Open this publication in new window or tab >>2025 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 696, article id A57Article in journal (Refereed) Published
Abstract [en]
Context. The recently launched James Webb Space Telescope (JWST) is opening new observing windows on the distant Universe. Among JWST’s instruments, the Mid Infrared Instrument (MIRI) offers the unique capability of imaging observations at wavelengths of λ > 5 μm. This enables unique access to the rest frame near-infrared (NIR, λ ≥ 1 μm) emission from galaxies at redshifts of z > 4 and the visual (λ ≳ 5000 Å) rest frame for z > 9. We report here on the guaranteed time observations (GTO), from the MIRI European Consortium, of the Hubble Ultra Deep Field (HUDF), forming the MIRI Deep Imaging Survey (MIDIS), consisting of an on source integration time of ∼41 hours in the MIRI/F560W (5.6 μm) filter. The F560W filter was selected since it would produce the deepest data in terms of AB magnitudes in a given time. To our knowledge, this constitutes the longest single filter exposure obtained with JWST of an extragalactic field as of yet.
Aims. The HUDF is one of the most observed extragalactic fields, with extensive multi-wavelength coverage, where (before JWST) galaxies up to z ∼ 7 have been confirmed, and at z > 10 suggested, from HST photometry. We aim to characterise the galaxy population in HUDF at 5.6 μm, enabling studies such as: the rest frame NIR morphologies for galaxies at z ≲ 4.6, probing mature stellar populations and emission lines in z > 6 sources, intrinsically red and dusty galaxies, and active galactic nuclei (AGNs) and their host galaxies at intermediate redshifts.
Methods. We reduced the MIRI data using the official JWST pipeline, augmented by in-house custom scripts. We measured the noise characteristics of the resulting image. Galaxy photometry was obtained, and photometric redshifts were estimated for sources with available multi-wavelength photometry (and compared to spectroscopic redshifts when available).
Results. Over the deepest part of our image, the 5σ point source limit is 28.65 mag AB (12.6 nJy), ∼0.35 mag better than predicted by the JWST exposure time calculator. We find ∼2500 sources, the overwhelming majority of which are distant galaxies, but we note that spurious sources likely remain at faint magnitudes due to imperfect cosmic ray rejection in the JWST pipeline. More than 500 galaxies with available spectroscopic redshifts, up to z ≈ 11, have been identified, the majority of which are at z < 6. More than 1000 galaxies have reliable photometric redshift estimates, of which ∼25 are at 6 < z < 12. The point spread function in the F560W filter has a full width at half maximum (FWHM) of ≈0.2″ (corresponding to 1.4 kpc at z = 4), allowing the NIR rest frame morphologies and stellar mass distributions to be resolved for z < 4.5. Moreover, > 100 objects with very red NIRCam vs MIRI (3.6–5.6 μm > 1 mag) colours have been found, suggestive of dusty or old stellar populations at high redshifts.
Conclusions. We conclude that MIDIS surpasses preflight expectations and that deep MIRI imaging has great potential to characterise the galaxy population from cosmic noon to dawn.
Keywords
galaxies: evolution, galaxies: formation, galaxies: high-redshift, infrared: galaxies
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
urn:nbn:se:su:diva-244381 (URN)10.1051/0004-6361/202451723 (DOI)001459780300005 ()2-s2.0-105007529814 (Scopus ID)
2025-06-192025-06-192025-06-19Bibliographically approved