continued in Paper III. Sufficient
conditions for obtaining explicit estimators of (co)variance compo-
nents are derived. The advantage of this approach is that the corre-
sponding eigenvectors will specify the constraints to be imposed on
the factor, which are usually interpretable, at the same time keeping
the original symmetry assumptions.

• Hypothesis testing for the nested multivariate normal models with
block circular covariance structures is discussed in Paper IV. Tests con-
cerning the general block structures of the covariance matrix (external
tests) and tests for specific (co)variance components (internal tests)
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are constructed. Likelihood ratio test (LRT) statistics and the corre-
sponding null distributions are obtained.

6.2 Discussion

The aims of this thesis have been considered and discussed across relevant
papers.

Szatrowski’s result of explicit MLEs of (co)variance parameters is condi-
tioned at the existence of the explicit MLE of the mean parameters, which
indicates that for a classical mixed linear model in (3.1), the column space
of X must be Σ-invariant. This is not a trivial condition for any mean struc-
ture, for example, in the growth curve model. The general bilinear mean
structure ABC , where A, C are known matrices and B is a matrix containing
the unknown mean parameters, does not preserve theΣ-invariant property
unless some conditions are imposed on the matrix A.

Choosing appropriate restrictions on the parameters θ for model (1.2)
may sometimes be a difficult task as discussed in Paper III. One reason is
that the existence of an explicit estimator for the mean parameter (µ) should
not be affected in the restricted models. Imposing restrictions on the spec-
tra of the covariance matrices is beneficial from a Σ-invariant point of view,
since in this case we can find the restrictions that can preserve the block
structure of Σ, at the same time coming into the existence of the explicit es-
timator of µ. Despite the positive definiteness of Σ being guaranteed, we
still face the problem of possible negative definiteness for Σ1 or Σ2 since
the restricted models have not taken the issue of non negative definiteness
into account. It is also worth noting that only the observed data and the
problem at hand can guide us concerning which model to choose since the
maximum of the likelihood function of model (1.2) will not be affected by
the choice of the restricted models.

The idea with the internal test is new. Investigating the testability of the
parameters in the block circular covariance matrix yields that testing some
parameters can be done by testing the equality of several eigenvalues of a
patterned covariance matrix, which is advantageous since the theory of test-
ing equal variances has been well developed. However, it is not obvious that
one can find a testable hypothesis in this way and it replies on the knowl-
edge of eigenvalues.

It can be observed that there is some connection between the external
and internal test since in the internal test, the equality of some eigenvalues
for the block circular covariance structure implies that the matrix will “de-
generate" to a more parsimonious pattern, for example, ΣBC S−C S in (2.13),
and the hypothesis becomes exactly the same as one of the hypotheses (H 0

3 )
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in the external one.

6.3 Future research

Model (1.2) can be extended by considering other types of mean structures,
e.g. profiles in profile analysis. Srivastava and Singull (2012) have studied
profile analysis when the random effect has a CS covariance structure, and
their study can be extended when the random effect has a block circular
Toeplitz covariance structure.

In many medical studies, it is necessary to investigate the effect to pa-
tients after receiving a particular therapy. Recently, Roy et al. (2015) devel-
oped a test statistic for testing the equality of mean vectors under a block
compound symmetry (BCS) covariance structure in (2.9), which is an exten-
sion of the Hotelling’s T 2 statistic. Testing the equality of mean structures
when observations exhibit the block circular Toeplitz covariance structures
has not been explored yet and this gap can possibly be filled.

We can relax the assumption of n independent samples in (1.2). Instead
of Y ∼ Np,n(µ1p 1′

n ,Σ, I n), we assume Y ∼ Np,n(µ1p 1′
n ,Σ,Ψ), whereΨ is an

n ×n covariance matrix between n columns. Besides Σ having a block cir-
cular Toeplitz matrix, some structures can also be imposed toΨ.

One possible extension of Paper IV could strive to test a more parsimo-
nious pattern thanΣBC S−C S given in (2.13). Recall that the covariance struc-
tureΣDC S in (2.10) has three unknown parameters, and it is a more parsimo-
nious pattern than ΣBC S−C S which contains four parameters. The external
test can be incorporated with more hypotheses such as testing ΣDC S versus
ΣBC S−C S or ΣDC S versus the block circular Toeplitz structure in (1.3).
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7. Sammanfattning

I denna avhandling studeras både skattning-s och hypotesprövningspro-
blem i balanserade multivariata modeller med slumpmässiga effekter med
en specifik kovariansstruktur, som kallas blockcirkulär Toeplitz. Denna ko-
variansstruktur beskriver beroendet i data med två nivåer och olika sym-
metriegenskaper.

Vi härleder två kovariansstrukturer under två olika invariansrestriktio-
ner (symmetri). De erhållna kovariansstrukturerna speglar både cirkuläritet
och utbytbarhet. Nya uttryck för egenvärdena av blockcirkulära symmetris-
ka matriser erhålls som tar hänsyn till blockstrukturerna.

Skattning av parametrarna i de balanserade slumpmässiga effektmodel-
lerna med blockcirkulära kovariansmatriser betraktas. De spektrala egen-
skaperna hos sådana kovariansstrukturer tillhandahålls. Vi härleder
maximum-likelihoodskattningen genom spektralspjälkning av kovariansma-
trisen och diskuterar förekomsten av explicita maximum likelihoodskatt-
ningar för kovariansparametrarna. Tillräckliga villkor för att erhålla expli-
cita och unika skattningar för varians-kovarianskomponenter har härletts.
Olika begränsade modeller diskuteras och motsvarande maximum likeli-
hoodskattningar presenteras.

Avhandlingen behandlar också hypotesprövning av blockkovariansstruk-
turer, speciellt blockcirkulära Toeplitzkovariansmatriser. Vi studerar både
så kallade externa och interna tester. I de externa testerna tar vi upp oli-
ka hypotestest kring blockkovariansstrukturerna samt medelvärdsstruktu-
rer. De interna testerna handlar om att testa specifika kovariansparametrar
i de blockcirkulära Toeplitzmatriserna. Likelihood-kvottest konstrueras och
fördelningar av motsvarande teststatistikor härleds under nollhypoteserna.
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