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Abstract

An ensemble is a composite model, combining the predictions from several
other models. Ensembles are known to be more accurate than single models.
Diversity has been identified as an important factor in explaining the success of
ensembles. In the context of classification, diversity has not been well defined,
and several heuristic diversity measures have been proposed. The focus of
this thesis is on how to create effective ensembles in the context of classifica-
tion. Even though several effective ensemble algorithms have been proposed,
there are still several open questions regarding the role diversity plays when
creating an effective ensemble. Open questions relating to creating effective
ensembles that are addressed include: what to optimize when trying to find an
ensemble using a subset of models used by the original ensemble that is more
effective than the original ensemble; how effective is it to search for such a
sub-ensemble; how should the neural networks used in an ensemble be trained
for the ensemble to be effective? The contributions of the thesis include sev-
eral studies evaluating different ways to optimize which sub-ensemble would
be most effective, including a novel approach using combinations of perfor-
mance and diversity measures. The contributions of the initial studies pre-
sented in the thesis eventually resulted in an investigation of the underlying
assumption motivating the search for more effective sub-ensembles. The eval-
uation concluded that even if several more effective sub-ensembles exist, it
may not be possible to identify which sub-ensembles would be the most effec-
tive using any of the evaluated optimization measures. An investigation of the
most effective ways to train neural networks to be used in ensembles was also
performed. The conclusions are that effective ensembles can be obtained by
training neural networks in a number of different ways but that high average
individual accuracy or much diversity both would generate effective ensem-
bles. Several findings regarding diversity and effective ensembles presented in
the literature in recent years are also discussed and related to the results of the
included studies. When creating confidence based predictors using conformal
prediction, there are several open questions regarding how data should be uti-
lized effectively when using ensembles. Open questions related to predicting
with confidence that are addressed include: how can data be utilized effec-
tively to achieve more efficient confidence based predictions using ensembles;
how do problems with class imbalance affect the confidence based predictions



when using conformal prediction? Contributions include two studies where it
is shown in the first that the use of out-of-bag estimates when using bagging
ensembles results in more effective conformal predictors and it is shown in the
second that a conformal predictor conditioned on the class labels to avoid a
strong bias towards the majority class is more effective on problems with class
imbalance. The research method used is mainly inspired by the design science
paradigm, which is manifested by the development and evaluation of artifacts.



Sammanfattning

En ensemble dr en sammansatt modell som kombinerar prediktionerna fran
flera olika modeller. Det &r vilként att ensembler dr mer tréaffsidkra @n enskil-
da modeller. Diversitet har identifierats som en viktig faktor for att forklara
varfor ensembler dr sa framgangsrika. Diversitet hade fram tills nyligen in-
te definierats entydigt for klassificering vilket resulterade i att manga heuris-
tiska diverstitetsmatt har foreslagits. Den hir avhandlingen fokuserar pa hur
klassificeringsensembler kan skapas pa ett andamalsenligt (eng. effective) stt.
Den vetenskapliga metoden dr huvudsakligen inspirerad av design science-
paradigmet vilket limpar sig vil for utveckling och evaluering av I'T-artefakter.
Det finns sedan tidigare manga framgéangsrika ensembleralgoritmer men trots
det sa finns det fortfarande vissa fragetecken kring vilken roll diversitet spelar
vid skapande av vilpresterande (eng. effective) ensemblemodeller. Nagra av de
fragor som beror diversitet som behandlas i avhandlingen inkluderar: Vad skall
optimeras nir man soker efter en delmingd av de tillgidngliga modellerna for
att forsoka skapa en ensemble som &r béttre d4n ensemblen bestaende av samtli-
ga modeller; Hur vil fungerar strategin att soka efter sadana delensembler; Hur
skall neurala nitverk tranas for att fungera sa bra som mojligt i en ensemble?
Bidraget i avhandlingen inkluderar flera studier som utvirderar flera olika sétt
att finna delensembler som ér bittre dn att anvinda hela ensemblen, inklusive
ett nytt tillvigagangssitt som utnyttjar en kombination av bade diversitets- och
prestandamatt. Resultaten i de forsta studierna ledde fram till att det under-
liggande antagandet som motiverar att soka efter delensembler undersoktes.
Slutsatsen blev, trots att det fanns flera delensembler som var bittre dn hela en-
semblen, att det inte fanns nagot sitt att identifiera med tillginglig data vilka de
bittre delensemblerna var. Vidare undersoktes hur neurala nétverk bor trinas
for att tillsammans samverka sa vl som mojligt nir de anvénds i en ensemble.
Slutsatserna fran den undersdkningen &r att det dr mojligt att skapa vélpre-
sterande ensembler bade genom att ha manga modeller som #r antingen bra i
genomsnitt eller olika varandra (dvs diversa). Insikter som har presenterats i
litteraturen under de senaste aren diskuteras och relateras till resultaten i de in-
kluderade studierna. Nér man skapar konfidensbaserade modeller med hjilp av
ett ramverk som kallas for conformal prediction sa finns det flera fragor kring
hur data bor utnyttjas pa bista sitt ndr man anviander ensembler som behover
belysas. De fragor som relaterar till konfidensbaserad predicering inkluderar:



Hur kan data utnyttjas pa bista sitt for att astadkomma mer effektiva kon-
fidensbaserade prediktioner med ensembler; Hur paverkar obalanserad datade
konfidensbaserade prediktionerna nér man anvinder conformal perdiction? Bi-
dragen inkluderar tva studier dir resultaten i den forsta visar att det mest effek-
tiva séttet att anvinda data ndr man har en baggingensemble dr att anvénda sk
out-of-bag estimeringar. Resultaten i den andra studien visar att obalanserad
data behover hanteras med hjélp av en klassvillkorad konfidensbaserad modell
for att undvika en stark tendens att favorisera majoritetsklassen.
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1. Introduction

1.1 Background

In many fields of research and in society in general, synergistic advantages
may appear when heterogeneous parts are combined, making the whole greater
than the sum of the parts. An example of such an advantage is the much more
impressive music produced by a musical ensemble, compared to the music
each of the musicians could have produced by themselves or when performing
in sequence.

In predictive modeling, historical data is used to train models using ma-
chine learning algorithms. The data is composed of a number of instances,
representing individual entities and each instance is in turn composed of two
parts, the object and the target value. A model is trained using data with known
target values and the trained model is used to predict the target values for new
and unseen instances from the same domain for which only the objects are
known. In classification, the target value belongs to a predefined set of class
values, but in a regression the target value is a real number.

In general terms, the goal when training a model using a machine learn-
ing algorithm is that the model shall perform well when it is applied to new
data. Naturally, performance can be measured differently depending on the
circumstances. Furthermore, combining the predictions from several models
has proven, both theoretically and empirically, to be a successful approach to
increasing the performance. Several different terms have been used to denote
models that make predictions by combining the predictions from several mod-
els, but in this thesis this is referred to as an ensemble or an ensemble model.

To explain why ensembles work better on average than the individual mod-
els used by the ensemble, a theorem formulated in the field of political science
can be useful. In 1785, the Marquis de Condorcet published an essay where he
showed that if the probability p of each of the voters being correct is above 0.5
and the voters are independent, then adding more voters increases the proba-
bility that the majority vote will be correct until the probability approaches 1
[1]. The Marquis de Condorcet obviously did not have machine learning in
mind when he studied these questions but it is still a similar mechanism as
the one he studied that makes ensembles perform well. In fact, Hansen and
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Salamon proved that the assumption of de Condorcet’s theorem also holds for
ensembles [2] (without actually referring directly to de Condorcet’s theorem).

It is obvious that the benefits of using ensembles cannot be achieved by
simply copying an individual model and combining the copies. For the ensem-
bles to increase the performance over that of the individual models, the indi-
vidual models must be accurate individually and they need to be sufficiently
diverse, in other words, they need to be sufficiently different from each other
in terms of which errors are made. The diversity requirement reflects the need
for independence. However, since the individual models are trained to perform
well on the same dataset, it is unrealistic to assume any real independence be-
tween the models.

The importance of diversity has been investigated in several studies (see
Section for further details on diversity). Krogh and Vedelsby [3]] derived
that the error of an ensemble that is used to solve a regression problem is de-
termined by the average performance of the individual models and the average
diversity among the models in the ensemble. More specifically, the ensemble
error, E, can be derived from

E=E-D (1.1)

where the first term, E, is the average error of the individual models and the
second, D, is the diversity term, i.e., the amount of variability among the en-
semble members. From Equation it is obvious that the error of the ensem-
ble is guaranteed to be less than or equal to the average error of the individual
models. Since the second term (which is never negative) is subtracted from the
first to obtain the ensemble error, this decomposition proves that the ensemble
will always have at least as high an accuracy as the average accuracy obtained
by the individual models.

Naturally, this is a very encouraging result for ensemble approaches. The
problem is, however, that the two terms are highly correlated, making it neces-
sary to balance them rather than just maximizing the diversity. When looking
at the concept of classification and the situation where the classifier only pre-
dicts class labels, the situation is even more complex. For a long time, no
equivalent to the natural way of defining diversity used for regression in Equa-
tion (I.T]) was available. Instead, a number of heuristic diversity measures have
been proposed in the literature, cf. [4)]. Unfortunately, none of the proposed
measures are, by themselves, well correlated with ensemble performance.

Brown et al. introduces a taxonomy of methods for building ensembles of
neural networks [5]] (see Section [2.3] for further details on ensembles of neural
networks). They identify two different approaches used to handle the trade-
off between accurate individual models and diversity between models. The
tradeoff can be handled either explicitly, by somehow explicitly optimizing

2



the balance between accuracy and diversity, or implicitly, by simply training
the individual models in such a way that they are likely to be both accurate and
diverse without explicitly targeting this. Many explicit methods have also been
proposed that search among the available classifiers to find an ensemble, con-
sisting of a subset of the classifiers, that is performing better than the ensemble
consisting of all available classifiers. The concrete type of explicit learning
strategy used when building ensembles in this way is sometimes called the
overproduce-and-select paradigm. These techniques often use diversity mea-
sures, sometimes together with performance measures, when trying to find the
subset of classifiers resulting in an ensemble with optimal performance [6~
15]. The overproduce-and-select paradigm can be employed either statically,
by identifying a single ensemble to be used for all test instances, or dynami-
cally, by searching for an optimal ensemble for each test instance.

There are also many ensemble techniques that are implicit in nature, usu-
ally using bagging (see Section [2.3.4]for further details on bagging). Bagging
is very robust and generally produces good results [16]]. Random forest [17] is
an ensemble technique utilizing bagging together with decision trees. The di-
versity produced by the use of bagging is complemented by a technique where
only a random subset of the features are used when deciding on the best split
when building each decision tree. Since individual neural networks are often
more accurate than individual decision trees, it lies close at hand to think that
ensembles of neural networks would also perform better than ensembles of
decision trees. In reality, though, neural networks have a number of training
parameters that might affect the performance of an ensemble of neural net-
works by altering the degree of diversity among the neural networks [55 [18]].

By using different statistical evaluation methods it is possible to get an
estimate of how well the model will perform when applied to new data (see
Section [4.3] for further details on evaluation). The estimation of performance
has to be made using some portion of data not used during training, making it
necessary to use only a subset of the available information when building the
model. However, when using a bagging ensemble, another option presents it-
self. An estimate for the ensemble can be achieved by taking advantage of the
fact that each model is trained using a bag of the instances, leaving a subset of
the instances unused when training each model. Since different bags are used
to train the different models, it is possible to use each instance as an unbiased
evaluation instance for all models for which it was not part of the training set.
This is usually referred to as an out-of-bag estimate of the ensemble perfor-
mance, since the performance of each instance is measured on an ensemble
consisting only of the subset of models for which that particular instance was
not in the bag used to train the model.

In general, only the overall performance of predictive models is measured,



making it possible to know how well the model is likely to perform on aver-
age on unseen data. However, in many domains, it is crucial to know with
some degree of confidence whether the prediction is correct on an individual
instance. Conformal prediction [19] is a relatively new framework for associat-
ing classification and regression predictions with reliable confidence estimates
(see Chapter [3|for further details on conformal prediction). The user is guaran-
teed that each prediction is correct with a user specified degree of confidence.
The conformal predictions are valid, since the decided level of confidence is
guaranteed in the long run. To achieve validity, a tradeoff between certainty
regarding the correctness and the amount of information provided by the pre-
diction is introduced. Instead of always making a point prediction, which is
usually the case in predictive modeling, the conformal predictor outputs a pre-
diction region. For regression problems, the prediction regions are represented
as prediction intervals; for classification, the prediction regions produced are
in the form of class label sets, i.e., the set of class labels that are not unlikely
to be correct. The conformal prediction framework is applied on top of an
ordinary machine learning model, such as an ensemble, and transforms its pre-
dictions into prediction regions. The prediction regions produced by conformal
predictors are proven to be valid, which means that the probability of making
an erroneous prediction is guaranteed to be less than or equal to a predefined
significance level € in the long run: the confidence in such a predictionis 1 — €.

One major benefit of the framework is that it is theoretically well grounded.
However, there are still many open questions regarding the best practices when
applying the framework to different kinds of underlying models and predictive
situations. Open questions include how to best take advantage of the available
data and how to tune the parameters of different algorithms to achieve as good
a performance as possible. Another research direction in which there are many
open questions is related to how the prediction regions are affected when the
class distribution is more or less imbalanced between classes.

1.2 Problem

As pointed out in the background, algorithms used for predictive modeling
must produce models that perform sufficiently well. Both theoretical and em-
pirical research affirms that ensembles will generally be more accurate than
single models [2; [3; [16]. Even though it has been shown that diversity is an
important factor in explaining why ensembles perform so well, it is still an
open question how the tradeoff between the accuracy of the individual models
and the diversity among the models should be handled. The tradeoff between
performance and diversity can be handled either implicitly or explicitly. Diver-
sity was originally thought to be an important criterion when trying to optimize
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the ensemble using the explicit learning strategy. For classification where the
models predict a single class label, several heuristic diversity measures have
been proposed. It has, however, been shown that none of the proposed diver-
sity measures are, by themselves, suitable as optimization criteria, since none
of them are well correlated with ensemble performance [4; [20522]. Even so,
several static overproduce-and-select algorithms have been proposed that use
diversity and/or performance measures when searching for a smaller ensemble.

When considering algorithms using the implicit learning strategy, there
is no need for an optimization criterion. Instead, it is primarily the way the
models in the ensemble are trained that will determine the success of the al-
gorithm. Despite the fact that individual neural networks are generally more
accurate than individual decision trees, ensembles of neural networks are not
guaranteed to outperform ensembles of decision trees. There are a number
of parameters that can be varied to create a set of neural networks that, when
combined, will result in well performing ensembles and there is still no best
practice on how to train neural networks in order to obtain a maximal ensemble
performance. Among ensembles of decision trees, random forests [17] have
emerged as a de facto standard due to their robustness and good performance.
The main reason why random forests perform so well is often attributed to the
combination of diversity creating methods, combining randomization of both
the instances and the features when training the decision trees. Using bagging,
as is done in random forests, also enables using out-of-bag estimates when
evaluating or optimizing the ensemble performance.

Conformal prediction [[19] is suitable for situations where it is important
to know with some degree of certainty if the model is correct on a specific
instance. Conformal prediction makes it possible to estimate with some user-
defined level of certainty how an ordinary machine learning model will predict
a specific instance. Since the level of accuracy is decided by the user, per-
formance is instead measured as efficiency, indicating how informative the
predictions are in general. The conformal framework can be used either trans-
ductively, making it necessary to train one model for each instance and class
label, or inductively: only one model has to be trained when using inductive
conformal prediction. However, to ensure its validity, the data available for
training must be divided into a proper training set and a set used to calibrate the
prediction regions when using inductive conformal prediction. As the frame-
work is relatively new, there are many open questions regarding how to use
the framework to make it as efficient as possible. A general question is how to
utilize the available data as effectively as possible to maximize its efficiency.
A specific question related to bagging ensembles is whether it is possible to
use the out-of-bag estimates as a calibration set, making it possible to use all
the available data for both training and calibration.



A common issue in many classification problems is that the classes are im-
balanced. In most cases it is the minority class which is most important to be
able to predict correctly. At the same time, most machine learning techniques
will be better at predicting the majority class, making them biased towards
that class [23l]. When using conformal prediction, the guarantees are for the
prediction regions, including all classes. The proportion of errors made on
the different classes are not guaranteed to have the same distribution as the
prior class distribution. The degree to which conformal predictors are affected
by the problem of imbalanced data has not been studied. Conditional confor-
mal prediction is an extension of the conformal prediction framework which
makes it possible to condition the guarantees on, e.g., the class labels. When
using class label conditional conformal prediction, the conformal predictor is
guaranteed to make its errors proportional to the prior class distribution. No
comparison between conditional conformal prediction and ordinary conformal
prediction regarding efficiency has been conducted. The conditional confor-
mal predictors differ from ordinary conformal predictors in how the data is
utilized.

To summarize, there are many different aspects that can be considered in
order to achieve good performance when creating ensembles, including such
aspects as: whether to optimize the composition of the ensemble; if optimiz-
ing, what criterion to optimize; how to train the models to make the ensemble
perform as well as possible; how to handle the data in different predictive sit-
uations when predicting with confidence.

1.3 Research Question

Based on the problem discussion presented above, the research question of this
thesis is: How can ensembles be created effectively in the context of classifi-
cation? The context of classification is vast and there are a large number of
possible aspects to take into account when considering how to effectively cre-
ate ensembles in this context. Since the studies presented in this thesis have
focused on some aspects, the main research question is addressed by answering
two sub-questions covering the aspects covered by the presented studies:

1. Which strategy is most effective to use when creating ensembles: the
implicit or the explicit learning strategy?

2. How should data be utilized effectively in confidence-based predictions
using ensembles?

In this thesis, the main focus regarding the explicit learning strategy is on
static overproduce-and-select algorithms. Furthermore, the main focus regard-



ing ensembles in general and the implicit learning strategy in particular is on
ensembles of neural networks, even if some studies also involve ensembles
of decision trees. Creating ensembles effectively means that the resulting en-
sembles should be capable of performing well in the tasks they are intended

for.

1.4 Contributions

Below, a summary of the content and the contribution of each paper is given.

PAPER I

PAPER II:

Empirically investigating the importance of diversity

The paper studies the relationship between diversity and ac-
curacy and the use of combinations of diversity and/or perfor-
mance measures.

This paper contributes to the first sub-question by evaluating
10 diversity measures previously studied using a realistic static
overproduce-and-select setup where ensembles of varying sizes
were evaluated together. The conclusions support the claim
made in previous studies that no individual diversity measure
is well correlated with ensemble accuracy. A novel contribu-
tion of the paper is that it shows that the correlation between
accuracy measured on training or validation data and ensemble
accuracy measured on test data is comparable to the correla-
tion measured between the most correlated diversity measures
and ensemble accuracy. Furthermore, the idea of using combi-
nations of measures was introduced in this paper. The results
achieved when evaluating combined measures indicate that it
might be a promising solution, potentially leading to more ac-
curate ensembles.

On the use of accuracy and diversity measures for evaluating
and selecting ensembles of classifiers

The paper studies the use of combinations of diversity and/or
performance measures.

This paper contributes to the first sub-question by empirically
evaluating the idea of combining diversity and performance mea-
sures. The results could not confirm that combined measures
were clearly better than using individual measures. Using only
performance measures, either individually or in combination,
did not turn out to be better than using diversity measures or
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combinations of performance or diversity measures. When eval-
uating ensembles of different sizes, including small ensembles,
the average accuracy of the classifiers and the double fault mea-
sure turned out to be quite useless since they, by design, always
prefer smaller ensembles.

PAPER III: Ensemble member selection using multiobjective optimiza-
tion
The paper studies the use of combinations of diversity and/or
performance measures; selection of ensemble members; multi-
objective optimization; explicit learning schemes.

This paper presents a novel algorithm for constructing ensem-
bles using a static overproduce-and-select algorithm, which makes
this paper contribute to the first sub-question. The technique
uses a genetic algorithm to find a combination of measures most
suitable to be used as an optimization criterion for the individual
dataset. It is shown that it is sometimes better to use the identi-
fied optimization criterion than to use ensemble accuracy as the
selection criterion. The algorithm worked better for ensembles
of neural networks than for ensembles of decision trees.

PAPER IV: Comparing methods for generating diverse ensembles of ar-
tificial neural networks
The paper studies the selection of ensemble members; implicit
and explicit learning schemes.

This paper contributes to the first sub-question by comparing
implicit and explicit ensemble creation strategies. The implicit
approaches simply trained a number of neural networks, with
or without bagging, and included all networks in the ensemble.
Two ensemble algorithms using explicit strategies were used as
comparison. The empirical study provided strong evidence in
favor of the implicit approaches. The two implicit approaches
performed equally well. An analysis of the diversity and per-
formance measures of the two implicit approaches revealed that
the lower average accuracy achieved when using bagging was
compensated for by more diversity and vice versa.

PAPER V: Overproduce-and-select: The grim reality
The paper studies the selection of ensemble members; explicit
learning schemes.

This paper evaluates the static overproduce-and-select paradigm
and consequently contributes to the first sub-question. The main



PAPER VI:

PAPER VII:

PAPER VIII:

result is that there is absolutely nothing to gain by selecting an
ensemble based on any of the metrics evaluated, including en-
semble accuracy, average accuracy among the ensemble mem-
bers, and diversity. Since the ensembles were trained using
bagging, out-of-bag estimates were also used in the evaluation.
Even though there were many smaller ensembles that were bet-
ter than using all trained neural networks as an ensemble, there
was no way of identifying them by measuring either the training,
validation, or out-of-bag data.

Producing implicit diversity in ANN ensembles
The paper studies diversity creation strategies; implicit learning
schemes.

This paper contributes to the first research question by further
evaluating the implicit approach of simply training neural net-
works in different ways and then combining all the trained net-
works. The purpose of the paper was to evaluate how to train
neural networks to achieve ensembles performing as well as
possible.

Effective utilization of data in inductive conformal predic-
tion using ensembles of neural networks

The paper studies utilization of data for confidence based pre-
diction using ensembles.

In this paper different strategies for how to utilize all available
data when using an inductive conformal predictor were com-
pared, making it contribute to the second sub-question. The
solution promoted in the paper is to train a bagging ensemble
using all the data and to use the out-of-bag estimates as the cal-
ibration set. The promoted solution turns out to outperform the
other evaluated solutions.

Bias Reduction through Conditional Conformal Prediction
The paper studies the use of data for confidence based prediction
using ensembles.

The contribution of this paper is to the second sub-question
since it evaluates the effects of applying conformal prediction
and conditional conformal prediction on datasets with varying
degrees of class imbalance. The results show that the way the
data is used when creating the conformal predictor strongly af-
fects the tendency to be biased towards the majority class. By



using the data in such a way as to condition the conformal pre-
dictor for each class, the efficiency, measured in terms of the
ability to avoid a bias towards the majority class, is far supe-
rior compared to conformal predictors using data in the ordinary
way.

1.5 Outline of the Thesis

Chapter 2 introduces ensemble learning and presents related work. The chap-
ter starts with an introduction of machine learning techniques that have been
used as building blocks in the ensembles evaluated in the included papers. The
remainder of the chapter introduces various aspects of ensemble learning and
ends with a section presenting work related to the included papers. Chapter 3
introduces the conformal prediction framework and presents related work. The
framework is first described in general, followed by details on how it works
for classification. After the framework is introduced, the conditional version is
presented followed by work related to the included papers. Chapter 4 presents
the research approach. First, a theoretical framework is established, followed
by a motivation for the kind of experimental setups used in all included papers
as well as how to evaluate the results achieved. Chapter 5 presents summaries
of the included papers, and Chapter 6, finally, presents a discussion, the con-
clusions, and some ideas for future research.
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2. Ensemble Learning

When performing predictive classification, the primary goal is to obtain good
performance. Performance can be measured using a variety of measures. The
most common performance measure in predictive classification is accuracy;
i.e. the proportion of misclassifications when the model is applied to novel
data. Within the machine learning research community, it is well known that
it is possible to obtain even higher accuracy by combining several individual
models into ensembles; see, e.g., [16; [24]]. An ensemble is thus a composite
model aggregating multiple base models, and the ensemble prediction, when
applied to a novel instance, is therefore a function of all included base models.
Ensemble learning, consequently, refers to a large collection of methods that
learn a target function by training a number of individual learners and combine
their predictions.

This chapter presents basic concepts regarding ensembles. It is to a large
degree taken from [25]. Many different terms have been used as synonyms for
ensembles; combinations of multiple classifiers [26-H29], committees or com-
mittee machines [30; 31], mixture of experts [32; 33]], composite classifiers
[34] and classifier fusion [35;/36] are some of the more frequently used terms.
The term employed throughout this thesis is ‘ensemble’ [2;37]].

2.1 Introducing Techniques Related to Ensembles

This chapter will start with presenting the data mining techniques used in the
empirical studies. The three sets of techniques presented in this introductory
section will be neural networks, decision trees, and evolutionary algorithms.

2.1.1 Neural Networks

The area of (artificial) neural networks (ANNSs) has been inspired by the knowl-
edge of how the brain works, i.e., how biological neural networks work. ANNs
have become one of the most popular data mining techniques, since this tech-
nique is quite powerful and can be used in several different problem domains.
We will only describe one sort of ANN, i.e., the multi-layered feed-forward
ANN [38]], since it is the most suitable architecture for most classification
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tasks.
A neural network is a collection of connected neurons. Each neuron has
three basic elements.

1. A set of connected links, each of which has a weight of its own. A signal
x; at the input of the link j connected to neuron k is multiplied by the
link weight w ;. The weight in a neural network link may lie in a range
that includes negative as well as positive values, while the corresponding
element in the brain, a synapse, outputs a signal of varying strength.

2. An adder for summing the input signals, weighted by their respective
links to the neuron.

3. An activation function for limiting the amplitude of the output of a neu-
ron. Typically, the normalized amplitude range of the output of a neuron
is the closed unit interval [0, 1] or alternatively [-1, 1].

Often a bias is also applied to the neuron. The bias by has the effect of
increasing or lowering the net input of the activation function, depending on
whether it is positive or negative.

A neuron may mathematically be described by the following pair of equa-

tions:
m

U=y Wjkx; (2.1)
j=1
Yk = f (e +br) 2.2)

where x1,x7, ..., X, are the input signals; wyi, w2, ..., Wi, are the synaptic weights
of neuron k; uy is the linear combiner output for the input signals; by, is the bias;
f(+) is the activation function; and yy is the output signal of the neuron.

Feed-Forward Neural Networks

In a layered ANN, the neurons are organized in the form of layers. The input
signals propagate through the network in a forward direction, on a layer-by-
layer basis. In the simplest form there is only an input layer of source nodes
that projects onto an output layer of neurons, but not vice versa. These simple
networks are called single-layered feed-forward neural networks, or single-
layered perceptrons. The input layer is typically not counted, since no com-
putation is performed there. Single-layered networks can only represent lin-
ear functions. Multilayered feed-forward ANNs, or multilayered perceptrons
(MLPs), are ANNs with at least one layer of neurons between the input and
the output layer. The layer(s) between the input and the output layer is called a
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output layer

hidden layer

input layer

Figure 2.1: A neural network

hidden layer(s). By adding hidden layers, the network is enabled to represent
higher-order (nonlinear) functions.

As can be seen in Figure [2.1] each layer has one or more neurons. The
input layer in a feed-forward ANN has as many input nodes as input variables.
The number of neurons in the hidden layer(s) varies. This number affects
the network’s ability to adjust its interior state to match the patterns in the
training data. More hidden neurons make the network more capable of learning
details. This might result in overfitting of the training data, i.e., learning details
about the training data that are not general patterns of the problem, and as a
consequence it might not generalize well to unseen data. General patterns are
general for the entire problem space and not specific only to the training set.
Too few hidden neurons might lead to a network’s being unable to learn all the
general patterns in the training data, and thus the network will not be powerful
enough.

The activation function in an MLP should be nonlinear and smooth, i.e.,
differentiable everywhere. A commonly used form of nonlinearity that satisfies
this property is a sigmoidal nonlinearity defined by the logistic function. The
MLP is usually trained with an algorithm called error back-propagation [39;
40]. The training of a network is done by iterating through the training data
many times and adjusting the weights a little bit on each iteration. The back-
propagation algorithm consists of two passes through the different layers of the
network on each iteration: a forward and a backward pass. In the forward pass,
an input pattern is propagated through the network. An output is produced as
the actual response of the network. During the forward pass the weights of the
connected links are all fixed. During the backward pass, on the other hand,
the weights of the connected links are all adjusted in accordance with an error-
correction rule. The response of the network is subtracted from the desired
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response, i.e. the actual target response, to produce an error signal. This error
signal is then propagated back through the network, reversing the forward pass.
The weights of the connected links are adjusted to make the response of the
network closer to the desired response in a statistical sense. This procedure is
repeated multiple times. Each repetition is often referred to as an epoch.

The back-propagation algorithm has no well-defined criteria for stopping
the training. Different stopping criteria can be used. They all have the draw-
back that the algorithm might stop at a local minimum of the error surface,
i.e., the resulting model might not be the best possible. For further details on
ANNSs see any introductory book on Neural Networks, e.g., [41].

2.1.2 Decision Trees

Decision tree learning is a predictive modeling technique most often used for
classification. Decision trees partition the input space into cells, where each
cell belongs to one class. The partitioning is represented as a sequence of tests.
Each interior node in the decision tree corresponds to one test of the value of
some input variable, and the branches from the node are labeled with the pos-
sible results of the test. The leaf nodes represent the cells and specify the class
to return if that leaf node is reached. The classification of a specific instance
is thus performed by starting at the root node and, depending on the results of
the test, following the appropriate branches until a leaf node is reached.

The decision tree is created from examples (the training set) with the ob-
vious requirement that it should agree with the training set. The basic strat-
egy for building the tree is to recursively split the cells of the input space. To
choose the variable and threshold at which to split, a search over possible input
variables and thresholds is performed to find the split that leads to the great-
est improvement of a specified score function. Typically this score function
is based on some information theory measurement, like information gain or
entropy. The overall idea is to minimize the size of the final tree by always
choosing splits that make the most difference to the classification of an in-
stance. The splitting procedure could in principle be repeated until each cell
contains instances from one class only. At the same time the decision tree must
not simply memorize the training set, but should be capable of generalizing to
unseen data; i.e. the decision tree should not overfit. The goal is thus to have
a decision tree as simple (small) as possible, but still representing the training
set well.

Two basic strategies for avoiding overfitting are to stop the growth of the
tree when some criterion has been met, or to afterwards reduce (prune) a large
tree by iteratively merging leaf nodes.

Classification and regression trees (CART) [42] is a technique that gener-

14



ates binary decision trees. Each internal node in the tree specifies a binary test
on a single variable, using thresholds on real and integer-valued variables and
subset membership for categorical variables. The Gini coefficient is used as a
measure for choosing the best splitting attribute and criterion. The Gini coef-
ficient is a measure of statistical dispersion. It is defined as a ratio with values
between 0 and 1; A low Gini coefficient indicates a more equal distribution,
while a high Gini coefficient indicates a more unequal distribution. The split-
ting is performed around what is determined to be the best split point. At each
step, an exhaustive search is used to determine the best split. For details about
the function used to determine the best split, see the book introducing the al-
gorithm. The score function used by CART is the misclassification rate on an
internal validation set. CART handles missing data by ignoring the missing
value when calculating the goodness of a split on that attribute. The tree stops
growing when no split will improve the performance.

2.1.3 Evolutionary Techniques

Like ANNSs, evolutionary techniques are based on an analogy to biological
processes. The theory of evolution stands as the model for evolutionary tech-
niques such as genetic algorithms (GA) [43]. Evolution optimizes the fitness
of individuals over succeeding generations by propagating the genetic material
in the fittest individuals of one generation to the next generation. The core in
evolutionary techniques consists of three stages:

1. A population of potential problem solutions (individuals) is encoded into
a representation that is specific to the type of evolutionary technique
used.

2. The fitness of each individual solution is measured to rank the solutions.
The highest ranked individuals are favored in the shaping of the next
generation of solutions.

3. A new population for the next generation is formed by reproduction and
survival of individual solutions. Mating of individuals (called crossover)
recombines the individuals from the parent generation to form the indi-
viduals of the next generation. Mutation is also used to introduce new
genetic material into the population by randomly changing an individ-
ual.

The representation of solutions differs between evolutionary techniques,
making it necessary to have distinct mating and mutation operations adjusted to
the particular representation. On the other hand, the strategies used for select-
ing individuals to whom to apply these operations are the same. In the roulette
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wheel selection strategy, an individual’s probability to be selected for mating
is proportional to its fitness. In tournament selection, a number of individuals
are drawn at random and the best among them is selected. This is repeated un-
til the required number of individuals has been selected for reproduction and
survival. The tournament selection strategy only considers whether a solution
is better than another, not how much better. This prohibits an extraordinarily
good individual from swamping the next generation with its children, which
would lead to a disastrous reduction of diversity in the population.

The fitness function is the measure that should be optimized, and is some-
times referred to as the objective of the optimization. Any measure that can
be used to score individual solutions based on performance could be a fitness
function. More than one fitness function can be used simultaneously, this is of-
ten referred to as multi-objective evolutionary optimization. When more than
one fitness function is used, the result is not a single best solution but rather a
set of best solutions.

For further details, see any introductory book on evolutionary techniques,
e.g., [44].

Genetic Algorithms

The representation used in a GA employs character strings, most often bit
strings. The crossover and mutation operations are used to produce new in-
dividuals by using parts of their parents.

In crossover, two parent individuals are selected, and they are divided at
one or many randomly chosen point(s). When only one division point is used,
one part of each parent is kept, and is joined with the remaining part of the
other parent. If multiple division points are used, then some parts from each
parent are kept, while the remaining parts are switched. If crossover does not
take place, then the parents are cloned to the next generation, i.e. they are
transferred intact to the next generation.

To avoid having important parts eliminated from the entire population for
good, or the search stagnating in a local minimum, mutation is used as a means
of reintroducing randomly generated parts to the population. Mutation takes
one parent and changes some part randomly. For bit string representations, the
mutation most often means flipping any bit from 0 to 1, or vice versa. The
theoretical foundation for GA is the schema theorem, formulated by Holland
[43]. In short, the theorem states that more important parts of the individuals,
i.e. parts contributing positively to the fitness function, are more likely to
survive to the next generation. The search is thus a search through schemes
(parts of individuals), rather than through complete solutions. By searching
for good parts, rather than good solutions, the search becomes exponentially
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more efficient.

Multi-Objective Optimization

Evolutionary techniques can optimize single objectives or multiple objectives.
The goal of multi-objective optimization (MOOQ) is to find solutions that are
optimal, or at least acceptable, according to all criteria simultaneously. MOO
can be performed in all kinds of evolutionary techniques.

Combining multiple objectives into a scalar fitness function is the most
primitive form of MOO. The simplest form of this combination is a (weighted)
linear combination of the different objectives.

The obvious alternative to combining the different objectives into a scalar
fitness function is keeping the objectives apart. The main motivation for keep-
ing the objectives apart is to encourage diversity among the solutions. When
the objectives are kept apart, the selection strategies are affected. The main
idea in MOQ is the notion of Pareto dominance. A solution a; is non-dominated
iff there is no other alternative a; € S, j # i such that a; is better than a; on all
criteria. Or, expressing the opposite relation less formally, a solution is said
to Pareto dominate another if it is as good as the second on all objectives and
better on at least one objective. This results in a partial ordering, where several
solutions can be non-dominated, and thus constitute the set of best solutions
for the particular set of objectives. The set of all non-dominated solutions in
the search space is called the Pareto front, or the Pareto optimal set. It is often
unrealistic to expect to find the complete Pareto front, since its size is often
limited only by the precision of the problem representation. [44]

2.2 Basic Ensemble Concepts

An ensemble is basically constructed by training a set of L models, henceforth
called base classifiers, on L data sets and combining these models. The data
sets are often either identical or highly overlapping subsets drawn from a sin-
gle data source, but they can just as well be entirely different data sets gathered
from different data sources, capturing different aspects of the problem. To pre-
dict the target value for a new instance, the target value of the combined model
is calculated, often by applying each base classifier in turn and combining their
outputs.

The most intuitive explanation for why ensembles work is probably given
by Condorcet’s jury theorem [[1]. The assumption of the theorem is that a group
wishes to reach a decision by majority vote. The outcome of the vote could
be either correct or incorrect, and each voter has an independent probability p
of voting for the correct decision. The number of voters to include depends
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on whether p is greater than or less than 0.5. If p > 0.5 (each voter is more
likely than not to vote correctly), then adding more voters increases the proba-
bility that the majority decision is correct. In the limit, the probability that the
majority votes correctly approaches 1 as the number of voters increases. The
output type from each classifier in the ensemble could be distinguished in four
different ways [43]:

o The oracle level: The only information considered is whether the clas-
sifier is correct or incorrect in its prediction for each instance. This is
the type of output containing the least information. There is no informa-
tion on the actual prediction made by the classifier, only if it is right or
wrong. This level is useful primarily for analytical purposes. Most of
the diversity measures presented below can be defined using the oracle
level.

o The abstract level: The classifier outputs the label of the predicted class
for each instance. There is no information on the certainty of the predic-
tion.

e The rank level: The possible classes are ranked in order of plausibil-
ity. This kind of output is especially suitable for problems with a large
number of classes.

o The measurement level: The output containing most information is when
the classifier outputs a measure of certainty about its prediction for each
class. For each instance, the classifier will produce a vector of measures
of certainties, one measure for each class.

It must be noted that outputs at each level can always be reduced to fit the
preceding levels, apart from the oracle level, i.e. any model producing mea-
surements can also produce ranked and labeled output, and so on. However, to
produce the oracle level output, the ground truth, i.e. the correct labels, must
be known.

2.2.1 Diversity

Naturally, there is nothing to gain by combining identical models, doing ex-
actly the same things. Consequently, the base classifiers must commit their
errors on different instances, which is the informal meaning of the key term di-
versity. Krogh and Vedelsby [3] derived the result that ensemble error depends
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not only on the average error of the base modeld} but also on their diversity?]
More formally, the ensemble error, E, is

E=E-A 2.3)

where E is the average error of the base models and A is the ensemble diversity
(or ambiguity), measured as the weighted average of the squared differences
in the predictions of the base models and the ensemble. In a regression context
and using averaging, this is equivalent to

E:(Yens_Y)2:72(2_}])2_*2(&_?%5)2 (24)

where the first term is the (possibly weighted) average of the individual mod-
els and the second is the diversity term; i.e. the amount of variability among
ensemble members. The diversity term is always positive, proving that the en-
semble will always have higher accuracy than the average accuracy obtained
by the individual models. Based on this, the overall goal of getting low en-
semble error could be divided into the two sub-goals of combining models
that commit few errors, but at the same time differ in their predictions. The
two terms are, however, normally highly correlated, making it necessary to
balance them instead of just maximizing the diversity term.

By relating this to the bias—variance decomposition and assuming that the
ensemble is a convex combined ensemble (e.g. using averaging), a bias—
variance—covariance decomposition can be obtained for the ensemble MSE;
see 2.3 below.

A — 1 1
E = Yons — Y)2 — bias + ZW+ (1 — L> covar (2.5)

From this it is evident that the error of the ensemble depends critically on
the amount of correlation between models, quantified in the covariance term.
Ideally, the covariance should be minimized, without causing negative changes
that result in increases of the bias or variance terms.

However, unless classification is handled like an instance of regression
(i.e. the outputs are at the measurement level) the framework described above
does not apply for ensembles of classifiers. When predictors are only able to
output a class label, the outputs have no intrinsic ordinality between them, thus
making the concept of covariance undefined. Using a zero—one loss function,
there is no clear analogy to the bias—variance—covariance decomposition.

I'The theory was formulated for regression problems. Consequently, the term base
models is more appropriate than the term base classifiers in this case.

ZKrogh and Vedelsby used the term ambiguity instead of diversity in their paper.
In this thesis, the more common term diversity is, however, used exclusively.
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Brown and Kuncheva [46] have made a decomposition of the ensemble
error when majority vote is used. Instead of achieving simply one diversity
term, as is the case when dealing with measurement output, the decomposi-
tion results in two diversity terms. This decomposition will be presented in

Section 2.2.1]

Before Brown and Kuncheva provided the decomposition, obtaining an
expression where the classification error is decomposed into error rates of the
individual classifiers and a diversity term was beyond the state of the art. In-
stead, methods typically used heuristic expressions that tried to approximate
the unknown diversity term. Naturally, the goal was to find a diversity mea-
sure correlating well with majority vote accuracy.

Because of this, there exist several suggested diversity measures for a clas-
sification context. The presentation of the different diversity measures follows
Kuncheva and Whitaker [4] and Stapenhurst [47] closely. Most of the diversity
measures presented below are defined using the oracle output, and can thus be
applied to any type of base classifier.

The set of instances is denoted Z, which is the Cartesian product X x Y
of the independent variables X, henceforth called the object space, and the
dependent variable Y. Consequently, each example z € Z consists of two parts:
z = (x,y), where x € X is the object and y € Y is the dependent variable. In
classification, Y is a finite set usually referred to as the class variable, and in
regression, Y is the real line R. If nothing else is mentioned, we can assume
that Y = {1,—1} in the presentation below.

Let us consider a set zy, ..., zy of training instances, where N is the number
of available instances and z; = (x;,y;) € Z. The ensemble has L base models,
hi,...,hr, which produces predictions /;(x) € Y. The ensemble prediction is
an unweighted majority vote,

L 1 L
H(x) = max cy <Zl[h;(x) = c]) = sign (L Zhl(x)>

=1

where [ is the indicator function. The number of models that correctly clas-
sifies an instance is ¢; = %Zlel I[hy(x;) = yi]. The proportion of models that
correctly classifies an instance is p; = %ci and its average is p = %Zi\; | Di-
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For many of the pairwise measures, the following notation is used.

. i_ilz[hj<xi> — 3 Ae(x) = ]
N0 — i‘{l[hj(xi) = yi N (x;) # yil
N gz[hﬂx» 3 M) = i)
N Y 10y () £ A Rul) £ 3] .6

i=1

Here, N'! measures the number of instances on which the two models /; and
hy are correct, N'0 those where hj is correct and hy is incorrect, NO those
where h; is incorrect and fy, is correct, and N those where both & ; and hy are
incorrect, respectively. In cases where more than two classes exist, two more
measures can be defined, counting the cases when both models are incorrect
but predicting either the same or different classes.

N
N® e =Y I1hj(xi) # yi Nhie(xi) # yi A (i) = hi(x)]
i=1
N
Nierent = YA Thj(xi) # yi Aic(xi) # yi Nhj(x) # b)) (27)

—

For a pairwise measure diversity ; ;. between the models /; and £y, the over-
all diversity of the ensemble is defined as the average over all pairs:

L
diversity i (2.8)
j+1

2 L—1
diversity = m Z
j=1k

There are, in a similar way, some diversity measures that are defined in a
meaningful way for individual instances. In these cases, the diversity; for the
ith instance can be averaged over all instances:

1 N
diversity = N Z diversity; 2.9)
i=1

Pairwise Measures

The first measure, Yule’s Q statistic [48]] varies between -1 and 1. If the clas-
sifiers commit their errors independently, Q will be negative. Q is, for two
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classifiers, h; and hy,
Nl lNOO - NIONOI

Qjx= NTTN00 - Ay TOp01 (2.10)
Pearson’s correlation coefficient (p) between h; and Ay is
Nl]NOO _N10N01
(2.11)

=
Pi, \/(N11+N10)(N11+N01)(N00+N10)(N00+N01)

For any two classifiers, Q and p have the same sign. The disagreement
measure [49] is the ratio between the number of instances for which one clas-
sifier is correct and the other incorrect and the total number of instances:

_ N01+N10 _ N01+N10
T NTANO L NO LN T TN

D 2.12)

The double-fault measure [8;150] is the proportion of instances misclassi-
fied by both: classifiers

NOO NOO

DF; = NTT £ NOO L N0 E NOT —

2.13)

The pairwise inter-rater agreement (the k coefficient) [51] is defined as

Z(NIINOO _NIONOI)
Kjk=
Ik (N N10)(NTT 4 NOT) (NOO 1 N10)(N00 - NOT)

(2.14)

For all pairwise measures, the averaged value over the diversity matrix is
calculated using

Non-Pairwise Measures

The entropy measure E defined by Kuncheva and Whitaker [4], varying be-
tween 0 and 1 (highest possible diversity), is

1
=5

1

M=

E mmin{cl‘,L—Ci} (215)

2

I
—

Another entropy measure H is defined by Cunningham [52]:

1 N
H=- Y P(yi = 1]xi)logP(y; = 1]x;) + P(yi = —1|x;)logP(y; = —1]x;)

- (2.16)

22



The Kohavi—Wolpert variance [53]] can be used to obtain another diversity
measure KW, which turns out to differ from the averaged disagreement mea-
sure only by a coefficient: for details see [4].

1 N
KW = W;l(Zi)(L—l(zi)) (2.17)

The inter-rater agreement (the k coefficient) [37;51] is

C,'(L—Ci)
L(L—1)p(1—-Dp)

The difficulty measure was used by Hansen and Salomon [2[]. Let X be
a random variable taking values in 0/L,1/L,...,1. Then X is defined as the
proportion of classifiers that correctly classify an instance x drawn randomly
from the data set. To estimate X, all L classifiers are run on the data set. The
difficulty is then defined as the variance of X. Using the formalization used in
[47] the measure is

K=1-

2.18)

7 —L(1—p)?
L

The generalized diversity measure was proposed by Partridge and Krzanowski
[54].

diff; = (2.19)

GD=1- 283 (2.20)

-1
where p(1) = Y1, %Pl and p(2) = Y %ﬁpl

Here, B is a random variable expressing the proportion of classifiers that
are incorrect on a randomly drawn instance, p; is the probability that B =1[/L,
and p(I) is the probability that / randomly chosen classifiers will fail on a
randomly chosen instance. GD varies between 0 (minimum diversity) and 1.

The coincident failure diversity is a modification of GD, also presented in
Partridge and Krzanowski [54].

0, po=1.0
CFD= 1 L Ll (2.21)
T—F Li=1 —1Pi, Po<1.0

Tsymbal et al. [55] presents a diversity measure which they refer to as
ambiguity:
L

2
ambi = %Z <I [hl(x,') = 1] — %(1 +yimi)>

=1

2
+ (1 [ (xi) = —1] = %(1 —yimi)> (2.22)
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Another measure was used in [7;[11] and is defined as
L1

1Ni

=

d= () # H(x)] (2.23)

= 1

Finally, a diversity measure was defined in the dissertation by Chen [56]:

L
A=— Z <iH(x,) - wlhl(xl-)> yi (224)
where w; is a model specific weight that can be used when the different models
are weighted differently. Chen showed that this diversity measure was more
correlated with test set accuracy than other diversity measures. He also used
this measure to propose several regularized negative correlation learning algo-
rithms suitable for classification.

Diversity of Errors

The diversity measures defined above do not distinguish between a diversity
achieved on instances where the ensemble is correct and a diversity achieved
on instances where the ensemble is wrong. A special situation arises when
trying to predict multiclass problems, since diversity can also be measured
among the different classes. Based on this, three additional diversity measures,
referred to as measures for diversity of errors, are presented in [57]], which
measure the diversity among classes when the ensemble is incorrect.

The distinct failure measure (DFD) [58]] focuses on cases where incorrect
predictions are coincident but distinct, i.e. resulting in different erroneous out-
puts. Let

__number of times that n classifiers fail identically

t, =
" total number of times a classifier fails
The DFD is defined as
DFD = i N-n, (2.25)
a n=1 N—-1 ! .

When no errors are made, DFD is defined to be 1. A higher DFD indicates
more diversity.

The same fault (SF) measure is a variant of the double fault measure. In-
stead of only calculating the proportion of instances misclassified by both clas-
sifiers, the same fault measure calculates the proportion of instances misclas-
sified as the same class by both classifiers. For a pair of classifiers, i and k, the

measure is defined as
NOO
SF i = % (2.26)
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A lower SF indicates more diversity.

The weighted count of errors and correct results measure (WCEC) is also a
pairwise measure. The measure includes both correct and incorrect predictions
and uses a weight to punish pairs that make the same mistake more than pairs

that make different mistakes. For a pair of classifiers, i and k, the measure is
defined as

(2.27)

1
WCECix=N"+ 2 (N +N') = Ngif feren = SNyime-
The weighting is arbitrary and is based on the idea of especially penalizing
identical errors.

Majority Vote Decomposition of Ensemble Error

The same measure (without the weight) as defined in Equation (2.24) was used
by Brown and Kuncheva in [46], where it was used in a decomposition of the
ensemble error into the individual error and this measure. The decomposition
further divides this measure into a constructive and destructive part. Brown
and Kuncheva refer to these parts as ‘good’ and ‘bad’ diversity.

The decomposition as given in [46] is provided below. In the case of a
binary problem, where Y = {1, —1}, the zero—one error of the individual model
on an instance z = (x,y) is

JOoy=mx) 1
el(x)_{l,y;éhl(x) =5 (1 =y (x)) (2.28)

The zero—one error of the ensemble using majority vote is

1
em() = 5 (1= () (229)
The disagreement between model /; and the ensemble H is defined as

di(x) = 5 (1~ () H () (2.30)

Since H(x) € {1,—1}, making it possible to write Zg; = hy(x)H (x), the

difference between the ensemble error and the average individual error, ejnq, is
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_ ;(1—yH(x))—ig;(l—yh1(x)) (231)
= L HE) l_il Vi (2) (2.32)
@ 1_21; <1 . 8) (2.33)
= HE LY 5 () (234)
— SHWL Y (2.35)

Consequently, the ensemble error can be shown to be composed of the
average individual error and A:

=1 —
gl

€maj(X) = €inda(x) — yH (x) di(x) (2.36)

—
Il

1

The decomposition essentially shows that a lower average accuracy of in-
dividual models can be compensated for by a higher disagreement with the
ensemble as long as the ensemble is correct [59]].

One important difference between the decomposition of ensemble error
for regression and classification is that the diversity term in the classification
includes the class label of the instance. The above equations calculated the
zero—one error of a single instance. To calculate the majority vote error over
all the instances, E,,j, taking advantage of the fact that yH (x) = 1 when correct
and yH (x) = —1 when incorrect, the integration with respect to the probability
density function becomes

1 L
Emaj = / €ind (X) — /x yH (X)Zl;dz(x) (2.37)

1 & 1 &
— /xeind(x)— x+Ll_Zidl(x)+/x_Ll§dl(x) (2.38)

good diversity bad diversity

where x+ refers to instances on which the ensemble is correct and x— refers to
instances on which the ensemble is wrong.
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Consequently, increasing the disagreement is beneficial for instances where
the ensemble is correct and detrimental for instances where the ensemble is
wrong, hence the labels ‘good’ and ‘bad’ diversity.

In [59], the decomposition in Equation (2.36) is generalized to more than
two classes. The generalized decomposition is

L
em(¥) = em()~  LUHE =3 =19 =3]) @39

For binary problems, the right hand side of Equation (2.36) can be consid-
ered to be a diversity measure. In the general case, when |Y| > 2, the right hand
side of Equation (2.39) must be used instead. For |Y| > 2, the disagreement is
no longer expressed in terms of class labels but in terms of correctness (which
coincides for |Y| = 2, as shown above).

2.2.2  Diversity and Margins

The connection between diversity and the concept of margin has been dis-
cussed in several papers [22}; 147} 60]]. In his thesis, Stapenhurst analyzes di-
versity in terms of margin theory [60]. He shows that many of the diversity
measures presented above can be defined using the margin as well. The mar-
gin of an ensemble where Y = {1, —1} is

1 L
m(x.y) = 7 ) yhi(x) (2.40)
=1

where the following shorthand, m; = m(x;,y;), is used when referring to a spe-
cific instance. The averaged margin over all training data is 7 = %Zﬁvzl m;.
The margin equivalent of the diversity measures are presented in Table[2.1]

Translating the diversity into the terminology of a margin makes it possible
to analyze diversity from a perspective that has been studied extensively in
other contexts. A discussion of the findings by Stapenhurst is provided in
Section[2.4] on related work.

2.3 Ensemble Creation

The process of building an ensemble could be said to consist of three stages
[22]. In the first stage, a set of base classifiers is generated. The selection of
base classifiers to include is performed in the second stage. The third stage
consists of combining the selected base classifiers using an appropriate combi-
nation strategy. These stages do not have to be performed sequentially. In fact,
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Measure

Q statistics

Pearson’s correlation coefficient (p)
Disagreement

Double Fault

Pairwise inter-rater agreement

(x coefficient)
Entropy E (Kuncheva)

Entropy H (Cunningham)
Kohavi—Wolpert variance

Inter-rater agreement (x coefficient)
Difficulty

Generalized Diversity

Coincident failure diversity
Ambiguity (Tsymbal)
Ambiguity (Zenobi/Melville)
Ambiguity (Chen/Brown)

Margin Interpretation

None
None
D = sz (1 —m})
DF; = 3(1—m;) — gy (1—m
None

1 (1)
dif f; = %(m? —m?)
GD; = AL (L )

L-1 2(1=po)
Amb; = 1 —m?
di = %(1 — |mil)

Table 2.1: Diversity Measures Interpreted using Margins
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many ensemble creation algorithms execute these stages iteratively or even in
parallel.

The focus of the first stage is to generate a diverse set of base classifiers.
Diversity can be achieved either by explicitly seeking to maximize diversity
or in an implicit way. A method is said to use implicit diversity whenever
diversity is not achieved by explicitly altering the parameters of the algorithm
based on the intermediate results.

Brown et al. [3] introduced a taxonomy of methods for creating diver-
sity. The first obvious distinction made is between explicit methods, where
some metric of diversity is directly optimized, and implicit methods, where
the method is likely to produce diversity without actually targeting it. The
different methods for producing and using diversity were divided into three
categories: starting point in hypothesis space, set of accessible hypotheses,
and traversal of hypothesis space. These categories, and how they apply to
ANN ensembles, are further described below.

2.3.1 Starting Point in Hypothesis Space

For ANNSs, the most obvious starting point in hypothesis space method is to
simply randomize the starting weights; something that must be considered a
standard procedure for all ANN training. Alternatively, the weights could be
placed in different parts of the hypothesis space. Unfortunately, experimenta-
tion has found that ANNs often converge to the same, or very similar optima,
in spite of starting in different parts of the space; see e.g. [61]]. Thus, according
to Brown et al. [3]], varying the initial weights of ANNs does not seem to be
an effective stand-alone method for generating diversity.

2.3.2 Set of Accessible Hypotheses

The two main principles regarding set of accessible hypotheses are to manip-
ulate either the training data or the architecture. Several methods attempt to
produce diversity by supplying each classifier with a slightly different training
set. Regarding resampling, the view is that it is more effective to divide the
training data by feature than by instance; see [[62]]. All standard resampling
techniques are by nature implicit.

According to Brown et al. [3], the effect of only differentiating the number
of units in each layer is very limited. Hybrid ensembles where, for instance,
MLPs and RBF networks are combined, are sometimes considered to be a
“productive route”; see [63l]. Regarding hybrid ensembles, Brown et al. [3]]
argue that two techniques that search the problem space in very different ways
will probably result in models that specialize in different parts of the problem
space. This implies that when using hybrid ensembles, it would most likely
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be better to select one specific classifier instead of combining the outputs from
the different models.

2.3.3 Traversal of Hypothesis Space

A common solution for traversal of hypothesis space is to use a penalty term
enforcing diversity in the error function when training ANNs. A specific and
very interesting example is negative correlation learning [64]], where the co-
variance between networks is explicitly minimized. For regression problems
it has been shown that NC directly controls the covariance term in the bias—
variance—covariance trade-off; see [65]. However, it does not work for classi-
fication problems when the models used can only output results at the abstract
level, i.e., the class labels.

2.3.4 General Ensemble Creation Strategies

Some approaches for ensemble creation are better characterized as strategies
rather than algorithms. The best known and most acknowledged among these
are bagging and boosting. Many ensemble creation algorithms are variations
of these strategies.

In bagging [66]], diversity is achieved by training each base model using
different emulated training sets obtained using resampling. Each training set
(called bootstrap) consists of the same number of instances as the entire set
of data available for training. Every bootstrap is created using sampling ac-
cording to a uniform distribution. Instances may appear more than once in
a bootstrap, since instances are drawn with replacement, with the result that
approximately 63.2 % of available instances are included in each bootstrap.
After the models have been trained, test instances are predicted using either
voting or averaging. Bagging is most often used in classification, but may also
be used in regression. When used for regression, the median may be used in-
stead of averaging to achieve more robustness. Bagging almost never leads to
increased error rates.

Since only a subset of the instances are used to train each model, there is
always a portion of the available instances that has not been used to train a
model. These instances are called out-of-bag, since they are not included in
the bag of instances training the model. The out-of-bag instances can be used
as an unbiased estimator of model performance, since they have not been used
when training the model. It is also possible to get an out-of-bag estimate of
the performance of an entire bagging ensemble, even though every instance
has been used when training a subset of the models. By forming an ensemble
composed of only the models for which an instance is out-of-bag, it is possi-
ble to get an unbiased estimate of the bagging ensemble while still using all
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instances for training. Since the out-of-bag ensemble is approximately 1/3
the size of the entire bagging ensemble, the out-of-bag error estimate tend to
overestimate the actual error made by an ensemble, simply because a larger
ensemble is normally a stronger model.

Targeting diversity is inherent in random forest models [[17], a technique
utilizing bagging as a foundation for how the algorithm works, even if no di-
versity measure is explicitly maximized. A single tree in a random forest is
very similar to a standard decision tree like CART. The basic idea is, however,
to directly create an accurate decision tree ensemble, by introducing random-
ness in both the instance selection and in the feature selection. The feature
selection is performed by randomly selecting a subset of the features to use at
each new node during the creation process.

A novel approach, called random brains, to create accurate but diverse en-
sembles of ANNs was presented and evaluated in papers [Vl and [XXTI|[67; 68].
The algorithm was inspired by how random forests manage to create both accu-
rate and diverse ensembles without explicitly targeting diversity. Apart from
using bagging, each ANN had a slightly randomized architecture, with ran-
domly removed links between layers. The idea is that the randomly removed
links will increase diversity by making each neuron affected by only a subset
of the input attributes. The inspiration came from the procedure used when
training the decision trees in random forests, where each split is based on only
a randomized subset of the attributes.

In boosting, introduced by Schapire [69], the models are trained on data
sets with entirely different distributions. It can be used to improve the per-
formance of any learning algorithm. Unlike bagging, where training could be
done independently and even in parallel, boosting is an inherently sequen-
tial procedure. The basic idea in boosting is to assign a higher weight to
more difficult instances, thus making the learning procedure focus on these
instances. Initially, all instances have equal weights. After the first model
has been trained, all instances it fails on get an increased weight, while all in-
stances it succeeds on get a weight reduction. The weight of an instance can be
used either as part of the score function or as the probability that that instance
will be drawn when bootstrapping is used. Most often, the ensemble predic-
tion is based on a weighted majority vote, where the weights are based on the
performance on some validation set.

Three fundamentally different types of boosting exist, according to Haykin
[41]].

e Boosting by filtering involves filtering the training examples by different
models. The procedure is that a first model is trained on a subset of N
instances. Then a new set of N instances is built by evenly selecting
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instances correctly and incorrectly classified by the first model. Thus,
the first model will be approximately 50 % correct on the second data
set. A second model is then trained using the second data set. Finally, a
third set of instances is formed by adding N instances that the first two
models disagree about. The third set is again used to train a final model.
This form of boosting is rather uncommon.

e Boosting by subsampling works with a training sample of fixed size.
The training instances are resampled according to a given probability
distribution during training.

e Boosting by reweighting also works with a fixed sample size. It assumes
that the learning algorithm can receive weighted training instances.

Many different boosting algorithms have been proposed. The typical varia-
tions are in how the weights are updated and what kind of combiner to use. The
most well-known and used boosting algorithm is called AdaBoost (Adaptive
Boosting) [70]. AdaBoost can use either subsampling or reweighting.

2.3.5 Combination Strategies

Kuncheva [435]] gives a detailed review of the different kinds of combiners for
the two most common types of outputs, i.e., labeled and measurement out-
put. Since combiners are not the focus of this thesis, only the most common
combiners will be briefly explained.

Combination of labeled outputs

The most straightforward combination strategy for labeled output is the major-
ity vote. The class that most base classifiers vote for will be the output of the
ensemble. In case of a tie, the class can either be randomly selected from the
tying classes, or the decision can be guided by other information, such as the
prior probabilities of the classes.

When the base classifiers are not equally accurate, it makes sense to let the
vote of each base classifier be weighted by how competent it is. In practice,
the weighted majority vote might be better than the simple majority vote, but
it is susceptible to overfitting if the weights are based only on the performance
on the training set.

There are a number of other combiners for labeled output, some of which
might outperform the simple majority vote under certain conditions. Refer to
[45] for a theoretical examination and comparison of several different combin-
ers for labeled output.
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Combination of measurement outputs

When considering measurement outputs, there are several different approaches
proposed in the literature. They can be divided into class-conscious combin-
ers and class-indifferent combiners. The class-conscious combiners derive the
overall support for a particular class from all the measures for that class, one
class at a time. The class-indifferent combiners, on the other hand, treat the
combination task as a new problem to be learned, where the measurements
from the ensemble members are used as input. Though class-indifferent com-
biners represent interesting alternatives, they have not been used in this thesis
and the reader is referred to, e.g., [45] for further details. The class-conscious
combiners that are described here can be applied as soon as the base classifiers
are trained. Let d; j(x) be the output of base classifier i for class j on instance x
and let L be the number of base classifiers in the ensemble. The support S for
each class is calculated using

Sj(X):f(dl"j(X),...,dL’j(X)) (241)

where f is the combination function. The class label of instance x is found as
the index of the maximum S;(x). The most popular choices for f include:

o Simple mean (average) (f = average).
o Minimum/maximum/median (f = minimum/maximum/median).
e Product (f = product).

o Trimmed mean (competition jury). For a K percent trimmed mean, the
individual support of the L base classifiers are sorted and K percent of
the values are dropped on each side. The overall support is found as the
mean of the remaining degrees of support.

The most common and most intensively studied combiners in this group
are the product and the average combiners. There is no guideline as to which
of these is best for a specific type of problem. The average, on the one hand,
might in general be less accurate for some problems, but on the other hand,
it is the more stable of the two [62; [71-73]. There are other class-conscious
combiners not covered here. Again, the interested reader is referred to, e.g.,
[45] or [[74] for further reading.
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2.4 Related Work

2.4.1 Analysis of Diversity

Kuncheva and Whitaker [4] analyzed 10 diversity measures and from their
experiments, diversity did not appear to be very useful as a selection criterion
when constructing ensembles. Even though several different experiments were
performed, some of them were rather artificial while the others were run only
on a very limited set of problems.

The conclusions drawn by Kuncheva and Whitaker were further strength-
ened in a number of studies [21f[22]]. Tang, Suganthan and Yao [22] analyzed
some of the diversity measures and argued that since diversity is not precise,
in the sense that some ensembles might have the same average base classifier
accuracy and diversity on the training data while still achieving different per-
formance on the test data, it should not be used as a selection criterion. Saitta
[21] supported the negative view of Kuncheva [20] and also showed that not
only does no working diversity measure exist, but no diversity measure is likely
to ever exist. The reason is that the relationship between performance and di-
versity is not monotonic, i.e., the greatest diversity does not correspond to the
best performance. Furthermore, the level of diversity necessary to achieve op-
timal performance for an ensemble of size L also depends in a non-monotonic
way on L itself.

Another approach to diversity could be described as localized diversity
[57;[75]. Sun and Zhang [75] proposed using region partitioning and region
weighting by neighborhood accuracy to implement effective subspace ensem-
bles where the performance of k-nearest neighbor (k-NN) is used to adjust the
weights of the classifier for a local region. k-NN is a predictive classification
technique where the classification is based on a majority vote by the neighbors
of the instance to be classified. Aksela and Laaksonen [57]] examined diversity
of error measures. They argue that the final objective in classifier combination
is not to produce a set of classifiers that has a maximal level of diversity regard-
less of what the correct classification would be. Instead, situations where the
classifiers agree on the correct result should be rewarded rather than penalized
when selecting the member classifiers, even though this is contradictory to the
naive diversity maximization principle. Aksela and Laaksonen in particular
argue against the use of pairwise measures, saying that

[w]hen having found the two most diverse classifiers, adding
a third to the set always decreases the set’s overall diversity as the
measure value for the larger set is an average of the pairwise val-
ues. Naturally in most cases selecting just two member classifiers
from a large pool will not be the optimal solution for classifier

34



combining purposes. [57]]

Breiman analyzed the performance of random forests in terms of strength
and correlation [[17]. He showed that the two ingredients involved in the gener-
alization error are the strength of the individual classifiers and the correlation
between them. The empirical evaluation indicate that better ensembles have
lower correlation between classifiers and higher strength.

Stapenhurst used the connection with margin theory previously identified
by Tang et al. [22] to carry out an analysis of diversity in his thesis [60].
All but a few of the proposed diversity measures can be expressed using a
margin, i.e., they can be said to be margin measures. He shows that there
are situations where the margin distributions are identical while the diversities
(using the p correlation diversity measure) differ. Furthermore, he showed that
when transforming a weighted ensemble into an unweighted ensemble (using
duplication of more strongly weighted models), the margin is unaffected while
the diversity can change. The conclusion drawn by Stapenhurst is that in most
cases, it makes more sense to discuss ensemble performance in terms of margin
theory, since it is better understood. However, he also acknowledges that the
Q-statistics and the p correlation measures cannot be expressed using margin
theory. He showed experimentally that a high diversity can be detrimental
to the test set accuracy when using some algorithms and datasets. However,
diverse bagging ensembles seemed to generalize so that the ensembles still
achieved high test set accuracy.

Diversity in boosting ensembles has been studied in a number of papers
[60; [765 [77]. Since AdaBoost introduces diversity by example reweighting, it
should be seen as an ensemble algorithm that explicitly optimizes diversity.
However, no diversity measure is explicitly optimized, but the optimization is
inherent in the weighting scheme. Shipp and Kuncheva [77] showed that the
diversity initially increases but later gradually returns to its starting level for
almost all evaluated diversity measures. Stapenhurst [[60] is able to explain the
connection between performance and diversity in terms of a margin, showing,
e.g., that quadratic loss represents a tradeoff between squared margin diver-
sity (e.g., disagreement diversity) and average margin (i.e., average individual
accuracy).

Kuncheva recently published a paper [78] evaluating x-error plots. The
experiments show that for smaller ensembles, the most important factor ex-
plaining ensemble accuracy is the accuracy of the individual models. It is
also evident that it is possible to achieve good performance either by hav-
ing very accurate individual models that are less diverse or by having slightly
less accurate individual models that are more diverse. Furthermore, Kuncheva
demonstrates that the analysis of diversity using x-error plots is a fruitful way
to increase the understanding of the relationship between ensemble error, indi-
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vidual error, and the diversity of the ensembles.

2.4.2 The Static Overproduce-and-Select Paradigm

Kuncheva presents a review of previous work where diversity in some way has
been utilized to select the final ensemble [45]]. Giacinto and Roli [8] form a
pairwise diversity matrix using the double fault measure and the Q statistic
[79] to select the least related classifiers. They search through the set of pairs
of classifiers until the desired number of ensemble members is reached. The
algorithm was evaluated on one dataset and was compared to the ensemble
formed by using the complete pool of models. It is impossible to tell whether
the proposed algorithm is significantly different from using the entire pool of
models as the ensemble. Giacinto and Roli [10] also applied a hierarchical
clustering approach where the ensembles are clustered based on pairwise di-
versity. The ensemble was formed by picking a classifier from each cluster
and step-wise joining the two least diverse classifiers until all classifiers be-
long to the same cluster. The ensemble used in the end was the ensemble with
the highest accuracy on a validation set. Margineantu and Dietterich [9] also
search for the most diverse pairs of classifiers from a set of classifiers produced
by AdaBoost. They call this approach “ensemble pruning”.

Banfield et al. [80] used an approach where only the uncertain data points
were considered and used to exclude classifiers failing on a larger proportion
of these instances, compared to other classifiers. No significant difference
between the solutions could be detected.

It should be noted that all these approaches select ensembles based on the
diversity between pairs of classifiers, rather than on ensemble diversity.

Chandra and Yao [81]] proposed an algorithm, called the diverse and accu-
rate ensemble learning algorithm (DIVACE), that uses a multi-objective evolu-
tionary approach to ensemble learning. DIVACE tries to find an optimal trade-
off between diversity and accuracy by treating them explicitly as two separate
objectives. The diversity measure used in DIVACE is the correlation measure.
The DIVACE algorithm continuously produces neural networks and tests them
against other networks. Neural networks that are non-dominated are kept and
dominated networks are discarded. The algorithm is evaluated on two datasets
and compared to another algorithm using a similar produce-and-discard strat-
egy.

Chen evaluates different pruning (i.e., static overproduce-and-select) algo-
rithms in his dissertation and compares them to the full ensemble formed using
all the available models. The proposed static overproduce-and-select algorithm
is based on expectation propagation (EP) and works for both classification and
regression problems. It seems to work for regression problems, winning over
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the full ensemble on 6 out of 7 datasets. On classification problems, the pruned
ensembles are not significantly better than using the full ensemble. In fact, on
most datasets, the pruned ensemble and the original ensemble are equally ef-
fective, i.e., they tie.

In a more recent paper [82]], an information theoretic link between accuracy
and diversity is proposed and used as a selection criterion. The selected sub-
ensembles were compared to the single best individual model.
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3. Conformal Prediction

Conformal prediction (CP) was introduced as an approach for associating clas-
sification or regression predictions with reliable confidence estimates 83 [84]].
Vovk, Gammerman and Shafer provided a comprehensive introduction to con-
formal classification in [85]] and presented a tutorial on CP in [86]. This chapter
introduces the elements of conformal prediction relevant to this thesis. Much
of the material is adapted from [87-89]]. Since the focus of this thesis is clas-
sification, the presentation of CP will also be focused on how the framework
can be applied in a classification context.

3.1 Introduction

In essence, the conformal prediction framework makes it possible to answer
the question: how confident can we be that a prediction is actually correct?
This question is not new, and several approaches have been proposed for an-
swering it; most well-known are the Bayesian framework and the theory of
Probably Approximately Correct learning (PAC theory) [90]]. Bayesian learn-
ing requires that the distribution that generates the data is known beforehand,
resulting in misleading confidence estimates if the correct prior is not known
[915192]. PAC theory, on the other hand, can only provide bounds for the over-
all error of the model and not for individual test examples [91]. In cases when
the data is not very clean, the bounds of the confidence estimates produced
by PAC theory also tend to be too wide to be useful in practice [93]. CP, on
the other hand, does not rely on any knowledge of the prior distribution, and
provides separate confidence estimates for each predicted example.

An ordinary machine learning model is used as an underlying model to CP,
and the conformal framework transforms the predictions from the underlying
model into valid prediction sets.

When applied to regression problems, CP produces predictions in the form
of prediction intervals for a specified confidence level; for classification prob-
lems, CP produces predictions in the form of class label sets. Typically, the
higher the confidence expected from a conformal predictor, the larger the pre-
diction intervals (or class label sets) will be. A prediction is erroneous if the
true target is not included in the prediction interval (or class label set) for that
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instance.

The confidence predictions provided by CP are said to be valid, meaning
that the probability of making an erroneous prediction is guaranteed to be less
than or equal to a predefined significance level € in the long run; the confidence
in such a prediction is thus 1 — €. The practical meaning of validity is that
when predicting a set of instances with for example a confidence of 95 %, i.e.
€ = 0.05, the percentage of erroneous predictions in that set is guaranteed not
to exceed 5 % in the long run.

Validity is guaranteed under the assumption that the data is exchangeable,
which is a slightly weaker assumption than the assumption that the data is
independent and identically distributed (i.i.d). Most machine learning algo-
rithms work under the assumption of i.i.d, i.e., that the instances are selected
randomly and independently according to an identical probability distribution
[94]. For the assumption of exchangeability to hold, any ordering of instances
must be equally likely. When data is evaluated offline with access to the com-
plete dataset, exchangeability can easily be achieved by randomizing the or-
dering of instances. For streaming data, where the ordering of instances is
fixed, the framework will work as long as no concept drift occurs. However,
the framework can also be used to identify when a concept drift has indeed
occured [95]].

The central component of the CP framework is the conformity function.
The conformity function assigns a conformity score to each instance—label
pair. When predicting a specific test instance, a conformity score is assigned
to each possible class label and the scores are compared to the scores obtained
from instances with known class labels. The instances with known class labels
are only assigned a conformity score for the true class. The labels that are
found to be nonconforming compared to the scores of the labeled instances are
excluded. A label is considered nonconforming if the conformity score for that
label is lower than a predefined fraction (the significance level €) of the scores
assigned to the labeled instances. The prediction for the test instance is the set
of class labels that was not excluded.

CP has a resemblance with hypothesis testing since each possible class
could be considered as a null hypothesis which may be disproved if it is sig-
nificantly different from the labeled data.

CP was originally formulated in a transductive setting, which means that
the conformity scores had to be recalculated for each new test instance and
class label. The implication of that is that a new model has to be trained for
each test instance and each class. For most machine learning techniques, this
is clearly not a feasible approach. To overcome this, an inductive version was
introduced for classification by Papadopolous in [91]. When using Inductive
Conformal Prediction (ICP), the training data is split into a proper training
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set, used to train a single model, and a calibration set, used to calibrate the
conformity scores for a test example to identify whether it is conforming or
not.

In the following more formal description of ICP, a similar notation is used
as in [96]. The set of instances is denoted by Z, which is the Cartesian product
X x Y of the independent variables X, henceforth called the object space, and
the dependent variable Y. Consequently, each example z € Z consists of two
parts: z= (x,y), where x € X is the object and y € Y is the dependent variable.
In classification, Y is a finite set, usually referred to as the class variable, and
in regression, Y is the real line R.

Let us consider a set zy, ..., zy of training instances, where N is the number
of available instances and z; = (x;,y;) € Z. We split the set into a proper training
set (21, ...,zm) Of size m < N and a calibration set of size [ := N —m.

Let xy4+1 (or x for short) be a new test object. The idea of conformal
prediction is to try all possible class labels ¢ € Y for the test object to measure
how well each label conforms to the proper training set. In other words, for
an object and class label, z = (x,c), the aim is to determine if it is possible
that the label c can be the true class label for the object x. To determine if that
is possible, a conformity score A((z1,...,2m),z) needs to be calculated using
the inductive conformity function A : Z™" x Z — R. The conformity function is
often defined by

A((z15--02m), (x,0)) == Ale, f(x)), 3.1

where f: X — Y is a predictive model, trained using the proper training set
{z1,..-,2m}, predicting f(x) € Y’ for the object x. A:Y x Y — R measures
the similarity between the class label ¢ € Y and the prediction f(x) of the un-
derlying model. The reason why the model is allowed to produce a prediction
Y different from the set of available classes Y is that the model may output
additional information, such as a probability estimate for each class, that can
be used by the similarity measure A. The model f is trained using a machine
learning algorithm, such as neural networks, decision trees, k-nearest neighbor,
ensembles, etc.

A randomized (‘smoothed’) inductive conformal predictor (ICP) using the
conformity function A is defined as the set predictor

T¥(21,es2ns%) = {elpt > £}, (3.2)

where € € (0, 1) is the chosen significance level and p¢, ¢ € Y is defined by

= Hi=m+1,.,Nlog<a‘}+6|{i=m+1,..,Nay=a}|+1
N—m+1

; (3.3)
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where 6 is a uniform random number in the interval [0, 1] and

o = A((Zla"'azm)azi)ai:m+17"'7Na (34)
o = A((z1,--r2m), (x,0)) (3.5)

are the conformity scores for the calibration set and the test example, respec-
tively. Conformity scores are only calculated for the true target on the cali-
bration instances, while one conformity score is calculated for each class label
¢ € Y for the test object x.

Obviously, it is always possible to get a point prediction from CP by simply
selecting the class with the highest p¢ as the predicted class.

3.1.1 Measuring Efficiency

Since the error level is directly controlled by the user specified significance
level, accuracy is not a very useful measure when evaluating and comparing
conformal predictors. Instead, CP is evaluated in terms of efficiency—the size
of the prediction intervals or prediction sets. In other words, the mechanism
enabling CP to produce valid predictions is a trade-off between the accepted
error level and the crispness of the predictions. A prediction set may contain
all, some, or even no class labels in classification. For regression, efficiency
can be measured as the average or median width of the prediction intervals
[97].

For classification, two general and often used sets of criteria of efficiency
are:

o The confidence and credibility of the prediction p,c € Y. Confidence is
1 — min.(p°) and credibility is max.(p¢). These criteria do not depend
on the significance level €.

o Whether the prediction set contains a single class (the ideal case), mul-
tiple classes (an inefficient prediction), or no classes (a super efficient
prediction) for a certain significance level €. The average number of
singleton predictions for a certain significance level € has been used in
some publications.

In [98]], a more systematic discussion of criteria for measuring efficiency
in the classification context was given. Two kinds of criteria were identified:
those applicable to prediction sets I and consequently dependent on the sig-
nificance level €, and those applicable directly to the sets of p-values (p¢|c € Y)
and consequently independent of €. A further distinction that was made is be-
tween prior and observed criteria, where prior criteria are ignorant of the true,
or observed, class label of a test instance and the observed criteria are based
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on knowledge of the true class label. Ten different criteria of efficiency was
discussed and divided into prior criteria and observed criteria.

Prior Efficiency Criteria

The prior criteria presented in [98]] are divided into criteria independent and
dependent of the significance level €. For measures independent of &, smaller
values are preferable.

e The Sum criterion [99] measures efficiency by the average sum of the
p-values over all ¢ test instances.

1 N+t .
; Z Zp;ace Y
i=N+1 ¢

o The Unconfidence criterion is the average unconfidence, which is the
second largest p-value.

1 N+t ,
" Z mincmaxy.p; ,c €Y
i=N+1

This is equivalent to measuring the average confidence (1 —unconfidence).

o The Fuzziness criterion is the average fuzziness, where fuzziness is de-
fined as the sum of all but the largest p-value.

1 N+t

- Z pr—maxcpf,ceY
Ly vl s

If two conformal predictors are compared and fare equally well using ei-
ther the unconfidence or fuzziness criterion, then the average credibility
is used instead.

Criteria that are dependent of €.

o The Number criterion [99; [100] measures efficiency as the average size
of the prediction sets. The size of a prediction set is the number of labels

in the set.
1 N+t
-y
i=N+1
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e The Multiple criterion measures the percentage of prediction sets con-
taining multiple class labels at a specific significance level €. Once the
multiple criterion reaches zero, the percentage of empty prediction sets
is measured instead. As an alternative, the percentage of singleton pre-
dictions can be measured instead. For the multiple criterion smaller val-
ues are preferable, while larger values are preferable when measuring
the percentage of empty prediction sets.

e The Excess criterion is similar to the number criterion, except that it is
the number of class labels exceeding 1 that is measured, i.e. the average
number of excess labels.

1 N+t

Y, (rfl=1)

Ui N1

Smaller values are preferable.

For binary problems, i.e. when |Y| = 2, the unconfidence and fuzziness,
as well as the multiple and excess criteria coincide. Both paper and
use a criterion similar to the Number and Excess criteria, called OneC, which
measures the number of instances with exactly one class label in the prediction
region.

Observed Efficiency Criteria

The four observed criteria taking advantage of the knowledge of the true class
label are presented below, divided into criteria that are independent and depen-
dent of the significance level €. For the independent observed criteria, smaller
values are preferable.

e The Observed Unconfidence criterion measures the average observed
unconfidence, where the observed unconfidence is the the largest p-
value among the false labels.

1 N+t
= Y maxcy,piceY
i=N+1

where y; is the true label for instance i.

e The Observed Fuzziness criterion uses the average p-values among the
false class labels.

1 N+t
" Z Z pi,ceyY
i=N+1c#y;
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For the dependent observed criteria, smaller values are better.

e The Observed Multiple criterion measures the average number of pre-
diction sets containing any false labels.

o The Observed Excess criterion measures the average number of false
labels included in the prediction sets.

The Sum and Number criteria have no equivalents among the observed
criteria since they are calculated using all classes.

For binary problems, i.e., when |¥| = 2, just as with the previously men-
tioned criteria, the observed unconfidence and observed fuzziness coincide, as
do the observed multiple and observed excess criteria.

In paper [VIII] which investigates how conformal predictors are affected by
imbalanced data, efficiency is measured using two observed criteria. The first
criterion is called majority error and is defined as the number of majority class
instances from which the true class has been excluded from the prediction set
divided by the total number of instances where the true class has been excluded
from the prediction set. It shows how biased a predictor is in making its er-
rors, since an unbiased predictor will have errors distributed approximately ac-
cording to the prior probability distribution. The majority error criterion only
considers the instances that are incorrectly predicted (or not predicted at all,
if the prediction set is empty). The second criterion used is a variation of the
observed excess criterion, measuring the number of times the majority class
is excluded from prediction sets divided by the total number of class labels
excluded from prediction sets.

3.2 Handling Computational Efficiency of Conformal Pre-
dictors

One of the drawbacks with ICP is that only part of the available data is used for
training the underlying model and for calibrating the conformity scores. How
the division is made may affect the results of the ICP in two different ways.
Using a small calibration set leads to a high variance of the confidence, since
the smaller the calibration set is, the less fine-grained the conformity scores
will be. The p-values may change dramatically just due to a high variance
in the chosen sample. On the other hand, the smaller the training set is, the
less powerful the predictive model will be. In a study aimed at comparing the
efficiency of transductive and inductive conformal prediction, part of the em-
pirical evaluation included an analysis of the effects of the calibration set size
[101]. The empirical results showed that the best performing ICP classifiers
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used 15 — 30 % of the full training set as calibration set. Furthermore, to get
good performance and high confidence (¢ = 0.01), the calibration set should
contain at least 500 instances. On the other hand, having a large proper training
set was clearly the most important factor for maximizing efficiency.

3.2.1 Cross Conformal Prediction

To overcome the drawbacks of having to use only part of the data as training
and calibration sets, cross conformal prediction (CCP) was proposed in [? ].
In CCP, cross-validation is used to ensure that each example is used as part of
the calibration set exactly once. K € {2,3,...} is a parameter of the method
and a model is built for every fold k € {1,...,K}. The examples zi,...,z, are
divided into K different sets. One model is trained for each of the K folds
and for each fold one of the sets is withheld as a calibration set, whereas the
remaining sets are merged into a proper training set used to train the kth model.
Using the model and the calibration set from each fold, a total of k p-values for
each possible class label ¢ € Y are calculated and the p-value from the CCP is
approximately the average of the k p-values calculated from the folds.

More formally, the examples zy,...,zy are divided into K different folds.
Each fold consists of the examples zg,,k = 1,...,K, where (F1, ..., Fx) is a par-
tition of {1,...,N}. The p-values from each fold k € {1,...,K} are defined
as

‘iEFki(X,‘J{S OC,?|+1

P = 3.6
and the p-values from the CCP are defined as
. ZK: iEFkiOC,"kSOCC+1
pc — k=1 | N k ’ (37)
K—1
= ﬁc+m(ﬁc— 1) (3.8)
~ P (3.9)

where p¢ = %Zle Di-
The conformity scores ¢ and oy are defined for each fold k and each
potential class label ¢ € Y by

Qi = Alzr,,z),i € Fy (3.10)
a/g = A(ZF,ka(xaC)) (311)

where F_; = U, Fj.
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3.2.2 Bootstrap Conformal Prediction

Bootstrap conformal prediction (BCP) is similar to CCP. Just as with CCP, K €
{2,3,...} is a parameter of the method and for every k € {1,...,K} a model is
built. Instead of using cross-validation to separate the training and calibration
sets, BCP uses bootstrap replicates [102] and uses all the examples included in
the bootstrap to train a model, i.e. approximately 63.2% of all examples, and
uses the examples not included in the bootstrap as the calibration set for that
model. The bootstrap is a bag, since duplicates are allowed and the examples
not included in the bag are often referred to as out-of-bag.

More formally, for each k € {1,...,K}, a training sample zp, of / exam-
ples is drawn (with replacement) from the available examples zi,...,z;. Since
instances are drawn with replacement, allowing duplicates to be drawn, By
denotes a bag of indices for the examples used to train the kth model. The
conformity scores ¢, and o are defined for each fold k and each potential
class label ¢ € Y by

O = Alzp,z),i € By (3.12)
o = Alzp,(x,c)) (3.13)

where B_; = {1,...,1}\B* denotes the indices of all the out-of-bag examples,
1.e. the calibration set, for the kth model.
The p-value of BCP is defined by

= Yo {i€Bx:tix < o} +T/1

T+T)/l (314)

where T =YX | |B_;] is the total size of the calibration sets.

3.2.3 Using Out-Of-Bag Estimation in Conformity Functions

Bagging Ensembles were introduced in Section [2.3.4] Just to briefly reca-
pitulate, a bagging ensemble [66] is an aggregated model combining several
ensemble members. The ensemble members can be built using any kind of
machine learning algorithm. Each ensemble member is trained using a boot-
strap replicate drawn with replacement from the available data. For classifica-
tion tasks, the combination rule that is used to produce the prediction from the
ensemble is usually the majority vote of all the ensemble members. When us-
ing bootstrapping, approximately one-third of all examples will be out-of-bag
(OOB) for each ensemble member. Using votes only from ensemble members
for which an example is OOB makes it possible to get an unbiased estimate on
the training set.
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Thus, when the underlying algorithm of CP is a bagging ensemble, another
option, besides using ICP, CCP or BCP, is also available. Instead of dividing
the available data into a proper training set and a calibration set, all data can
be used for both purposes by using the OOB examples as a calibration set.

Formally, let H = U;—; . 1h; be an ensemble of size L, where each A, is
called a member of the ensemble. H(x) predicts a class label ¢ € Y for the
object x using majority voting. Let a training sample zg, of size N with exam-
ples drawn (with replacement) from the available examples zy,...,zy be used
to train each ensemble member /;. E; represents the indices of the examples
that are in the bag for the /th ensemble member, i.e. these are used for training
hy,and E_; = {1,...,N}\E, represents the indices of the examples that are out-
of-bag for h;. The conformity score ¢; for a calibration example z; = (x;,y;) is
defined by

(04 :A({Zl, ...,ZN},ZI') = A(yiaME,l (x,-)),i = 1, ,N (315)

where Hg | (x;) = Uj=1,... Lrice_ lu(x;), i.e, only the models for which instance i
is out-of-bag are combined into an ensemble used to predict the calibration
instances.

The conformity score for each class on a test example, &, is defined by
Equation (3.1), letting y = ¢,c € Y and f = M. In other words, the full ensem-
ble M is used normally for all the test examples.

The following argument is taken from [89], where it was given for random
forests and regression. However, the argument is applicable to bagging in gen-
eral, including classification tasks. The text presented here is very similar to
the original text in [89]] but is slightly adapted to fit the context of this chapter.

When using out-of-bag instances instead of a separate calibration set, the
actual underlying model, i.e., the bagging ensemble, is no longer used when
calculating the nonconformity scores and p-values. As shown above, various
subsets of the ensemble are used for the out-of-bag-instances, but the entire
ensemble is used for the test instances. In other words, the nonconformity
functions applied to the calibration and test instances are defined differently:

Calibration: o = A(yi,Hg ,(xi)),i=1,...,N (3.16)
Test: a = A(c,H(x)), (3.17)

where E_; is a random factor determining the subset of models for which in-
stance i is out-of-bag. In general, the use of different nonconformity functions
could clearly cause the resulting conformal predictor to become invalid, i.e.,
the probability of excluding the true target value would no longer be bounded
by the provided confidence level.

In principle, the same random component as used in Equation (3.16)) may
also be used when predicting the target value for the test instance (by only
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considering a random subset of the forest when predicting the target of the test
instance), and in that case the same nonconformity function, Equation (3.16)),
would obviously be used for all instances, hence not violating the assumptions
underlying the ICP framework.

However, when using the whole ensemble for the test instance, as proposed
here, one would expect the predicted values to be closer to the true target than
when using a random subset of the models. The simple reason for this is that
a larger ensemble is normally a stronger model. In fact, it is well-known that
out-of-bag error estimates tend to overestimate the actual error made by an
ensemble for the same reason. Not until the ensemble is so large that the ran-
domized sub-ensembles will be as accurate as the entire ensemble, is this bias
eliminated. For random forests, empirical results indicate that this might hap-
pen when the entire ensemble contains somewhere between 1000 — 3000 trees
[103]. Consequently, the expected nonconformity of a test instance is less than
(or for a very large ensemble equal to) the expected nonconformity of a cal-
ibration instance, i.e. the probability of including nonconforming targets in
the prediction region is unchanged or increased when using the whole forest.
Hence, rather than increasing the risk for generating an invalid conformal pre-
dictor, one would expect the conformal predictor using out-of-bag instances to
be conservative. Therefore, the proposed setup should be, if anything, less effi-
cient than if the whole ensemble was used together with additional calibration
instances.

3.3 Class Label Conditional Conformal Prediction

An often encountered challenge in real-world scenarios is that classes are im-
balanced. The problem of getting good performance in situations where some
data is underrepresented or the class distribution is severely skewed is called
the imbalanced learning problem [23;104]. Chawla et al. wrote in [104]] that
“[t]he class imbalance problem is pervasive and ubiquitous, causing trouble to
a large segment of the data mining community.”

According to He, one important reason for imbalanced data being prob-
lematic is that most machine learning techniques assume a balanced class dis-
tribution [23]]. When such models are trained on imbalanced data, the trained
model often ends up being biased towards the majority class [104; [105]. A
model that is biased towards the majority class will make a disproportionally
large number of errors on the minority class; this is called the class bias prob-
lem [106; [107]]. In the extreme case, all instances will be predicted as the
majority class, making the model practically useless.

When ordinary CP makes a prediction, the error rate is guaranteed for the
prediction set. However, for an individual class, nothing can be guaranteed,
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since it is possible that all errors are made on only one of the classes. Luckily,
CP can be transformed into a class label conditional CP (LCCP) with only
minor alterations. An LCCP is guaranteed to be valid for each individual class
[96]].

Transforming CP into LCCP is a very straightforward operation. The main
difference is that instead of considering all the instances in the calibration set
when calculating the p-value for an object and class label, z = (x,+1,¢), only
calibration instances with the class ¢ are considered. For a label-conditional
ICP, this means that Equation (3.3)) for ICP needs to be changed into

c_ ‘{i:m—i-],...,N:yi:C/\aiSac}’+]
Hi=m+1,..,N:yi=c}|+1

p ; (3.18)

where y; is the true class of calibration instance z;.

CP produces, for each new test object, a prediction region which may con-
tain all possible class labels. When considering LCCP, in theory one condi-
tional conformal predictor is created for each class label:

Ff({zla"',ZN}va+l):{C‘pc>£}7 (319)

where p© is calculated using Equation (3.18).

The label-conditional ICP I'Z will only produce predictions indicating whether
object x is likely to have the class label ¢ or not, with certainty 1 — €. Conse-
quently, since one conditional ICP is defined for each class ¢ € Y, different val-
ues of € can be used for each class, allowing the prediction of different classes
with different levels of certainty. However, since one conformity score is still
calculated for each class, several label-conditional ICPs can be combined into
a conditioned prediction set over all classes, potentially with different signifi-
cance levels for each class, &.:

F({Zlv"'aZN}7xN+l) = {C|pc > EC}’ (320)

If the significance level is the same for all classes, Vc € Y : €. = €, a label-
conditional ICP can be defined using Equation (3.2)) and it will be valid, both
for each class individually, and for the prediction set as a whole.
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4. Research Approach

This chapter presents the method adopted to address the research question. It
starts with a presentation of the research methodology adopted, followed by a
presentation of the datasets used. The chapter ends with a presentation of how
an evaluation should be performed when evaluating machine learning results.

4.1 Research Methodology

Research is “the systematic investigation into and study of materials and sources
in order to establish facts and reach new conclusions” [108]]. Research is nor-
mally performed in the context of a paradigm, defining our ontology, episte-
mology and methodology. Ontology helps us define the form and nature of the
world; epistemology helps us define what can be known about the world; and
methodology gives us the means to obtain knowledge about the world. When
developing IT artifacts, Hevner et al. [109] argues that both the behavioral
science and design science paradigms are suitable alternatives. The behav-
ioral science paradigm seeks to develop theories that can explain or predict
how people will behave in relation to the analysis, design, implementation,
management and use of information systems. Design science, on the other
hand, focuses on problem solving by creating artifacts. Artifacts in this con-
text can be broadly defined as constructs (vocabulary and symbols), models
(abstractions and representations), methods (algorithms and practices), and in-
stantiations (implemented and prototype system). Design is considered to be
both the process of creation and the artifact designed within the design science
paradigm.

Machine learning research can be defined as the field of scientific study
that focuses on algorithms that can learn from data [110]. The underlying as-
sumption within the machine learning field is closely related to the positivist
paradigm. The underlying epistemological assumption is that of objectivism,
i.e. that objective knowledge exists and can be obtained through observation
and experiment. Methodologically, defining how the research question can
be answered, the positivist uses an approach that places the point of decision
with Nature rather than with the inquirer’s bias [111]]. As a consequence, ex-
perimental research is heavily relied upon, since it allows hypotheses to be
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formulated and verified (or falsified) using statistical tests applied to empirical
data.

When doing research in the field of machine learning, the artifacts are ei-
ther theoretical, like algorithms, practical, like implementations or systems, or
a combination of both. When using design science, machine learning algo-
rithms are often implemented as software solutions whose performance can
be empirically evaluated and compared to other solutions [112]]. For theoreti-
cal artifacts, an alternative method of validation is to use mathematical proofs.
Mathematical proofs uses axioms, i.e., self-evident or assumed facts, and the-
orems, which are statements that have been proven using axioms and other
theorems. A mathematical proof is deductive and must demonstrate that a
statement is always true. When it is possible to prove something mathemat-
ically, it is always preferable to empirical evidence. If mathematical proofs
can be derived, empirical evaluation becomes less important and may serve
primarily as an illustrative example or be used for pedagogical purposes.

Since the research question of this thesis regards how ensembles can be
created effectively in the context of classification, the experimental approach
is suitable. It makes it possible to use measures suitable for measuring effec-
tiveness when comparing different methods in controlled experiments. The
research presented in this thesis includes the design, implementation and com-
parison of artifacts of different kinds, and as a consequence it makes sense
to relate the research to the seven guidelines given by Hevner and Chatterje
[113]:

e Design as an Artifact: To be counted as design science, a viable artifact
in the form a construct, a model, a method or an instantiation must be
produced. The results of the research presented in this thesis are artifacts
in the form of methods and instantiations.

e Problem relevance: In Chapter 1, the problem motivating the research
question was presented. By addressing the research question, new in-
sights into how to effectively create ensembles in the context of classifi-
cation have been provided.

o Design evaluation: The artifacts must be rigorously evaluated regard-
ing their utility, quality and efficacy. The artifacts are compared with
each other as well as with standard artifacts in terms of effectiveness as
defined in Section [4. 1,11

e Research contributions: The contributions of this thesis are artifacts
evaluated in order to answer the research question. The outcome of the
studies are summarized and the concluding chapter contains a detailed

92



discussion of how the studies relate to each other and together help to
answer the research question.

e Research rigor: The proposed methods have been rigorously evaluated
following the recommendations for algorithmic comparisons within the
field of machine learning research presented in Section The evalu-
ation has been carried out primarily on benchmarking datasets and the
motivation for using such datasets is given in Section

e Design as a search process: The process of reaching the conclusions of
this thesis have involved investigating and comparing different ways of
creating effective ensembles in the context of classification. The inves-
tigation included surveying the literature for relevant related work.

o Communication of the research: The results of the research have been
presented to the research community in the form of the eight peer re-
viewed publications included in this thesis.

4.1.1 Measuring Effectiveness

To be able to address the research question, it is necessary to define what is
meant, in the context of this thesis, by ‘effectiveness’. The purpose of such a
definition is both to clarify to the reader what is meant when the term is used
in different contexts but also to make it possible to ensure that effectiveness
can be measured adequately. There are a number of different ways to define
effectiveness. Which definition is used can be expected to greatly affect both
the theoretical background, the results achieved, and the kind of conclusions
that can be drawn. Effectiveness is defined differently depending on whether
the context is related to the first or second sub-question.

Effectiveness in the context of the first sub-question is defined as the en-
semble accuracy (or ensemble error) on test data. An effective ensemble is
accurate on test data and the more accurate, the more effective. The main mo-
tivation for this definition is that high accuracy (or low error) is in most cases
the ultimate objective when creating predictive models like ensembles. An-
other motivation for using accuracy as the definition of effectiveness is that
several studies have evaluated to what extent diversity measures can be used
as optimization criteria, and most diversity measures are defined in terms of
accuracy. However, other definitions of effectiveness could also be used to
determine which of the implicit and explicit learning strategies is most effec-
tive. One example of an alternative focus would be to define effectiveness in
terms of how well ensembles can rank correctly predicted instances ahead of
incorrectly predicted. The area under the ROC curve could have been used as
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a definition of effectiveness if ranking ability had been the focus. Another ex-
ample of an alternative focus would be to define effectiveness in terms of how
well the created ensembles can correctly estimate the class probabilities. Using
this alternative focus, the Brier Score, measuring the accuracy of probabilistic
predictions, would have been a suitable definition of effectiveness.

In the context of the second sub-question, effectiveness is defined as effi-
ciency, as the term is used within the conformal prediction framework. As was
demonstrated in Section [3.1.1] efficiency can be measured in several different
ways. Both prior and observed efficiency criteria are used in the papers. The
conformal predictor that is the most efficient, using an appropriate efficiency
criterion, will be considered the most effective.

4.2 Datasets

It is more or less standard procedure in machine learning research to conduct
experiments on a large number of benchmark datasets. However, as noted in
[11451115], performing experiments with such datasets has both drawbacks and
benefits. Repositories like UCI [116] and PROMISE [117]] provide data from
several different problem domains with a lot of different characteristics. This
allows researchers to perform experiments on collections of datasets that are
large enough to make it possible to test for statistical difference in performance
between different ways of creating models. Obviously, when using a large col-
lection of datasets, it is not the individual models that are compared but rather
the algorithm and a specific parameter setup used to train each model on each
of the datasets that is compared. A repository is also useful when evaluating
new algorithms to identify the characteristics of the problem domains on which
the algorithm performs well or poorly.

Among the drawbacks there is the fact that many of the datasets have
been extensively used in experiments and many algorithms might have been
sub-optimized in order to appear to be performing extremely well on spe-
cific datasets. This is problematic when comparing results between papers
but when primarily comparing results achieved within a controlled experiment
using many randomly selected datasets, it is reasonable to assume that such
sub-optimizations may only affect the results marginally. Another aspect is
that the benchmark datasets do not represent all possible problem domains,
something which makes generalizations beyond the datasets used in the evalu-
ation not necessarily valid.

A final point made in [[1135]] is that repeated tests for significant differences
may result in significant differences appearing by chance, as a consequence of
repeating a test often enough. This problem can be handled by a proper evalu-
ation procedure, something which is further discussed in Section {.3|below.
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In the papers included in the thesis, datasets from the UCI and PROMISE
data repositories have been used. Explanations of what characterizes the prob-
lem domains of the datasets can be found on the web pages of those reposito-
ries. A number of chemoinformatics datasets used and described in [118};/119]
were also used in paper[[V] The two feature sets used in [118] were used in the

paper.

4.3 Evaluation of Research in Machine Learning

Several different aspects have to be considered when evaluating classifier mod-
els. This section is to a large degree taken from [25]. The topics covered are:

o Which measure(s) should be used to evaluate classifier performance?

o How should future performance (i.e., on novel data) of a single classifier
be evaluated?

e How should the performance of two different classifiers be compared on
a single data set?

e How should the performance of two or more classifiers be compared on
multiple data sets?

The rest of this chapter describes the common approaches used when evaluat-
ing and comparing different methods for generating classifiers. The following
section, on performance measures, discusses both measures used in the studies
as well as commonly used alternative performance measures that could have
been relevant if the research had had a different focus (see Section[4.1.1).

4.3.1 Performance Measures

The most frequently used measurement for classification problems is accuracy
(or, conversely, the error rate), i.e., the percentage of correct (or incorrect) pre-
dictions for the test set. In most cases, accuracy is a good choice for evaluating
classifiers. However, if the classes are imbalanced, accuracy is often not very
informative, since the minority class(es) will be less important for the overall
measure. For example, if 99 % of the instances belong to one class, any classi-
fier predicting only that class will always be 99 % accurate, but will completely
fail to identify the minority class.

With imbalanced problems, alternative measures to accuracy are often used.
For binary classification problems, a series of measures can be used. In this
context, one of the classes is referred to as the positive class. Which class that
might be is problem specific and depends on the circumstances.
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e True positive (TP) is the number of positive instances correctly classified
as positive.

o False negative (FN) is the number of positive instances wrongly classi-
fied as negative.

e False positive (FP) is the number of negative instances wrongly classi-
fied as positive.

o True negative (TN) is the number of negative instances correctly classi-
fied as negative.

Recall for the positive class, which is sometimes referred to as sensitiv-
ity, is the proportion of positive instances correctly classified as positive, i.e.,
TP/(TP+FN). Recall for the negative class is sometimes referred to as speci-
ficity, i.e., TN / (TN + FP). Precision for the positive class is the proportion of
instances classified as positive that actually are positive, i.e., TP/(TP + FP).

A receiver operating characteristic (ROC) curve [120] is a graphical repre-
sentation of the trade-off between the true positive rate and the false positive
rate. The area under the ROC curve (AUC) is often used to evaluate models
that are able to output class probabilities that can be used for ranking. Models
that perfectly manage to rank all positive instances correctly ahead of any false
positives will have an area equal to 1. A model that ranks examples randomly
has an expected area under ROC curve of 0.5.

4.3.2 Evaluating Classifier Performance

When evaluating a classifier model, the error rate on the set used for training
is almost guaranteed to underestimate the future error rate, since the model
has been built to fit the training set. By evaluating the classifier on a data
set not used during training (often referred to as the test set) it is possible to
get an unbiased estimate of the classifier performance. The performance on
the test set can also be used to compare the relative performance of different
classifiers on the same domain. Obviously, the class labels on the test set
must be known in order to compute the test set performance. This approach is
called the holdout method and the set used for evaluation is sometimes called
the holdout set. The proportion of data used in each set must be decided by the
analysts.

The holdout method has several limitations. First of all, by setting aside
part of the data set for evaluation, fewer instances are available for training the
model. This might lead to reduced performance compared to what could have
been achieved if all the data were used for training. Furthermore, the model
will be influenced by how the data set was split. If the training set is too small,
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the variance of the model will increase, while if the training set is too large, this
will result in a less reliable performance measure, with increased confidence
intervals. Finally, the training and test sets are not independent of each other.
If one class is over-represented in the training set, it follows that it must be
comparably under-represented in the test set, and vice versa. However, the last
limitation can be avoided if the data is sampled with stratification, i.e. if it is
made sure that the classes are evenly distributed in all sets.

A repeated use of the holdout method, using a randomly selected part of
the data as a test set each time, is called random subsampling. The estimated
performance is the average performance on the test sets over all repetitions.
Random subsampling improves the estimation of the classifier by reducing the
variance, but still encounters some of the problems associated with the holdout
method since it does not use all the instances for training. For further details
on why random subsampling is a dubious choice, see e.g. [121]].

An alternative to random subsampling is cross validation. In this approach
each instance is used the same number of times for training and exactly once
for testing. When using cross-validation, the data set of N instances is divided
into k subsets (usually called folds). The model is trained with all the subsets
except one and the validation error is measured by testing the subset left out.
This procedure is repeated for a total of k trials, where 1 < &k < N, and is re-
ferred to as k-fold cross-validation. The evaluation of the model is assessed
by averaging the performance on the test sets over all the & trials. When there
are few instances in the data set, the leave-one-out approach could be used,
which means that k = N. An obvious drawback of the leave-one-out approach
is that it is very computationally intensive. A more common approach is to let
k = 10, which is referred to as 10-fold cross-validation. k-fold cross-validation
is a very common procedure when comparing classifiers and reporting results,
but it is susceptible to some problems. First of all, the test sets are usually
rather small, leading to large confidence intervals. Secondly, there is much
overlap in the training sets, leading to some risk that the classifiers will depend
on the distribution of classes in the fold used. To minimize this risk, it is some-
times suggested that the crossvalidation procedure should be repeated several
times. One typical example sometimes seen is to run 10-fold cross-validation
ten times, an approach called /0x10 fold cross-validation. Obviously, this ap-
proach is rather computationally intensive and does not allow differences in
performance to be tested for significance.

Stratification can be used with any validation method and the purpose is
to make sure that the values of the critical variable, usually the target variable,
are evenly distributed over all folds.

All approaches presented so far assume that the instances are sampled
without replacement. But an alternative is to draw instances used for training
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with replacement, possibly leading to a certain degree of duplicates, as, e.g.,
in bootstrapping. The standard bootstrapping approach is called 0.632 boot-
strap, since each bootstrap contains approximately 63.2% of the instances, and
is normally repeated a number of times where the overall result is obtained by
combining the performance on each bootstrap sample. Specifically, the accu-
racy is calculated using Equation (4.1J).

1 b
accuracy 632pootstrap = b Z 0.632acc; +0.368acc; o, “4.1)

i=1

where b is the number of bootstraps, acc; is the accuracy on bootstrap i and
acc;ot is the accuracy achieved by a model trained with the whole data set, and
measured on the same set.

4.3.3 Methods for Comparing Classifiers on a Single Data set

An important distinction that has to be made when discussing the accuracy or
error rate of a classifier is between the sample error and the true error. The
sample error of a classifier, with respect to some sample of instances S, drawn
from the space of possible instances X, is the fraction of S that the classifier
misclassifies. The true error p is the probability that the classifier misclassifies
an instance drawn at random from the distribution D. The distribution D spec-
ifies for each possible instance x € X the probability that, if just one instance
is drawn randomly from X, this instance is x.

4.3.4 Methods for Comparing Classifiers on Multiple Data sets

One important question when presenting results where algorithms are evalu-
ated on different data sets is how to validate that one algorithm is better than
others. Different kinds of statistical tests have to be used depending on the
experiments performed.

In the paper by Demsar [[122]], a thorough theoretical and empirical evalu-
ation is given of which statistical tests are most suitable when comparing two
or more algorithms on many data sets. After analyzing contributions to major
conferences in machine learning in recent years, he concludes that many re-
searchers in the field are unsure of which tests are appropriate for evaluating
the differences between algorithms.

Regarding the comparison of two algorithms on many data sets, the prefer-
able statistical test to use, according to Demsar, is the non-parametric Wilcoxon
signed-ranks test. The Wilcoxon test is preferred over paired ¢-tests because
the assumptions of ¢-tests might be violated when evaluating using real-world
problems. Demsar concludes that since the sample size (i.e., the number of
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data sets) is usually small (around 30 data sets), the ¢-test requires that the dif-
ferences between the two random variables compared (i.e., the algorithms) are
distributed normally. He concludes his reasoning about the paired ¢-tests with
the following statement:

For using the 7-test we need normal distributions because we
have small samples, but the small samples also prohibit us from
checking the distribution shape. [[122]]

In the experiments reported in Demsar’s paper, it is shown that the Wilcoxon
test is the most powerful and also the most reliable when considering Type 1
errors, i.e., rejecting a null hypothesis when it should have been accepted.

The main principle in the Wilcoxon test is that the differences in perfor-
mance between the two classifiers for each data set are ranked, ignoring signs
(i.e., based on absolute values). The smallest difference gets rank 1 etc. In
case of ties, the average ranks are used. Then the sums of the ranks for pos-
itive and negative differences are compared. Let R+ be the sum of the ranks
for the data sets on which the second algorithm outperformed the first, and R—
the sum of the ranks for the opposite. Equal ranks are split evenly between the
sums; if there is an odd number of them, one is ignored. The test statistic is
T = min(R+,R—). Most books on general statistics include a table of exact
critical values for 7" for N up to 25 (or sometimes more). For a larger number
of data sets, the statistic

1
L T —iN(N+1) 42)
VAN +1)(2N +1)

is distributed approximately according to the normal distribution.

When comparing the Wilcoxon signed ranks test to the ¢-test, DemSar
points out that it assumes commensurability but only qualitatively: greater dif-
ferences still count more, but absolute magnitudes are ignored. The Wilcoxon
signed ranks test is also safer, since it does not assume normal distributions.
Furthermore, the outliers have less effect on the Wilcoxon than on the #-test.
When normal distributions can be assumed, Demsar recommends using the
t-test. Finally, he argues that another commonly used test, the sign test, is
weaker than the other tests when considering Type I errors.

When considering comparisons of many algorithms over many data sets,
there are basically two different approaches. In the first approach, all algo-
rithms are compared to all other algorithms, while in the second approach only
one algorithm is compared to all the others. Depending on which approach is
used, different statistical tests are appropriate.

When comparing many algorithms, the test procedure is usually performed
in two steps. First, a test is used to determine if the null-hypothesis that no
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significant differences exist between any algorithms can be rejected. If the
null-hypothesis is rejected, a post-hoc test is used to identify which algorithms
actually differ. Depending on which test is used, different post-hoc tests ought
to be used.

Demsar recommends the non-parametric Friedman test as the first step.
The parametric ANOVA test turns out to be a dubious choice, because the as-
sumptions of the ANOVA test cannot be guaranteed to be met when analyzing
the performance of machine learning algorithms. When the assumptions of the
ANOVA test are met, the ANOVA test is often more powerful than the Fried-
man test. If the assumptions of ANOVA are violated, the Friedman test can be
more powerful. However, it is not trivial to prove that the assumptions are met
for any given set of algorithms and/or problems.

When using the Friedman test to compare k algorithms over N data sets,
the algorithms are ranked for each data set separately, with the best performing
algorithm getting rank 1 etc. In case of ties, average ranks are assigned. Under
the null-hypothesis, which states that all the algorithms are equivalent and so
their ranks should be equal, the Friedman statistic

, 12N R k+1)
iy (Z ) (4.3)

is distributed according to x% with k — 1 degrees of freedom, when N and k are
big enough (as a rule of a thumb, N > 10 and k > 5). For a smaller number of
algorithms and data sets, exact critical values have been computed.

Iman and Davenport [123] showed that Friedman’s y? is undesirably con-
servative and derived a better statistic

__ V=D
= Ne—1 -7 o

which is distributed according to the F-distribution with k— 1 and (k—1)(N —
1) degrees of freedom. The table of critical values can be found in any statistics
book.

Even if the Friedman test indicates a significant difference, the test does
not indicate which algorithms might differ. To determine which algorithms
have statistically different performances, post-hoc tests are used. The Nemenyi
test is used when all algorithms are compared to each other. The performance
of two algorithms is significantly different if the corresponding average ranks
differ by at least the critical difference given below

k(k+1)

CD =gq, N

4.5)
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The table of critical values can be found in any statistics book.

When, instead, one specific algorithm is compared to all the others, it is
better to use one of the general procedures for controlling the family-wise
error, i.e., the probability of making at least one Type I error in any of the
comparisons. The test statistic for comparing algorithms i and j using these
methods is presented below.

o= (4.6)

K(k+1)
6N

The z value is used to find the corresponding probability from the table of
the normal distribution, which is then compared to an appropriate &. The
tests differ in the way they adjust the value of o to compensate for multiple
comparisons. When using the Bonferroni—Dunn test, the same equation as for
the Nemenyi test is used to calculate the CD. Again, the table of critical values
can be found in any statistics book. The power of the post-hoc test is much
greater when comparing classifiers with only one control classifier (which is
the case when the Bonferroni—-Dunn is used) instead of when comparing all
classifiers to all other [124].
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5. Summary of Papers

This chapter summarizes the individual contributions for each paper.

5.1 Papers Related to the Question: Which Strategy Is
Most Effective to Use When Creating Ensembles: The
Implicit or the Explicit Learning Strategy?

The first three papers are all focused on identifying the best way to apply the
static overproduce-and-select paradigm by evaluating different optimization
criteria based on performance and/or diversity measures. The results from
papers[I| [ and [T, as well as results from several other studies not part of this
thesis, had all suggested that it might not be viable to try to find an optimization
criterion based on performance and/or diversity measures and using it to find
a sub-ensemble that is better than using the entire pool as an ensemble. The
lessons learned from these earlier studies were further discussed in paper
The insights also led to a shift of focus, from the explicit learning strategy,
towards using an implicit learning strategy and identifying how to train the
base classifiers to obtain ensembles that would perform as well as possible.
Papers[[V]and [VI both elaborate on how, using an implicit learning strategy, to
train the base classifiers to obtain ensembles with good predictive performance.

5.1.1 Paper I: Empirically Investigating the Importance of Diversity

Paper [[| contributes to the first sub-question and indirectly to the main research
question by investigating the best criterion to use in the overproduce-and-select
paradigm.

The study introduces diversity as an optimization criterion when adopting
the static overproduce-and-select paradigm. In the paper, ten diversity mea-
sures were evaluated as selection criteria when selecting a sub-ensemble from
a pool of ensemble members. The general conclusion was that no diversity
measure is better than accuracy as a selection criterion. A few diversity mea-
sures were singled out as more promising than the others: namely, difficulty,
but also to a lesser degree Kohavi—Wolpert, coincident failure diversity, and
double fault.
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A problem identified in the study was that very small ensembles were al-
lowed. This will lead to ensembles with very poor accuracy, allowing measures
that are size dependent, such as double fault, to appear better than they are.

The study introduces the concept of using a combination of diversity and
performance measures as selection criteria. It is shown that combinations of
accuracy and one or more diversity measures as a selection criterion seems to
be an approach worth further investigation. This connects to papers [[I|and
where this idea is developed further.

5.1.2 Paper II: On the Use of Accuracy and Diversity Measures for
Evaluating and Selecting Ensembles of Classifiers

In paper , the idea of combining performance and diversity measures was
further evaluated. In the first experiment it was shown that combinations of
performance and diversity measures were, as selection criteria, at least as good
as using only performance measures. In the second and third experiments,
multi-objective GA was used to search for ensembles that were both accurate
and diverse. When having a Pareto optimal set of best solutions, it was gener-
ally best to select ensembles that balanced accuracy and diversity, or to select
the most diverse ensembles in the set.

Consequently, this paper also contributes to the first sub-question and indi-
rectly to the main research question by investigating the use of combined mea-
sures as optimization criterion in the static overproduce-and-select paradigm.

This paper ends by suggesting the study performed in Paper [Tl

5.1.3 Paper III: Ensemble Member Selection Using Multi-Objective
Optimization

Paper [[T]] contributes to the main research question and to the first sub-question
by introducing and evaluating a novel algorithm that, for each dataset, searches
for the most effective combination of performance and diversity measures to
use as optimization criteria when adapting the static overproduce-and-select
paradigm. The algorithm was evaluated on both ensembles of neural networks
and ensembles of decision trees. The algorithm works in two steps: in the
first step, a pool of randomly selected sub-ensembles are used to search for the
most effective weighted combination of measures, and in the second step, the
combination found is used to search among all possible sub-ensembles. In the
first step, a multi-objective GA was used that optimized two different fitness

IThere is an error in the list of used datasets (Table 2). The list contains 30 datasets
but only results for 27 datasets are reported. It has not been possible to identify with
certainty which datasets should be excluded.

64



functions. The first fitness function was the ranking capability over the entire
pool, measured using the correlation between the combination of measures
and ensemble accuracy on a hold-out set. The second fitness function was the
average ensemble accuracy among the 5 % highest ranked ensembles in the
pool.

The proposed algorithm worked fairly well for ensembles of neural net-
works. For decision trees, however, it was just as effective as always using only
ensemble accuracy as the selection criterion. The main contribution of these
first three papers is, as mentioned in the Introduction (Section [5.1)), that the
underlying assumption of the overproduce-and-select paradigm appears more
and more questionable.

5.1.4 Paper IV: Comparing Methods for Generating Diverse Ensem-
bles of Artificial Neural Networks

In paper a number of both implicit and explicit techniques for creating en-
sembles were compared. The evaluated algorithms were ensembles of neural
networks, with and without bagging as well as randomized architecture of the
neural networks, an overproduce-and-select algorithm called GASEN, search-
ing for a better sub-ensemble from the previously mentioned ensembles of neu-
ral networks, and an algorithm called NegBagg that trains neural networks in
parallel using negative correlation learning and a constructive approach which
automatically determined the architecture of the neural networks. The paper
also made an attempt to explain the relative performance in terms of accuracy
and diversity.

The results were very clear and showed that the simplest approach, using
ensembles of neural networks with randomized architecture, outperformed the
more complex explicit algorithms, regardless of whether bagging was used
or not. GASEN was significantly less effective than the ensembles using all
the models GASEN selected from. The NegBagg algorithm was used both
with and without negative correlation learning, but without any significant dif-
ference in performance. Both variants of Negbagg achieved comparably low
average individual accuracies compared to the implicit ensembles, perhaps as
a consequence of the constructive approach used to decide the architecture of
the neural networks. Both the NegBagg algorithms were significantly less ef-
fective than the implicit ensembles used as comparison.

When analyzing base classifier accuracy and diversity (double fault), the
expected result was confirmed: the ensembles trained without bagging had a
much higher base classifier accuracy and a much lower diversity, and ensem-
bles trained with bagging were more diverse and less accurate, on average.
Thus, it was clearly shown that the ensemble accuracy could not be explained

65



only by considering average accuracy or diversity. Instead, ensembles could
be successful either by having accurate base classifiers or by having base clas-
sifiers that are sufficiently diverse.

Since explicit and implicit ensemble techniques are compared in the em-
pirical evaluation in that paper, it directly contributes to the first sub-question
by strongly indicating that the implicitly trained ensembles were superior to
the evaluated explicitly created ensembles. The results further strengthen the
doubt regarding the underlying assumptions of the overproduce-and-select para-
digm.

In the discussion section of paper the ideas that led to the study per-
formed in paper |V were discussed.

5.1.5 Paper V: Overproduce-and-Select: The Grim Reality

In paper [V] the basic assumption, that it is possible to find a sub-ensemble
that is better than the ensemble formed by the entire pool of base classifiers
(the all-ensemble), which is what motivates the static overproduce-and-select
paradigm, was thoroughly evaluated. The study first established that there were
a number of sub-ensembles that were actually better than the all-ensemble and
it was shown that a substantial subset of the evaluated sub-ensembles were
indeed better. The proportion that was better seemed to be dependent on the
size of the sub-ensemble. Once the prerequisite, that sub-ensembles better
than the all-ensemble existed, had been confirmed, a number of comparisons
with the aim of determining if it was possible to identify any of the better
sub-ensembles using any of the evaluated selection criteria was carried out.

The main result was that there is absolutely nothing to gain by selecting
an ensemble based on the very natural metrics evaluated. When using larger
ensembles (i.e. picking 51 neural networks from the 100 pool), each ensemble
was quite accurate, actually comparable to using the entire pool as the ensem-
ble, but there was no way to detect the best ensembles. On the other hand,
when using smaller ensembles (7 ANNs) it was possible to distinguish poor
ensembles from better ones by comparing either ensemble accuracy or mean
base classifier accuracy on out-of-bag. Unfortunately, the results also showed
that in this scenario, even the most promising ensembles could not compete
with the strategy of using all available models as the ensemble.

The main explanation identified in this study is the robustness inherent in
ensembles. At least for ANN models and these fairly small data sets, the often
marginal differences in performance on training, validation or OOB data, will
simply not carry over to test data.

By thoroughly investigating the underlying assumption of the static over-
produce-and-select paradigm, this paper contributes directly to both the main
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research question and to the first sub-question by its clear demonstration that
the previously mentioned doubts were justified.

5.1.6  Paper VI: Producing Implicit Diversity in ANN Ensembles

Paper [V evaluated a number of straightforward techniques for introducing
implicit diversity in ensembles of neural networks. The study also briefly in-
troduced a novel algorithm later presented in paper Four different pa-
rameters were altered: the number of epochs for which each neural network
was trained; using bagging or not; the architecture of the neural networks; and
the number of features used when training each neural network. Altogether 54
different setups were evaluated. Two typical baseline setups were identified.
In both setups, all features were used when training, all networks had the same
architecture and were trained for a fixed maximum number of epochs. The dif-
ference between the two baseline setups were whether ordinary bagging was
used or not.

The results showed that most of the evaluated setups outperformed the
baseline setup without bagging. More specifically, when using larger ensem-
bles, with 51 members instead 15, a majority of the setups were significantly
better. Furthermore, a majority of the setups were also at least as good as the
baseline setup using bagging and some of the setups were significantly bet-
ter when using larger ensembles. The levels of increased diversity produced
by the methods evaluated normally resulted in increased ensemble accuracy,
i.e. diversity was produced without lowering the base classifier accuracy to
such an extent that it affected ensemble accuracy. Furthermore, the results also
suggested that diversity is more important for larger ensembles.

This paper could be seen as a continuation of paper[[V|by following up the
success of the implicitly trained ensembles of neural networks. It contributes
directly to the main research question and to the first sub-question by its inves-
tigation of how to make the implicitly trained ensembles even better.

5.2 Papers Related to the Question: How Should Data Be
Utilized Effectively in Confidence-Based Predictions
Using Ensembles?

In all the previous papers, ensemble creation using either implicit or explicit
learning strategies was the focus. In papers[VIIland [VIII] the focus was instead
directed towards how to effectively create confidence based predictors. Both
these papers focus on the conformal prediction framework and both of them
use ensembles to create confidence based predictors.
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5.2.1 Paper VII: Effective Utilization of Data in Inductive Conformal
Prediction Using Ensembles of Neural Networks

Paper focused on how to maximize the efficiency when using bagging
ensembles as the underlying models in conformal prediction. The study com-
pared four different setups. The baseline setup, inductive conformal prediction
(ICP, see Section [3.1)), divided the available data into a proper training set and
a calibration set, whereas the the other three setups in different ways used all
available data both for training the models and for calibration.

In two of the evaluated setups, different re-sampling schemes were used
to make sure every training instance could be used as a calibration set at least
once. This was achieved by training multiple models and using different data
as the calibration set every time, and then combining all the models into one
conformal prediction. In the first of these setups, cross conformal prediction
(CCP, see Section [3.2.1), a cross validation strategy, was used to divide the
data, and in the other of these two setups, bootstrap conformal prediction (BCP,
see Section [3.2.2)), a bootstrap strategy, was used. In the final setup, standard
bagging was used, where all the data was used to train the model. In this setup,
the out-of-bag results were used as the calibration set, thus it is called out-of-
bag (OOB, see Section[3.2.3)). The solution that turned out to be most efficient
was to use a bagging ensemble and use the out-of-bag results as calibration
set. The bagging ensemble also had the advantage of having no additional
parameters to consider. When using the other methods, the available data have
to be divided somehow (ICP) or multiple models need to be built and combined
(CCP and BCP). A longer discussion and motivation for the use of out-of-bag
estimates as the calibration set is given in paper [XXV]

This paper contributes indirectly to the main research question and directly
to the second sub-question by its investigation of how to use the inherent ben-
efit of bagging ensembles when predicting with confidence.

5.2.2  Paper VIII: Bias Reduction through Conditional Conformal Pre-
diction

Also in this final paper the focus is on conformal predictions. But unlike the
previous papers, where the focus was directly or indirectly on ensembles, this
study focused on to what extent class imbalance affects the outcome of con-
formal prediction and to what extent conditional conformal prediction can be
used to counter these effects. However, ensembles were still used, together
with decision trees, as the underlying models in the evaluation.

In a number of experiments it was shown that conformal prediction was
highly biased towards the majority class. We also showed that this bias meant
that we had no guarantees that the errors were distributed according to the

68



prior class distribution when using conformal prediction. Instead, conformal
prediction could be expected to make a majority of its errors on the minor-
ity class. The greater efficiency, measured using the prior efficiency criterion
OneC, achieved by conformal prediction was an effect of this bias towards
making errors on the minority class, making it possible to be very efficient
on the majority class and consequently also in general. Furthermore, the pre-
sented results showed that class conditional conformal prediction was able to
remedy all the drawbacks of conformal prediction, even if the former still had
a lower OneC. Class conditional conformal prediction was valid, both in gen-
eral, like conformal prediction, and for each class individually, in contrast to
conformal prediction. Class conditional conformal prediction was generally
not biased.

Class conditional conformal prediction did not achieve its efficiency (using
the OneC criterion) by making all errors on the class that was easiest to get rid
of, i.e. the minority class. Instead, it was generally almost equally efficient on
both classes. In fact, it was equally or more efficient than conformal prediction
when only considering the minority class, but without making as many mis-
takes on that class. Furthermore, class conditional conformal prediction was
much more efficient when the two observed criteria only considering one class
at a time described last in Section [3.1.T] was used to measure the efficiency.

Regarding ensembles, the results imply that even though the ensembles
used as the underlying models were slightly more biased than the decision
trees used as a comparison, they were still more effective as underlying models,
resulting in more efficient conformal predictors.

Since the difference between ordinary conformal prediction and class la-
bel conditional conformal prediction lies in what data is used as the calibration
set, this paper contributes to the second sub-question. Since it results in rec-
ommendations regarding when to use class label conditional conformal predic-
tion when predicting with confidence, it also contributes directly to the main
research question, even if these recommendations are not limited to ensembles.
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6. Concluding Remarks

This chapter starts with the presentation of the conclusions regarding the sub-
questions before presenting the conclusions regarding the research question.
The chapter ends with a presentation of future work.

6.1 Discussion

In this discussion section, the results and conclusions presented in the included
articles will be discussed in relation to related research as presented in Chap-
ters 2] and [3] The discussion is structured around the sub-questions presented
in Section

6.1.1 Discussion of Whether an Explicit or an Implicit Learning Strat-
egy is Preferable for Creating Effective Ensembles

The first six studies all address the first sub-question in different ways. The top-
ics covered in these papers include: using combinations of diversity and/or per-
formance measures; selection of ensemble members; diversity creation strate-
gies; the explicit learning strategy; and the implicit learning strategy. Further-
more, there have also been several studies published by other authors on this
topic since the first article included in the thesis was published. In the fol-
lowing discussion, the contributions of the six articles will be discussed from
different perspectives and also put in relation to the findings presented by other
researchers. The different perspectives are, in order of discussion: the explicit
learning strategy; using combinations of diversity and/or performance mea-
sures; selection of ensemble members; the implicit learning strategy; diversity
creation strategies; and the relationship between diversity and accuracy.

A major distinction exists between ensembles created using an implicit or
an explicit learning strategy. The role of diversity is to a large degree different
for the two learning strategies. When creating an ensemble using an implicit
learning strategy, understanding the role of diversity can be used to better un-
derstand how the individual models should be trained in order to maximize the
predictive performance of the ensemble and in this way achieve effectiveness.
When instead using an explicit technique to create an ensemble, understand-
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ing the role of diversity can be used both to guide how to train the individual
models but also to indicate to what extent it is useful to use diversity when
selecting which models to add or remove from the ensemble. Consequently,
the concept of diversity plays an important role when trying to answer the first
sub-question.

Many of the papers presented in this thesis are focused on an explicit strat-
egy, evaluating to what extent diversity can be used as an optimization criterion
when trying to optimize which models to include in the ensemble (papers[I| [T
[} [V). Paper [[V]compares both explicit and implicit techniques in the experi-
ments. The kind of explicit techniques that have been the focus of these papers
is the static overproduce-and-select paradigm. The basic assumption when us-
ing the static overproduce-and-select paradigm is that it is somehow possible
to use information possible to measure on the available data to make a selec-
tion from among all the available models to create a smaller ensemble that
will be effective when applied to yet unseen data. When considering the role
of diversity when creating ensembles using an explicit strategy, it was evident
both from the results of the experiments carried out as part of our research,
and also from what had been published by others, that most diversity measures
proposed for the classification context were clearly not useful by themselves as
optimization criteria, even though the static overproduce-and-select paradigm
still seemed feasible. In paper [l ten diversity measures and ensemble accu-
racy were evaluated as selection criteria. The conclusion was that neither di-
versity nor ensemble accuracy were very useful as a selection criterion. On
the other hand, the study showed that combinations of ensemble accuracy and
one or several diversity measures (most notably the difficulty measure) was
at least as good as selection criteria as any individual measure. Evaluating
the use of combinations of measures was, consequently, the focus of paper [[|
and The results in paper [[I] were inconclusive regarding whether com-
binations of performance and diversity measures should be used as selection
criteria. In paper [lII| the results actually provided some evidence that a com-
bined measure was useful when selecting an ensemble. The study proposed
an algorithm that defined a selection criterion combining several performance
and diversity measures where the combination was optimized for each dataset
individually. In particular, the optimized combination of measures was signif-
icantly better as a selection criterion than using only ensemble accuracy when
selecting from the set of ensembles used to optimize the combination of mea-
sures. However, using the optimized combination of measures was not very
successful when searching among all possible sub-ensembles. Consequently,
the optimized combination of measures did not generalize to make it useful as
selection criterion outside the set of ensembles already used when defining the
selection criterion. In paper[[V]a static overproduce-and-select algorithm pro-
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posed by Zhou et al. [6], GASEN, was compared to implicit algorithms. The
sub-ensembles selected by GASEN turned out to perform significantly worse
than the ensemble formed by using the entire pool of models that GASEN had
used to select from.

The general picture that emerged in the first four papers regarding the static
overproduce-and-select paradigm was that it might not be very successful.
Consequently, paper |V| specifically evaluated the basic assumptions motivat-
ing the static overproduce-and-select paradigm. It was evident from the results
that there is nothing to gain by selecting an ensemble based on any of the
optimization criteria evaluated in the study. The evaluated optimization cri-
teria included both performance measures such as ensemble accuracy as well
as a number of diversity measures. So, even though the conclusions in the
first five papers confirmed previous research regarding to what extent diversity
measures were suitable as selection criteria, the explanation was to a large de-
gree complementary to previous research by pointing out the inadequacy of the
static overproduce-and-select paradigm, i.e., the strategy of selecting a subset
of models from a pool rather than using the entire pool as an ensemble.

It might seem strange that the static overproduce-and-select paradigm has
been used in several studies by other authors if it does not work. After all, the
previous studies [8H10; [79-81]], including the third paper in this thesis, have
been performing as well as or better than the techniques used for comparison.
However, no one of the studies previously presenting an algorithm using the
static overproduce-and-select paradigm had produced results that could show
a significant improvement compared to the ensemble achieved by not making
any selection at all. Consequently, the natural evaluation that could have indi-
cated the inadequacy of the strategy had not been carried out or, when it was
carried out, did not show any significant advantage for the static overproduce-
and-select paradigm.

Even though the static overproduce-and-select paradigm is ineffective in
the sense that it is unlikely to result in ensembles that perform better than the
unreduced ensemble, there could still be valid reasons for wanting to attempt
to reduce the size of an ensemble. If the prediction time needs to be kept
to a minimum or the production dataset is very large, reducing the size of
the ensemble without drastically decreasing the performance of the ensemble
could be justified.

It must in this context be noted that the discussion so far applies to the
static overproduce-and-select paradigm. The dynamic overproduce-and-select
paradigm, where a sub-ensemble is selected for each instance, has not been
evaluated and it is possible that it is a more viable solution.

The overproduce-and-select paradigm is not the only way to create en-
sembles using an explicit learning scheme. The negative correlation learning

73



algorithm is a parallel explicit ensemble learning algorithm which explicitly
optimizes the covariance in the bias, variance, and covariance decomposition
of the ensemble error (see Equation [2.5). Obviously, the negative correlation
learning algorithm uses diversity as a means to achieve accurate ensembles. It
was initially defined for regression problems, but it can be used for classifica-
tion if the models produce measurement results. The only algorithms utilizing
negative correlation learning evaluated in any of the papers was the NegBagg
algorithm used in paper[[V] where the algorithm was used both with and with-
out negative correlation learning. Using the negative correlation learning did
not result in any significant improvement of performance. The performance
of both the NegBagg algorithms were significantly worse compared to the im-
plicit ensembles used as comparison. This could probably be attributed to the
fact that both variants of Negbagg achieved very low average individual accu-
racy. The NegBagg algorithm also used a constructive approach to decide the
architecture of the neural networks and it is possible that an ensemble trained
using only negative correlation learning with suitably adjusted architectures
(instead of the constructive approach adopted by NegBagg) could perform bet-
ter. The results indicated that negative correlation learning lead to more diverse
ensembles but it was not enough to outweigh the effect of the low average in-
dividual accuracy. Chen proposed a regularized negative correlation learning
algorithm that was shown to perform better than the negative correlation learn-
ing algorithm.

When considering implicit algorithms, i.e., algorithms that might create
diversity without actually targeting it, two of the papers evaluated such al-
gorithms. In paper ensembles created with and without bagging were
compared. Apart from using bagging, diversity was also introduced by using
slightly randomized architectures in the neural networks used in the ensem-
bles. The most obvious result was that both the implicit algorithms outper-
formed all the explicit algorithms. When considering ensemble accuracy, the
two approaches were comparable. However, the explanation for the success
was rather different, since the ensemble using bagging achieved significantly
lower average individual accuracy while at the same time being significantly
more diverse (using the double fault measure). Consequently, it was possible
to achieve effective ensembles either by training very accurate but less diverse
individual models (without bagging) or by creating less accurate but diverse in-
dividual models (using bagging). This was further evaluated in paper[VI] were
a systematic evaluation of altogether 54 different ways of training neural net-
work ensembles were evaluated and compared. It was evident from the results
that there were several different ways to create an effective ensemble. First of
all, the same results as seen in paper [V|regarding the differences between en-
sembles trained with or without bagging was strongly confirmed. Again, it was
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possible to achieve effective ensembles either by training very accurate but less
diverse individual models (without bagging) or by creating less accurate but
diverse individual models (using bagging). In general it seemed to be slightly
better to use bagging. One interesting result that was seen when training the
neural networks with or without the random subspace method (randomly dis-
regarding 10% of the input variables when training each network) was that no
increase in diversity could be seen. Instead, both diversity (measured using
the difficulty and double fault measures) and average individual accuracy de-
creased. Not surprisingly, the result was that the use of the random subspace
method produced the least effective ensembles, regardless of whether bagging
was used or not. Three different strategies for deciding the architectures of the
networks was used but the difference between the three strategies was remark-
ably low. The first strategy was to use the same architecture, based on a simple
heuristic, in all networks; the second was to randomize the number of hidden
nodes in the hidden layer; the third was to use two hidden layers with random-
ized numbers of nodes in both. The third strategy resulted in slightly lower
average individual accuracy, which was compensated for by slightly higher di-
versity. The most encouraging result was that a new algorithm, random brains,
later presented in paper [XXTI turned out to be the most effective. The new al-
gorithm mimics how the random subspace method is used internally in random
forests by randomly removing internal links between the layers. It turned out
that the use of internal random subspace resulted in the most accurate individ-
ual networks on average without reducing the degree of diversity when using
one hidden layer. The difference between a fixed and a random architecture
is small but slightly in favor of a fixed architecture. When instead using two
hidden layers, the average individual accuracy is reduced rather a lot compared
to when using only one hidden layer. On the other hand, diversity, measured
using difficulty, is dramatically increased. The result is that the use of in-
ternal random subspace and an architecture with two hidden layers together
with bagging results in ensembles with the highest degree of diversity, almost
the lowest average individual accuracy, and among the highest ensemble ac-
curacies. Using the same algorithm without bagging is equally effective even
though the average individual accuracy is higher and the degree of diversity
lower. To summarize the various findings, it is evident that there are several
different effective ways to create ensembles of neural networks. An interest-
ing result regards the difference in results when applying the random subspace
method in different ways. While the random subspace method (randomly re-
moving variables prior to training) was most clearly ineffective, it turned out
to be effective to use random subspace (by randomly removing the input links)
for each internal node in the neural networks.

The results achieved in paper [IV| and |V]| are in line with the results pre-
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sented by Kuncheva in a recent paper on diversity. She uses plots to visually
show several of the conclusions that could be drawn from the experiments in
paper [V]]

In recent years, there have been important developments in the understand-
ing of the connection between diversity and accuracy when considering en-
sembles using majority voting in classification. One of the two most notable
developments has been the decomposition of the ensemble error into the aver-
age individual error and a diversity part for ensembles using majority voting
[46]. The diversity part can in turn be divided into two different diversity parts,
representing constructive and destructive forces. By this accomplishment, the
same degree of understanding of the ensemble error and its connection to di-
versity can be said to exist for both regression and classification problems.
The second notable development is the contribution by Stapenhurst in his dis-
sertation [60] where he shows how most proposed diversity measures can be
expressed as margin measures. Through his accomplishment, it becomes more
natural to use the better understood margin theory to analyze ensemble per-
formance. However, the decompositions of ensemble error are obviously still
valid, which, in combination with the fact that some of the diversity measures
(Q statistics, p correlation, and the pairwise Kk coefficient measures) could not
be expressed as margin measures, means that there could still be some rele-
vance in continued studies of diversity.

6.1.2 Discussion on How to Effectively Utilize Data in Confidence
Based Predictions Using Ensembles

Two different papers (papers and [VIII) addressing different aspects of how
to effectively utilize data in confidence based predictions using ensembles are
included in this thesis. Both papers use the conformal prediction framework
to make confidence based predictions. The two papers complement each other
by focusing on two very different aspects of how to effectively utilize data in
confidence based predictions. In inductive conformal prediction, part of the
data available for training must be withheld during the training of the model
to be used as a calibration set when calibrating the confidence bounds. Not
being able to use all the data for training is likely to decrease the effectiveness
of the model. When using bagging ensembles, it is possible to use the out-
of-bag estimate as the calibration set. Since about one-third of the models in
the ensemble have not been trained using each training instance, the out-of-
bag estimates will be estimated on much smaller ensembles and consequently
overestimate the errors (except for very large ensembles). Using the out-of-
bag estimates as a calibration set was evaluated for the first time in paper [VII]
even though it had been proposed previously in the literature. It turned out to
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be more effective than setting aside part of the data to be used as a calibration
set, but also more effective than different forms of aggregated confidence pre-
dictors that used cross validation or bootstrapping to be able to utilize all data
for training. In a later paper (paper [XXV)), it was argued that the guarantees
provided by the conformal prediction framework would still hold because the
out-of-bag estimates are known to overestimate the true error. Since the out-of-
bag estimates overestimate the errors (except for very large ensembles), it will
at worst result in the conformal predictor’s being conservative. One way of
dealing with the difference between the ensemble predicting the test instances
and the out-of-bag estimates is to use a random proportion of the models in
the ensemble when predicting the test instances as well. If the proportion of
models is the same as for the out-of-bag estimates, the errors can be expected
to be the same on the test instances as on the out-of-bag estimates used as the
calibration set. Using the out-of-bag estimates is made possible by training
bagging ensembles as the underlying models. Consequently, it is the use of
ensembles that provides the opportunity to create more effective confidence
based predictions in this case.

Turning to the final paper included in the thesis (paper [VIII), another is-
sue within the classification context was addressed: the imbalanced learning
problem. When using conformal prediction, the user is guaranteed that the
prediction will include the correct class with some user specified confidence.
However, no guarantee is given regarding how the errors made will be dis-
tributed among the classes. When dealing with imbalanced data, where it is
usually the minority class that is of most interest, the distribution of errors be-
comes vital, since a confidence based predictor that made all its errors on the
minority class would be less useful or even useless. The paper investigated
how the errors are distributed among classes when using conformal prediction
and it was clearly demonstrated that the conformal predictors had a strong ten-
dency to make most of the errors on the minority class, i.e., it was highly biased
towards the majority class. As a comparison, a class label conditional confor-
mal predictor was used, which can provide a guarantee also for each class. As
expected, the class label conditional conformal predictor was not biased, since
the errors were distributed in accordance with the prior class distribution. The
implication is that conformal prediction is not effective on even slightly imbal-
anced datasets since it is probable that the errors will be made primarily on the
minority class. If it is important that the proportion of errors be distributed as
the prior class distribution, class label conditional conformal prediction must
be considered much more effective since it ensures both the error level and
unbiased predictions. When using ensembles as the underlying models, if the
individual models are biased towards the majority class, the ensemble can be
expected to be biased as well. In fact, the ensembles might even aggregate the
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biases of the individual models, making the ensembles more biased than the
average individual model. The results indicate that the random forest ensem-
bles used as underlying models were slightly more biased than the individual
decision trees also used as underlying models in the experiments. The moti-
vation for using ensembles as the underlying models in conformal prediction
is that they generally result in more efficient conformal predictors. The results
imply that even though the ensembles might have been slightly more biased
than the decision trees, they still produced more efficient class label condi-
tional conformal predictors.

6.2 Conclusions

First the conclusions regarding the sub-questions will be presented, before pre-
senting the conclusions regarding the research question: How can ensembles
be created effectively in the context of classification? The first sub-question
was: Which strategy is most effective to use when creating ensembles: the
implicit or the explicit learning strategy?

In this context, effectiveness was defined to be ensemble accuracy on the
test set. The more accurate an ensemble is, the more effective it is considered
to be.

We will start with the conclusions based on the papers presented in the
thesis. Since several of the papers have covered different topics related to the
adoption of explicit or implicit learning strategies when creating effective en-
sembles, the conclusions will also be presented based on these different topics.
The first topic to consider is whether it is effective to use a static overproduce-
and-select paradigm when creating ensembles. The conclusion is that the static
overproduce-and-select paradigm is an ineffective way to create ensembles, at
least for smaller datasets. The reason identified is that there is no way to detect,
using the available data, which of the smaller ensembles will be better than the
unreduced ensemble on the test or production set.

If the static overproduce-and-select paradigm is ineffective it follows that
using diversity measures or combinations of diversity and/or performance mea-
sures as optimization criterion is also ineffective. The reason is obviously that
if it is not effective to search for a smaller ensemble using any optimization
criterion, it doesn’t matter much what is optimized.

However, there are other ways of creating ensembles using an explicit
learning strategy which utilizes diversity in the creation process. Different
algorithms using negative correlation learning have been presented as success-
ful in the literature but were not competitive in the evaluation carried out in one
of the papers presented in this thesis. One possible reason why they were not
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competitive could be the constructive approach used to decide the architecture
of the neural networks used.

When considering ensembles using an implicit learning strategy and more
specifically ensembles of neural networks, which is what were studied, it is
possible to get effective ensembles in several different ways. The conclusion
was that the only method that was clearly ineffective was to use the random
subspace method. However, mimicking the random subspace method inter-
nally in the networks, by randomly removing input links to each node in the
network, turned out to be the most effective way to create an ensemble. The
connection between ensemble accuracy, average individual accuracy, and di-
versity is evident in the sense that a high ensemble accuracy could be achieved
either with very accurate individual models or with very diverse models. An
important implication of the presented results is that ensembles of neural net-
works are generally very robust.

An important fact with direct relevance when creating effective ensembles
and analyzing their effectiveness is that almost all diversity measures can be
expressed as margin measures. This contribution to the understanding of diver-
sity was recently made in the literature. The implication is that the importance
of studying ensemble effectiveness in terms of diversity is probably going to
decrease since the margin is a more studied and better understood concept.
However, the theoretical results achieved, where the ensemble error has been
decomposed into the average individual error and diversity, are obviously still
valid.

The second sub-question was: How should data be utilized effectively in
confidence based predictions using ensembles?

In this context, effectiveness was defined to be efficiency, as the term is
used in the conformal prediction framework (see Section [3.1.1).

When predicting with confidence using inductive conformal prediction,
some data needs to be set aside during training to enable the calibration of
the confidence bounds. When it is possible to use a bagging ensemble, the
results show that it is effective to use all the data to train the ensemble and use
the out-of-bag estimates as the calibration data. Even if it has not been proven
to be valid, theoretical reasoning suggests that it is likely to be valid or even
slightly conservative, since the out-of-bag estimates are known to overestimate
the actual error.

Inductive conformal prediction is proven to be valid, which means that
the prediction will contain the true class with a user defined level of certainty.
However, when dealing with imbalanced learning problems it is not only im-
portant to know the probability of making an error, it is also important to know
which errors are made. It was clearly shown that inductive conformal predic-
tion is strongly biased towards the majority class, i.e., the proportion of errors
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made on the minority class were much higher than the proportion of errors
made on the majority class. On problems with a highly imbalanced class dis-
tribution, all or almost all errors were made on the minority class before any
errors were made on the majority class. Class label conditional inductive con-
formal prediction is a specialization of inductive conformal prediction where
the calibration data is used in a different way. The validity of the class label
conditional inductive conformal prediction is stronger and also applies to each
class. As expected, class label conditional inductive conformal prediction was
shown to be unbiased, even for strongly imbalanced datasets. The implication
is that the general way data is used by inductive conformal prediction is inef-
fective even for slightly imbalanced datasets and should be exchanged for the
way class label conditional inductive conformal prediction uses the data when-
ever any form of imbalance could be expected in the dataset. The results also
imply that it was more effective to use ensembles as underlying models even
when they were more biased than the decision trees used as comparison.

The research question was: How can ensembles be created effectively in
the context of classification?

The papers in this thesis have focused on different aspects of how to cre-
ate effective ensembles in the context of classification. The two main areas
covered relate to implicit versus explicit learning strategies in ensemble cre-
ation and the effective use of the data in confidence based prediction. The
conclusions strongly indicate that implicit ensembles are generally very ro-
bust and effective, making it both generally unnecessary and very hard to find
sub-ensembles that are more effective than the unreduced ensembles. Consid-
ering prediction with confidence, it was shown that bagging ensembles trained
using all the available data made it possible to produce more effective confor-
mal predictors by using the out-of-bag estimates as a calibration set. It was
also shown that conformal prediction is very sensitive to class imbalance in
the data, resulting in conformal predictors that are strongly biased towards the
majority class. When predicting with confidence using imbalanced data, it is
therefore strongly recommended to use class label conditional conformal pre-
diction, which was shown to be effective on such problems.

6.3 Future Work

There are a number of questions to look into in future work. First of all, us-
ing out-of-bag estimates as a calibration set when using bagging ensembles
has been shown to be effective, and so work on proving the validity of this
approach will be prioritized.

Another priority is to identify different domains and problems that can be
used to showcase the added value of using conformal prediction rather than
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only using a predictive model. Examples of such domains and problems could
be: detecting adverse drug events using patient records; QSAR modeling;
anomaly detection in various fields; etc.

Static overproduce-and-select was shown to be ineffective. Several algo-
rithms using dynamic overproduce-and-select, where a sub-ensemble is se-
lected for each instance, exist in the literature. One idea for future work is to
use the conformal prediction framework to guide the selection, taking advan-
tage of the possibility of getting confidence estimates for individual instances.
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