Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Prawitz, Dag
Publikationer (10 of 23) Visa alla publikationer
Prawitz, D. (2019). The Fundamental Problem of General Proof Theory. Studia Logica: An International Journal for Symbolic Logic, 107(1), 11-29
Öppna denna publikation i ny flik eller fönster >>The Fundamental Problem of General Proof Theory
2019 (Engelska)Ingår i: Studia Logica: An International Journal for Symbolic Logic, ISSN 0039-3215, E-ISSN 1572-8730, Vol. 107, nr 1, s. 11-29Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

I see the question what it is that makes an inference valid and thereby gives a proof its epistemic power as the most fundamental problem of general proof theory. It has been surprisingly neglected in logic and philosophy of mathematics with two exceptions: Gentzen's remarks about what justifies the rules of his system of natural deduction and proposals in the intuitionistic tradition about what a proof is. They are reviewed in the paper and I discuss to what extent they succeed in answering what a proof is. Gentzen's ideas are shown to give rise to a new notion of valid argument. At the end of the paper I summarize and briefly discuss an approach to the problem that I have proposed earlier.

Nyckelord
Proof theory, Proof, Valid inference, Valid argument, Gentzen's naturaldeduction, Intuitionism
Nationell ämneskategori
Matematik Data- och informationsvetenskap Filosofi, etik och religion
Identifikatorer
urn:nbn:se:su:diva-166562 (URN)10.1007/s11225-018-9785-9 (DOI)000458570100003 ()
Tillgänglig från: 2019-03-04 Skapad: 2019-03-04 Senast uppdaterad: 2022-03-23Bibliografiskt granskad
Prawitz, D. (2019). The Seeming Interdependence Between the Concepts of Valid Inference and Proof. Topoi: An International Review of Philosophy, 38(3), 493-503
Öppna denna publikation i ny flik eller fönster >>The Seeming Interdependence Between the Concepts of Valid Inference and Proof
2019 (Engelska)Ingår i: Topoi: An International Review of Philosophy, ISSN 0167-7411, E-ISSN 1572-8749, Vol. 38, nr 3, s. 493-503Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We may try to explain proofs as chains of valid inference, but the concept of validity needed in such an explanation cannot be the traditional one. For an inference to be legitimate in a proof it must have sufficient epistemic power, so that the proof really justifies its final conclusion. However, the epistemic concepts used to account for this power are in their turn usually explained in terms of the concept of proof. To get out of this circle we may consider an idea within intuitionism about what it is to justify the assertion of a proposition. It depends on Heyting's view of the meaning of a proposition, but does not presuppose the concept of inference or of proof as chains of inferences. I discuss this idea and what is required in order to use it for an adequate notion of valid inference.

Nyckelord
Valid inference, Proof, Epistemic ground, Intuitionism
Nationell ämneskategori
Filosofi, etik och religion
Identifikatorer
urn:nbn:se:su:diva-173091 (URN)10.1007/s11245-017-9506-4 (DOI)000481853300002 ()
Tillgänglig från: 2019-10-07 Skapad: 2019-10-07 Senast uppdaterad: 2024-01-08Bibliografiskt granskad
Prawitz, D. (2018). To explain deduction. In: Michael Frauchiger (Ed.), Truth, Meaning, Justification, and Reality: Themes from Dummett (pp. 103-122). Berlin: Walter de Gruyter
Öppna denna publikation i ny flik eller fönster >>To explain deduction
2018 (Engelska)Ingår i: Truth, Meaning, Justification, and Reality: Themes from Dummett / [ed] Michael Frauchiger, Berlin: Walter de Gruyter, 2018, s. 103-122Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

The Justification of Deduction is the title of one of Michael Dummett’s essays. It names also an important theme in his writings to which he returned in the book The Logical Basis of Metaphysics. In the essay he distinguishes differ-ent levels of justification of increasing philosophical depth. At the third and deepest level, the focus is on explaining deduction rather than on justifying it. The task is to explain how deduction can be both legitimate and useful in giving us knowledge. I suggest that it can be described as essentially being the task to say what it is that gives a deduction its epistemic force. It is a fact that deduc-tion has such force, consisting in its capacity to provide grounds for assertions and thereby extend our knowledge, but it is a fact that has to be explained. What is it that gives a deduction this capacity? This task is more challenging than is usually assumed. Obviously, it is not the validity of its inferences, as this is usually understood, which gives a deduction its epistemic force. Truth condi-tional theory of meaning does not seem to have any satisfactory solution to offer, and I argue that nor have inferential theories of meaning, which take the meaning of sentences to be determined by inference rules accepted in a lan-guage. In the last part of the paper, I sketch a different approach to the problem. The main idea is here to give the concept of inference a richer content, so that to perform an inference is not only to make a speech act in which a conclusion is claimed to be supported by a number of premisses, but is in addition to operate on the grounds for the premisses with the aim of getting a ground for the con-clusion. I suggest that it is thanks to such operations that deductions provide grounds for their final conclusions. 

Ort, förlag, år, upplaga, sidor
Berlin: Walter de Gruyter, 2018
Serie
Launer Library of Analytical Philosophy, ISSN 2198-2155 ; 4
Nationell ämneskategori
Filosofi, etik och religion
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-159433 (URN)10.1515/9783110459135-007 (DOI)978-3-11-045839-8 (ISBN)9783110458312 (ISBN)
Tillgänglig från: 2018-08-29 Skapad: 2018-08-29 Senast uppdaterad: 2023-03-08Bibliografiskt granskad
Prawitz, D. (2016). Lewis Carrolls berättelse om Akilles och Sköldpaddan eller Om giltigheten hos deduktiva slutledningar. In: Kungl. Vitterhets Historie och Antikvitets Akademiens årsbok: (pp. 47-62). Stockholm: Kungl. Vitterhets Historie och Antikvitets Akademien
Öppna denna publikation i ny flik eller fönster >>Lewis Carrolls berättelse om Akilles och Sköldpaddan eller Om giltigheten hos deduktiva slutledningar
2016 (Svenska)Ingår i: Kungl. Vitterhets Historie och Antikvitets Akademiens årsbok, Stockholm: Kungl. Vitterhets Historie och Antikvitets Akademien, 2016, s. 47-62Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Stockholm: Kungl. Vitterhets Historie och Antikvitets Akademien, 2016
Serie
Kungl. Vitterhets Historie och Antikvitets Akademiens årsbok, ISSN 0083-6796 ; 2016
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-145470 (URN)978-91-7402-452-4 (ISBN)
Tillgänglig från: 2017-08-04 Skapad: 2017-08-04 Senast uppdaterad: 2022-02-28Bibliografiskt granskad
Prawitz, D. (2016). On the relation between Heyting's and Gentzen's approaches to meaning. In: Thomas Piecha, Peter Schroeder-Heister (Ed.), Advances in proof-theoretic semantics: (pp. 5-25). Cham: Springer
Öppna denna publikation i ny flik eller fönster >>On the relation between Heyting's and Gentzen's approaches to meaning
2016 (Engelska)Ingår i: Advances in proof-theoretic semantics / [ed] Thomas Piecha, Peter Schroeder-Heister, Cham: Springer, 2016, s. 5-25Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Proof-theoretic semantics explains meaning in terms of proofs. Two different concepts of proof are in question here. One has its roots in Heyting’s explanation of a mathematical proposition as the expression of the intention of a construction, and the other in Gentzen’s ideas about how the rules of Natural Deduction are justified in terms of the meaning of sentences. These two approaches to meaning give rise to two different concepts of proof, which have been developed much further, but the relation between them, the topic of this paper, has not been much studied so far. The recursive definition of proof given by the so-called BHK-interpretation is here used as an explication of Heyting’s idea. Gentzen’s approach has been developed as ideas about what it is that makes a piece of reasoning valid. It has resulted in a notion of valid argument, of which there are different variants. The differences turn out to be crucial when comparing valid arguments and BHK-proofs. It will be seen that for one variant, the existence of a valid argument can be proved to be extensionally equivalent to the existence of a BHK-proof, while for other variants, attempts at similar proofs break down at different points.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2016
Serie
Trends in logic, ISSN 1572-6126 ; 43
Nyckelord
Proof, Valid argument, Meaning, Semantics, Heyting, Gentzen
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-125726 (URN)10.1007/978-3-319-22686-6_2 (DOI)978-3-319-22685-9 (ISBN)
Tillgänglig från: 2016-01-17 Skapad: 2016-01-17 Senast uppdaterad: 2022-02-23Bibliografiskt granskad
Prawitz, D. (2015). A Note on How to Extend Gentzen’s Second Consistency Proof to a Proof of Normalization for First Order Arithmetic. In: Reinhard Kahle, Michael Rathjen (Ed.), Gentzen's Centenary: The Quest for Consistency (pp. 131-176). Springer
Öppna denna publikation i ny flik eller fönster >>A Note on How to Extend Gentzen’s Second Consistency Proof to a Proof of Normalization for First Order Arithmetic
2015 (Engelska)Ingår i: Gentzen's Centenary: The Quest for Consistency / [ed] Reinhard Kahle, Michael Rathjen, Springer, 2015, s. 131-176Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

The purpose of this note is to show that the normalization theorem can be proved for first order Peano arithmetic by adapting to natural deduction the method used in Gentzen’s second consistency proof. Gentzen explained the intuitive idea behind his proof by informally arguing for the possibility of a normalization theorem of natural deduction, but what he actually proved was a special case of the Hauptsatz for a sequent calculus formalization of arithmetic. To transfer Gentzen’s method to natural deduction, I shall assign his ordinals to notations for natural deductions that use an explicit operation of substitution. The idea is first worked out for predicate logic. The main problems reside there and consist in finding a normalization strategy that harmonizes with the ordinal assignment. The result for predicate logic is then extended to arithmetic without effort, and thereby full normalization of natural deductions in first order arithmetic is achieved.

Ort, förlag, år, upplaga, sidor
Springer, 2015
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-125728 (URN)10.1007/978-3-319-10103-3_6 (DOI)978-3-319-10102-6 (ISBN)978-3-319-10103-3 (ISBN)
Tillgänglig från: 2016-01-17 Skapad: 2016-01-17 Senast uppdaterad: 2022-02-23Bibliografiskt granskad
Prawitz, D. (2015). A Short Scientific Autobiography. In: Heinrich Wansing (Ed.), Dag Prawitz on Proofs and Meaning: . Paper presented at Dag Prawitz on Proofs and Meaning Workshop, Bochum, Germany, September 10-11, 2012 (pp. 33-64). Springer
Öppna denna publikation i ny flik eller fönster >>A Short Scientific Autobiography
2015 (Engelska)Ingår i: Dag Prawitz on Proofs and Meaning / [ed] Heinrich Wansing, Springer, 2015, s. 33-64Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Being born in 1936 in Stockholm, I have memories from the time of the Second World War. But Sweden was not involved, and my childhood was peaceful. One notable effect of the war was that even in the centre of Stockholm, where I grew up, there was very little automobile traffic. Goods were often transported by horse-drawn wagons. At the age of six we children could play in the streets and run to the nearby parks without the company of any adults.

Ort, förlag, år, upplaga, sidor
Springer, 2015
Serie
Outstanding Contributions to Logic, ISSN 2211-2758, E-ISSN 2211-2766 ; 7
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-125732 (URN)10.1007/978-3-319-11041-7_2 (DOI)000357742900002 ()978-3-319-11040-0 (ISBN)978-3-319-11041-7 (ISBN)
Konferens
Dag Prawitz on Proofs and Meaning Workshop, Bochum, Germany, September 10-11, 2012
Tillgänglig från: 2016-01-17 Skapad: 2016-01-17 Senast uppdaterad: 2022-02-23Bibliografiskt granskad
Prawitz, D. (2015). Classical versus intuitionistic logic. In: Edward Hermann Haeusler, Wagner de Campos Sanz, Bruno Lopes (Ed.), Why is this a Proof?: Festschrift for Luiz Carlos Pereira (pp. 15-32). College Publications
Öppna denna publikation i ny flik eller fönster >>Classical versus intuitionistic logic
2015 (Engelska)Ingår i: Why is this a Proof?: Festschrift for Luiz Carlos Pereira / [ed] Edward Hermann Haeusler, Wagner de Campos Sanz, Bruno Lopes, College Publications, 2015, s. 15-32Kapitel i bok, del av antologi (Refereegranskat)
Ort, förlag, år, upplaga, sidor
College Publications, 2015
Serie
Tributes ; 27
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-129288 (URN)9781848901728 (ISBN)
Tillgänglig från: 2016-04-20 Skapad: 2016-04-20 Senast uppdaterad: 2022-02-23Bibliografiskt granskad
Prawitz, D. (2015). Explaining Deductive Inference. In: Heinrich Wansing (Ed.), Dag Prawitz on Proofs and Meaning : (pp. 65-100). Cham: Springer
Öppna denna publikation i ny flik eller fönster >>Explaining Deductive Inference
2015 (Engelska)Ingår i: Dag Prawitz on Proofs and Meaning / [ed] Heinrich Wansing, Cham: Springer, 2015, s. 65-100Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

We naturally take for granted that by performing inferences we can obtain evidence or grounds for assertions that we make. But logic should explain how this comes about. Why do some inferences give us grounds for their conclusions? Not all inferences have that power. My first aim here is to draw attention to this fundamental but quite neglected question. It seems not to be easily answered without reconsidering or reconstructing the main concepts involved, that is, the concepts of ground and inference. Secondly, I suggest such a reconstruction, the main idea of which is that to make an inference is not only to assert a conclusion claiming that it is supported by a number of premisses, but is also to operate on the grounds that one assumes or takes oneself to have for the premisses. An inference is thus individuated not only by its premisses and conclusion but also by a particular operation. A valid inference can then be defined as one where the involved operation results in a ground for the conclusion when applied to grounds for the premisses. It then becomes a conceptual truth that a valid inference does give a ground for the conclusion provided that one has grounds for the premisses.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2015
Serie
Outstanding Contributions to Logic, ISSN 2211-2758 ; 7
Nyckelord
Inference, Deduction, Proof, Ground, Meaning, Logical validity Inferentialism, Intuitionism, Proof-theoretic semantics
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-125733 (URN)10.1007/978-3-319-11041-7_3 (DOI)000357742900003 ()978-3-319-11040-0 (ISBN)978-3-319-11041-7 (ISBN)
Tillgänglig från: 2016-01-17 Skapad: 2016-01-17 Senast uppdaterad: 2022-02-23Bibliografiskt granskad
Prawitz, D. (2014). An Approach to General Proof Theory and a Conjecture of a Kind of Completeness of Intuitionistic Logic Revisited. In: Luiz Carlos Pereira, Edward Hermann Haeusler, Valeria de Paiva (Ed.), Advances in Natural Deduction: A celebration of Dag Prawitz’s work (pp. 269-279). Dordrecht: Springer Netherlands
Öppna denna publikation i ny flik eller fönster >>An Approach to General Proof Theory and a Conjecture of a Kind of Completeness of Intuitionistic Logic Revisited
2014 (Engelska)Ingår i: Advances in Natural Deduction: A celebration of Dag Prawitz’s work / [ed] Luiz Carlos Pereira, Edward Hermann Haeusler, Valeria de Paiva, Dordrecht: Springer Netherlands, 2014, s. 269-279Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Thirty years ago I formulated a conjecture about a kind of completeness of intuitionistic logic. The framework in which the conjecture was formulated had the form of a semantic approach to a general proof theory (presented at the 4th World Congress of Logic, Methodology and Philosophy of Science at Bucharest 1971 [6]). In the present chapter, I shall reconsider this 30-year old conjecture, which still remains unsettled, but which I continue to think of as a plausible and important supposition. Reconsidering the conjecture, I shall also reconsider and revise the semantic approach in which the conjecture was formulated.

Ort, förlag, år, upplaga, sidor
Dordrecht: Springer Netherlands, 2014
Serie
Trends in Logic, ISSN 1572-6126 ; 39
Nationell ämneskategori
Filosofi
Forskningsämne
teoretisk filosofi
Identifikatorer
urn:nbn:se:su:diva-112077 (URN)10.1007/978-94-007-7548-0_12 (DOI)000355750700013 ()978-94-007-7547-3 (ISBN)978-94-007-7548-0 (ISBN)
Tillgänglig från: 2015-01-09 Skapad: 2015-01-09 Senast uppdaterad: 2022-02-23Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer