Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Brown, Christian
Publikationer (4 of 4) Visa alla publikationer
Brown, C., Patrick, J., Liebau, J. & Mäler, L. (2022). The MIT domain of chitin synthase 1 from the oomycete Saprolegnia monoica interacts specifically with phosphatidic acid. Biochemistry and Biophysics Reports, 30, Article ID 101229.
Öppna denna publikation i ny flik eller fönster >>The MIT domain of chitin synthase 1 from the oomycete Saprolegnia monoica interacts specifically with phosphatidic acid
2022 (Engelska)Ingår i: Biochemistry and Biophysics Reports, ISSN 2405-5808, Vol. 30, artikel-id 101229Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Chitin synthases are vital for growth in certain oomycetes as chitin is an essential component in the cell wall of these species. In Saprolegnia monoica, two chitin synthases have been found, and both contain a Microtubule Interacting and Trafficking (MIT) domain. The MIT domain has been implicated in lipid interaction, which in turn may be of significance for targeting of chitin synthases to the plasma membrane. In this work we have investigated the lipid interacting properties of the MIT domain from chitin synthase 1 in Saprolegnia monoica. We show by fluorescence spectroscopy techniques that the MIT domain interacts preferentially with phosphatidic acid (PA), while it does not interact with phosphatidylglycerol (PG) or phosphatidylcholine (PC). These results strongly suggest that the specific properties of PA are required for membrane interaction of the MIT domain. PA is negatively charged, binds basic side chains with high affinity and its small headgroup gives rise to membrane packing defects that enable intercalation of hydrophobic amino acids. We propose a mode of lipid interaction that involves a combination of basic amino acid residues and Trp residues that anchor the MIT domain specifically to bilayers that contain PA.

Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-206192 (URN)10.1016/j.bbrep.2022.101229 (DOI)000832992800004 ()2-s2.0-85124297928 (Scopus ID)
Tillgänglig från: 2022-06-22 Skapad: 2022-06-22 Senast uppdaterad: 2022-08-24Bibliografiskt granskad
Fu, B., Brown, C. & Mäler, L. (2020). Expression and Purification of DGD2, a Chloroplast Outer Membrane-Associated Glycosyltransferase for Galactolipid Synthesis. Biochemistry, 59(8), 999-1009
Öppna denna publikation i ny flik eller fönster >>Expression and Purification of DGD2, a Chloroplast Outer Membrane-Associated Glycosyltransferase for Galactolipid Synthesis
2020 (Engelska)Ingår i: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 59, nr 8, s. 999-1009Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Galactolipids are characteristic lipids of the photosynthetic membranes. They are highly enriched in the chloroplast and are present in photosystem structures. There are two major types of galactolipids, i.e., monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG) in chloroplastic membranes, which amount to similar to 50 and similar to 20 mol % of the total chloroplast lipids, respectively. Under phosphate-limiting conditions, the amount of DGDG increases dramatically for rescuing phosphate from phospholipids. In Arabidopsis thaliana, the gene digalactosyldiacylglycerol synthase 2 (DGD2) encodes a membrane-associated glycosyltransferase. The gene expression is highly responsive to phosphate starvation and is significantly upregulated in this case. To understand the molecular mechanism of DGD2, we established a protocol for DGD2 expression and purification in an Escherichia coli-based system. The work involved optimization of the expression condition and the purification protocol and a careful selection of buffer additives. It was found that a removal of around 70 C-terminal residues was necessary to produce a homogeneous monomeric protein sample with high purity, which was highly active. The purified sample was characterized by an activity assay for enzyme kinetics in which a range of membrane mimetics with different lipid compositions were used. The results demonstrate that DGD2 activity is stimulated by the presence of negatively charged lipids, which highlight the importance of the membrane environment in modulating the enzyme's activity. The study also paves way for future biophysical and structural studies of the enzyme.

Nyckelord
Lipids, Purification, Peptides and proteins, Genetics, Membranes
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-180606 (URN)10.1021/acs.biochem.0c00028 (DOI)000518234800010 ()32067450 (PubMedID)
Tillgänglig från: 2020-04-21 Skapad: 2020-04-21 Senast uppdaterad: 2022-02-26Bibliografiskt granskad
Liebau, J., Fu, B., Brown, C. & Mäler, L. (2018). New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli. Biochimica et Biophysica Acta - Biomembranes, 1860(3), 683-690
Öppna denna publikation i ny flik eller fönster >>New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli
2018 (Engelska)Ingår i: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1860, nr 3, s. 683-690Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.

Nyckelord
Diffusion NMR, Stopped-flow fluorescence, Vesicle, Bicelle, Membrane interaction, Lipids
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-153602 (URN)10.1016/j.bbamem.2017.12.004 (DOI)000424726800006 ()29225173 (PubMedID)
Tillgänglig från: 2018-03-14 Skapad: 2018-03-14 Senast uppdaterad: 2022-02-28Bibliografiskt granskad
Liebau, J., Fu, B., Brown, C. & Mäler, L.The glycosyltransferase WaaG: a peripheral membrane protein?.
Öppna denna publikation i ny flik eller fönster >>The glycosyltransferase WaaG: a peripheral membrane protein?
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Biofysik Biokemi Molekylärbiologi
Forskningsämne
biofysik
Identifikatorer
urn:nbn:se:su:diva-146870 (URN)
Tillgänglig från: 2017-09-14 Skapad: 2017-09-14 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer