Change search
Link to record
Permanent link

Direct link
Publications (7 of 7) Show all publications
Sikdar, A., Héraly, F., Zhang, H., Hall, S., Pang, K., Zhang, M. & Yuan, J. (2024). Hierarchically Porous 3D Freestanding Holey-MXene Framework via Mild Oxidation of Self-Assembled MXene Hydrogel for Ultrafast Pseudocapacitive Energy Storage. ACS Nano, 18(4), 3707-3719
Open this publication in new window or tab >>Hierarchically Porous 3D Freestanding Holey-MXene Framework via Mild Oxidation of Self-Assembled MXene Hydrogel for Ultrafast Pseudocapacitive Energy Storage
Show others...
2024 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 18, no 4, p. 3707-3719Article in journal (Refereed) Published
Abstract [en]

The true promise of MXene as a practical supercapacitor electrode hinges on the simultaneous advancement of its three-dimensional (3D) assembly and the engineering of its nanoscopic architecture, two critical factors for facilitating mass transport and enhancing an electrode’s charge-storage performance. Herein, we present a straightforward strategy to engineer robust 3D freestanding MXene (Ti3C2Tx) hydrogels with hierarchically porous structures. The tetraamminezinc(II) complex cation ([Zn(NH3)4]2+) is selected to electrostatically assemble colloidal MXene nanosheets into a 3D interconnected hydrogel framework, followed by a mild oxidative acid-etching process to create nanoholes on the MXene surface. These hierarchically porous, conductive holey-MXene frameworks facilitate 3D transport of both electrons and electrolyte ions to deliver an excellent specific capacitance of 359.2 F g–1 at 10 mV s–1 and superb capacitance retention of 79% at 5000 mV s–1, representing a 42.2% and 15.3% improvement over pristine MXene hydrogel, respectively. Even at a commercial-standard mass loading of 10.1 mg cm–2, it maintains an impressive capacitance retention of 52% at 1000 mV s–1. This rational design of an electrode by engineering nanoholes on MXene nanosheets within a 3D porous framework dictates a significant step forward toward the practical use of MXene and other 2D materials in electrochemical energy storage systems. 

Keywords
self-assembly, 2D materials, holey-MXene, freestanding hydrogel, pseudocapacitor
National Category
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-225685 (URN)10.1021/acsnano.3c11551 (DOI)001154866800001 ()38230678 (PubMedID)2-s2.0-85183528105 (Scopus ID)
Funder
Swedish Research Council, 2021-05839Swedish Research Council, 201805351Knut and Alice Wallenberg Foundation, KAW 2017.0166
Available from: 2024-01-19 Created: 2024-01-19 Last updated: 2024-02-19Bibliographically approved
Chang, J., Pang, B., Zhang, H., Pang, K., Zhang, M. & Yuan, J. (2024). MXene/Cellulose Composite Cloth for Integrated Functions (if-Cloth) in Personal Heating and Steam Generation. Advanced fiber materials, 6(1), 252-263
Open this publication in new window or tab >>MXene/Cellulose Composite Cloth for Integrated Functions (if-Cloth) in Personal Heating and Steam Generation
Show others...
2024 (English)In: Advanced fiber materials, ISSN 2524-7921, Vol. 6, no 1, p. 252-263Article in journal (Refereed) Published
Abstract [en]

Given the abundant solar light available on our planet, it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy-efficient manner. In this study, we present the fabrication of a photothermally active, biodegradable composite cloth composed of titanium carbide MXene and cellulose, achieved through an electrospinning method. This composite cloth exhibits favorable attributes, including chemical stability, mechanical performance, structural flexibility, and wettability. Notably, our 0.1-mm-thick composite cloth (RC/MXene IV) raises the temperature of simulated skin by 5.6 degrees C when compared to a commercially available cotton cloth, which is five times thicker under identical ambient conditions. Remarkably, the composite cloth (RC/MXene V) demonstrates heightened solar light capture efficiency (87.7%) when in a wet state instead of a dry state. Consequently, this cloth functions exceptionally well as a high-performance steam generator, boasting a superior water evaporation rate of 1.34 kg m(-2) h(-1) under one-sun irradiation (equivalent to 1000 W m(-2)). Moreover, it maintains its performance excellence in solar desalination processes. The multifunctionality of these cloths opens doors to a diverse array of outdoor applications, including solar-driven water evaporation and personal heating, thereby enriching the scope of integrated functionalities for textiles.

Keywords
Composite cloth, Solar heating, Personal heating, Steam generation
National Category
Textile, Rubber and Polymeric Materials
Identifiers
urn:nbn:se:su:diva-225429 (URN)10.1007/s42765-023-00345-w (DOI)001130166900001 ()2-s2.0-85180180094 (Scopus ID)
Available from: 2024-01-17 Created: 2024-01-17 Last updated: 2024-04-29Bibliographically approved
Saeedi Garakani, S., Sikdar, A., Pang, K. & Yuan, J. (2024). Poly(ionic liquid)-derived metal-free heteroatom co-doped porous carbons with peroxidase-like activity. Applied Materials Today, 37, Article ID 102081.
Open this publication in new window or tab >>Poly(ionic liquid)-derived metal-free heteroatom co-doped porous carbons with peroxidase-like activity
2024 (English)In: Applied Materials Today, ISSN 2352-9407, Vol. 37, article id 102081Article in journal (Refereed) Published
Abstract [en]

Development of affordable, efficient and metal-free heterogeneous catalytic systems has been a persistent challenge in academia and industry. Heteroatom-doped metal-free carbon materials are increasingly recognized as valuable heterogeneous catalysts, and if well-designed, can present comparable performance to, or even surpass transition metal-containing catalysts. Their physicochemical properties and structural characteristics are tunable in a wide range, plus being free of leakage problems of transition metal species into the environment. Herein, three types of hierarchically porous N/X co-doped carbon materials (X denotes B, P or S) were synthesized via using poly(ionic liquid)s (PILs) as carbon precursors and source of heteroatom dopants. The incorporation of sacrificial pore-inducing templating agents which created abundant edge defects, in combination with a heteroatom co-doping strategy, enhanced the number of active sites and their peroxidase-like catalytic activities. Comparison with only nitrogen single-doped porous carbons as reference demonstrated that co-doping with nitrogen and another heteroatom exhibits higher peroxidase-like activity and affinity towards substrates. Among the three types of heteroatom co-doped porous carbonaceous artificial enzymes, the N/B co-doped carbonaceous catalyst displayed the highest specific activities and Vmax values. These observations suggest a synergistic effect of the co-dopants, here N and B in the enzyme that holds a promising potential to further enhance peroxidase-like activity.

Keywords
Heteroatom co-doped carbon, Metal-free carbonaceous catalyst, Poly(ionic liquid)-derived carbon, Artificial enzyme, Peroxidase-like activity
National Category
Materials Chemistry Organic Chemistry
Identifiers
urn:nbn:se:su:diva-228193 (URN)10.1016/j.apmt.2024.102081 (DOI)001176572300001 ()2-s2.0-85184007619 (Scopus ID)
Available from: 2024-04-10 Created: 2024-04-10 Last updated: 2024-04-10Bibliographically approved
Pang, K., Tang, Y., Qiu, C., Zhang, M., Tayal, A., Feng, S., . . . Yuan, J. (2024). Redirecting configuration of atomically dispersed selenium catalytic sites for efficient hydrazine oxidation. Matter, 7(2), 655-667
Open this publication in new window or tab >>Redirecting configuration of atomically dispersed selenium catalytic sites for efficient hydrazine oxidation
Show others...
2024 (English)In: Matter, ISSN 2590-2393, E-ISSN 2590-2385, Vol. 7, no 2, p. 655-667Article in journal (Refereed) Published
Abstract [en]

Understanding the reconstruction of surface sites is crucial for gaining insights into the true active sites and catalytic mechanisms. While extensive research has been conducted on reconstruction behaviors of atomically dispersed metallic catalytic sites, limited attention has been paid to non-metallic ones despite their potential catalytic activity comparable or even superior to their noble-metal counterpart. Herein, we report a carbonaceous, atomically dispersed non-metallic selenium catalyst that displayed exceptional catalytic activity in the hydrazine oxidation reaction (HzOR) in alkaline media, outperforming the noble-metal Pt catalysts. In situ X-ray absorption spectroscopy (XAS) and Fourier transform infrared spectroscopy revealed that the pristine SeC4 site pre-adsorbs an ∗OH ligand, followed by HzOR occurring on the other side of the OH–SeC4. Theoretical calculations proposed that the pre-adsorbed ∗OH group pulls electrons from the Se site, resulting in a more positively charged Se and a higher polarity of Se–C bonds, thereby enhancing surface reactivity toward HzO/R.

National Category
Materials Chemistry
Research subject
Materials Science
Identifiers
urn:nbn:se:su:diva-225579 (URN)10.1016/j.matt.2023.12.001 (DOI)001182393300001 ()2-s2.0-85184059651 (Scopus ID)
Available from: 2024-01-17 Created: 2024-01-17 Last updated: 2024-03-26Bibliographically approved
Saeedi Garakani, S., Zhang, M., Xie, D., Sikdar, A., Pang, K. & Yuan, J. (2023). Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid. Nanomaterials, 13(20), Article ID 2786.
Open this publication in new window or tab >>Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid
Show others...
2023 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 13, no 20, article id 2786Article in journal (Refereed) Published
Abstract [en]

Fe3C nanoparticles hold promise as catalysts and nanozymes, but their low activity and complex preparation have hindered their use. Herein, this study presents a synthetic alternative toward efficient, durable, and recyclable, Fe3C-nanoparticle-encapsulated nitrogen-doped hierarchically porous carbon membranes (Fe3C/N–C). By employing a simple one-step synthetic method, we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-performance catalysts with improved stability and reusability. The Fe3C/N–C exhibits an outstanding peroxidase-like catalytic activity toward the oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of hydrogen peroxide, which stems from well-dispersed, small Fe3C nanoparticles jointly with the structurally unique micro-/macroporous N–C membrane. Owing to the remarkable catalytic activity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior selectivity, and anti-interference capability has been developed. This study offers a widely adaptable and sustainable way to synthesize an Fe3C/N–C membrane as an easy-to-handle, convenient, and recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental fields.

Keywords
iron carbide nanoparticles, nitrogen-doped carbon, wood-derived carbon, colorimetric detection, ascorbic acid
National Category
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-223976 (URN)10.3390/nano13202786 (DOI)001092601900001 ()37887937 (PubMedID)2-s2.0-85175081396 (Scopus ID)
Available from: 2023-11-24 Created: 2023-11-24 Last updated: 2024-01-18Bibliographically approved
Long, C., Liu, X., Wan, K., Jiang, Y., An, P., Yang, C., . . . Tang, Z. (2023). Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 9(43), Article ID eadi6119.
Open this publication in new window or tab >>Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol
Show others...
2023 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 9, no 43, article id eadi6119Article in journal (Refereed) Published
Abstract [en]

Oxide-derived copper (OD-Cu) is the most efficient and likely practical electrocatalyst for CO2 reduction toward multicarbon products. However, the inevitable but poorly understood reconstruction from the pristine state to the working state of OD-Cu under strong reduction conditions largely hinders the rational construction of catalysts toward multicarbon products, especially C-3 products like n-propanol. Here, we simulate the reconstruction of CuO and Cu2O into their derived Cu by molecular dynamics, revealing that CuO-derived Cu (CuOD-Cu) intrinsically has a richer population of undercoordinated Cu sites and higher surficial Cu atom density than the counterpart Cu2O-derived Cu (Cu2OD-Cu) because of the vigorous oxygen removal. In situ spectroscopes disclose that the coordination number of CuOD-Cu is considerably lower than that of Cu2OD-Cu, enabling the fast kinetics of CO2 reaction and strengthened binding of *C-2 intermediate(s). Benefiting from the rich undercoordinated Cu sites, CuOD-Cu achieves remarkable n-propanol faradaic efficiency up to similar to 17.9%, whereas the Cu2OD-Cu dominantly generates formate.

National Category
Biomaterials Science
Identifiers
urn:nbn:se:su:diva-226963 (URN)10.1126/sciadv.adi6119 (DOI)001142878200004 ()37889974 (PubMedID)
Available from: 2024-02-29 Created: 2024-02-29 Last updated: 2024-02-29Bibliographically approved
Chang, J., Shi, L., Zhang, M., Li, R., Shi, Y., Yu, X., . . . Yuan, J. (2023). Tailor-Made White Photothermal Fabrics: A Bridge between Pragmatism and Aesthetic. Advanced Materials, 35(41), Article ID 2209215.
Open this publication in new window or tab >>Tailor-Made White Photothermal Fabrics: A Bridge between Pragmatism and Aesthetic
Show others...
2023 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 35, no 41, article id 2209215Article in journal (Refereed) Published
Abstract [en]

Maintaining human thermal comfort in the cold outdoors is crucial for diverse outdoor activities, e.g., sports and recreation, healthcare, and special occupations. To date, advanced clothes are employed to collect solar energy as a heat source to stand cold climates, while their dull dark photothermal coating may hinder pragmatism in outdoor environments and visual sense considering fashion. Herein, tailor-made white webs with strong photothermal effect are proposed. With the embedding of cesium–tungsten bronze (CsxWO3) nanoparticles (NPs) as additive inside nylon nanofibers, these webs are capable of drawing both near-infrared (NIR) and ultraviolet (UV) light in sunlight for heating. Their exceptional photothermal conversion capability enables 2.5–10.5 °C greater warmth than that of a commercial sweatshirt of six times greater thickness under different climates. Remarkably, this smart fabric can increase its photothermal conversion efficiency in a wet state. It is optimal for fast sweat or water evaporation at human comfort temperature (38.5 °C) under sunlight, and its role in thermoregulation is equally important to avoid excess heat loss in wilderness survival. Obviously, this smart web with considerable merits of shape retention, softness, safety, breathability, washability, and on-demand coloration provides a revolutionary solution to realize energy-saving outdoor thermoregulation and simultaneously satisfy the needs of fashion and aesthetics.

National Category
Other Materials Engineering
Identifiers
urn:nbn:se:su:diva-218153 (URN)10.1002/adma.202209215 (DOI)000991498000001 ()36972562 (PubMedID)2-s2.0-85159662384 (Scopus ID)
Funder
EU, European Research Council, PARIS‐101043485Swedish Research Council, 2021‐05839
Available from: 2023-06-15 Created: 2023-06-15 Last updated: 2024-01-03Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0001-7095-0429

Search in DiVA

Show all publications