Open this publication in new window or tab >>Show others...
2023 (English)In: Nature Astronomy, E-ISSN 2397-3366, Vol. 7, no 9, p. 1098-1107Article in journal (Refereed) Published
Abstract [en]
Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:su:diva-228293 (URN)10.1038/s41550-023-01981-3 (DOI)001007443400006 ()2-s2.0-85161680486 (Scopus ID)
Note
For correction, see: Goobar, A., Johansson, J., Schulze, S. et al. Author Correction: Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky. Nat Astron 7, 1137 (2023). DOI: 10.1038/s41550-023-02034-5
2024-04-112024-04-112024-04-12Bibliographically approved