Open this publication in new window or tab >>Show others...
2023 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 127, no 21, p. 4922-4930Article in journal (Refereed) Published
Abstract [en]
Hydrated proteins undergo a transition in the deeplysupercooledregime, which is attributed to rapid changes in hydration water andprotein structural dynamics. Here, we investigate the nanoscale stress-relaxationin hydrated lysozyme proteins stimulated and probed by X-ray PhotonCorrelation Spectroscopy (XPCS). This approach allows us to accessthe nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibriummethods. The observed stimulated dynamic response is attributed tocollective stress-relaxation as the system transitions froma jammed granular state to an elastically driven regime. The relaxationtime constants exhibit Arrhenius temperature dependence upon coolingwith a minimum in the Kohlrausch-Williams-Watts exponentat T = 227 K. The observed minimum is attributedto an increase in dynamical heterogeneity, which coincides with enhancedfluctuations observed in the two-time correlation functions and amaximum in the dynamic susceptibility quantified by the normalizedvariance chi( T ). The amplification offluctuations is consistent with previous studies of hydrated proteins,which indicate the key role of density and enthalpy fluctuations inhydration water. Our study provides new insights into X-ray stimulatedstress-relaxation and the underlying mechanisms behind spatiotemporalfluctuations in biological granular materials.
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:su:diva-229924 (URN)10.1021/acs.jpcb.3c02492 (DOI)001014320500001 ()37209106 (PubMedID)2-s2.0-85160964770 (Scopus ID)
2024-05-302024-05-302024-11-25Bibliographically approved