Open this publication in new window or tab >>Show others...
2021 (English)In: iScience, E-ISSN 2589-0042 , Vol. 24, no 8, article id 102852Article in journal (Refereed) Published
Abstract [en]
Substantial research efforts have gone into elucidating the role of protein misfolding and self-assembly in the onset and progression of Alzheimer’s disease (AD). Aggregation of the Amyloid-β (Aβ) peptide into insoluble fibrils is closely associated with AD. Here, we use biophysical techniques to study a peptide-based approach to target Aβ amyloid aggregation. A peptide construct, NCAM-PrP, consists of a largely hydrophobic signal sequence linked to a positively charged hexapeptide. The NCAM-PrP peptide inhibits Aβ amyloid formation by forming aggregates which are unavailable for further amyloid aggregation. In a membrane-mimetic environment, Aβ and NCAM-PrP form specific heterooligomeric complexes, which are of lower aggregation states compared to Aβ homooligomers. The Aβ:NCAM-PrP interaction appears to take place on different aggregation states depending on the absence or presence of a membrane-mimicking environment. These insights can be useful for the development of potential future therapeutic strategies targeting Aβ at several aggregation states.
National Category
Chemical Sciences
Identifiers
urn:nbn:se:su:diva-198433 (URN)10.1016/j.isci.2021.102852 (DOI)000686897200039 ()34381976 (PubMedID)
2021-11-092021-11-092023-09-04Bibliographically approved