Change search
Link to record
Permanent link

Direct link
Publications (10 of 12) Show all publications
Lim, H., Silvergren, S., Spinicci, S., Rad, F. M., Nilsson, U., Westerholm, R. & Johansson, C. (2022). Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden. Atmospheric Chemistry And Physics, 22(17), 11359-11379
Open this publication in new window or tab >>Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
Show others...
2022 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 22, no 17, p. 11359-11379Article in journal (Refereed) Published
Abstract [en]

A growing trend in developed countries is the use of wood as fuel for domestic heating due to measures taken to reduce the usage of fossil fuels. However, this imposed another issue with the environment and human health. That is, the emission from wood burning contributed to the increased level of atmospheric particulates and the wood smoke caused various respiratory diseases. The aim of this study was to investigate the impact of wood burning on the polycyclic aromatic hydrocarbons (PAHs) in air PM10 using known wood burning tracers, i.e. levoglucosan, mannosan and galactosan from the measurement at the urban background and residential areas in Sweden. A yearly measurement from three residential areas in Sweden showed a clear seasonal variation of PAHs during the cold season mainly from increased domestic heating and meteorology. Together, an increased sugar level assured the wood burning during the same period. The sugar ratio (levoglucosan(mannosan+galactosan)) was a good marker for wood burning source such as the wood type used for domestic heating and garden waste burning. On the Walpurgis Night, the urban background measurement demonstrated a dramatic increase in levoglucosan, benzo[a]pyrene (B[a]P) and oxygenated PAHs (OPAHs) concentrations from the increased wood burning. A significant correlation between levoglucosan and OPAHs was observed suggesting OPAHs to be an indicator of wood burning together with levoglucosan. The levoglucosan tracer method and modelling used in predicting the B[a]P concentration could not fully explain the measured levels in the cold season. The model showed that the local wood source contributed to 98 % of B[a]P emissions in the Stockholm area and 2 % from the local traffic. However, non-local sources were dominating in the urban background (60 %). A further risk assessment estimated that the airborne particulate PAHs caused 13.4 cancer cases per 0.1 million inhabitants in Stockholm County.

National Category
Earth and Related Environmental Sciences
Identifiers
urn:nbn:se:su:diva-209457 (URN)10.5194/acp-22-11359-2022 (DOI)000849846400001 ()
Available from: 2022-09-19 Created: 2022-09-19 Last updated: 2022-09-19Bibliographically approved
Lim, H., Sadiktsis, I., de Oliveira Galvão, M. F., Westerholm, R. & Dreij, K. (2021). Polycyclic aromatic compounds in particulate matter and indoor dust at preschools in Stockholm, Sweden: Occurrence, sources and genotoxic potential in vitro. Science of the Total Environment, 755, Article ID 142709.
Open this publication in new window or tab >>Polycyclic aromatic compounds in particulate matter and indoor dust at preschools in Stockholm, Sweden: Occurrence, sources and genotoxic potential in vitro
Show others...
2021 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 755, article id 142709Article in journal (Refereed) Published
Abstract [en]

Children spend a significant amount of their day in preschool; thus, environmental quality at preschools may have an impact on children’s health. In the present study, we analyzed polycyclic aromatic compounds (PACs), including PAHs, alkylated PAHs and oxygenated PAHs (OPAHs), in indoor and outdoor air particulate matter (PM10) and indoor dust at preschools in Stockholm, Sweden. There were significant correlations between PAC levels in outdoor and indoor PM10, with in general higher PAC levels outdoors. Fluoranthene and pyrene were detected at highest levels in all sample types, although phenanthrene and methylated phenanthrene derivatives also were found at high levels in indoor dust. In addition, the highly carcinogenic PAHs 7H-benzo[c]fluorene, 7,12-dimethylbenz[a]anthracene, benz[j]aceanthrylene, and dibenzo[a,l]pyrene were detected in some samples. Benzanthrone was the most prevalent OPAH in PM10 samples and 9,10-anthraquinone in indoor dust. Based on diagnostic ratios and Positive Matrix Factorization we identified vehicle emission and biomass burning as important PAC sources for all samples analyzed. However, poor correlation between PAC levels in indoor PM10 and indoor dust suggested additional sources for the latter. Measuring activation of DNA damage signaling in human cells exposed to organic extracts of the samples indicated substantial genotoxic potential of outdoor PM10 and indoor dust. Determination of benzo[a]pyrene equivalents demonstrated that the highly potent PAHs benz[j]aceanthrylene and dibenz[a,h]anthracene contributed more than 20% to the total carcinogenic potency of the samples. We conclude that PAC levels at Stockholm preschools are relatively low but that outdoor air quality may impact on the indoor environment.

Keywords
PAHs, oxygenated PAHs, Positive Matrix Factorization, source apportionment, DNA damage signaling
National Category
Earth and Related Environmental Sciences
Identifiers
urn:nbn:se:su:diva-185738 (URN)10.1016/j.scitotenv.2020.142709 (DOI)000600537400057 ()
Funder
Swedish Research Council Formas, 2019-00582Stockholm County Council, TRN 2015-0171
Available from: 2020-10-06 Created: 2020-10-06 Last updated: 2022-02-25Bibliographically approved
Maselli, B. S., Cunha, V., Lim, H., Bergvall, C., Westerholm, R., Dreij, K., . . . Kummrow, F. (2020). Similar polycyclic aromatic hydrocarbon and genotoxicity profiles of atmospheric particulate matter from cities on three different continents. Environmental and Molecular Mutagenesis, 61, 560-573
Open this publication in new window or tab >>Similar polycyclic aromatic hydrocarbon and genotoxicity profiles of atmospheric particulate matter from cities on three different continents
Show others...
2020 (English)In: Environmental and Molecular Mutagenesis, ISSN 0893-6692, E-ISSN 1098-2280, Vol. 61, p. 560-573Article in journal (Refereed) Published
Abstract [en]

The extractable organic material (EOM) from atmospheric total suspended particles (TSP) contains several organic compounds including non-substituted polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, and nitro-PAHs. These chemicals seem to be among the key drivers of TSP genotoxicity. We have shown previously that the mutagenic potencies of the EOM from Limeira, Stockholm, and Kyoto, cities with markedly different meteorological conditions and pollution sources are similar. Here we compare the profiles of non-substituted PAHs (27 congeners), alkyl-PAHs (15 congeners), and nitro-PAHs (7 congeners) from the same EOM samples from these cities. We also compared the genotoxicity profiles using comet and micronucleus assays in human bronchial epithelial cells. The profiles of PAHs, as well as the cytotoxic and genotoxic potencies when expressed in EOM, were quite similar among the studied cities. It seems that despite the differences in meteorological conditions and pollution sources of the cities, removal, mixing, and different atmospheric transformation processes may be contributing to the similarity of the PAHs composition and genotoxicity profiles. More studies are required to verify if this would be a general rule applicable to other cities. Although these profiles were similar for all three cities, the EOM concentration in the atmospheres is markedly different. Thus, the population of Limeira (similar to 10-fold more EOM/m(3) than Stockholm and similar to 6-fold more than Kyoto) is exposed to higher concentrations of genotoxic pollutants, and Kyoto's population is 1.5-fold more exposed than Stockholm's. Therefore, to reduce the risk of human exposure to TSP genotoxins, the volume of emissions needs to be reduced.

Keywords
alkyl-PAHs, comet assay, micronucleus assay, nitro-PAHs, non-substituted PAHs
National Category
Earth and Related Environmental Sciences Chemical Sciences
Identifiers
urn:nbn:se:su:diva-181942 (URN)10.1002/em.22377 (DOI)000530437000001 ()32285490 (PubMedID)
Available from: 2020-06-15 Created: 2020-06-15 Last updated: 2022-02-26Bibliographically approved
Maselli, B. S., Giron, M. C. G., Lim, H., Bergvall, C., Westerholm, R., Dreij, K., . . . Kummrow, F. (2019). Comparative mutagenic activity of atmospheric particulate matter from limeira, stockholm, and kyoto. Environmental and Molecular Mutagenesis, 60(7), 607-616
Open this publication in new window or tab >>Comparative mutagenic activity of atmospheric particulate matter from limeira, stockholm, and kyoto
Show others...
2019 (English)In: Environmental and Molecular Mutagenesis, ISSN 0893-6692, E-ISSN 1098-2280, Vol. 60, no 7, p. 607-616Article in journal (Refereed) Published
Abstract [en]

Atmospheric particulate matter (PM) organic fractions from urban centers are frequently mutagenic for the Salmonella/microsome assay. This mutagenicity is related to both primary and secondary pollutants, and meteorological conditions have great influence on the secondary pollutant's formation. Our objective was to compare the mutagenicity of atmospheric total suspended particulates (TSP) from three cities with marked different meteorological conditions and TSP concentrations: Limeira (Brazil) with 99.0 mu g/m(3), Stockholm (Sweden) with 6.2 mu g/m(3), and Kyoto (Japan) with 28.0 mu g/m(3). For comparison, we used the same batch of filters, sample extraction method, and Salmonella/microsome testing protocol with 11 strains of Salmonella with and without metabolic activation. Samples were collected during winter and pooled into one single extract representing each city. All samples were mutagenic for all tested strains, except for TA102. Based on the strain's selectivity, nitroarenes, polycyclic aromatic hydrocarbons, and aromatic amines play a predominant role in the mutagenicity of these samples. The mutagenic potencies expressed by mass of extracted organic material (EOM; revertants/mu g EOM) were similar (similar to twofold difference) among the cities, despite differences in meteorological conditions and pollution sources. In contrast, the mutagenic potencies expressed by air volume (rev/m(3)) varied similar to 20-fold, with Limeira > Kyoto approximate to Stockholm. These results are the first systematic assessment of air mutagenicity from cities on three continents using the same protocols. The results confirm that the mutagenic potency expressed by EOM mass is similar regardless of continent of origin, whereas the mutagenic potency expressed by air volume can vary by orders of magnitude. Environ. Mol. Mutagen. 2019.

Keywords
total suspended particles, accelerated solvent extraction, Salmonella, microsome microsuspension assay, mutagenic profiles
National Category
Environmental Sciences Biological Sciences Clinical Laboratory Medicine Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-171673 (URN)10.1002/em.22293 (DOI)000478740100006 ()30968449 (PubMedID)
Available from: 2019-08-21 Created: 2019-08-21 Last updated: 2022-02-26Bibliographically approved
Lim, H. (2018). Automation, hyphenation and multidimensional chromatography for PAH analysis: Analytical techniques to simplify sample complexity. (Doctoral dissertation). Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University
Open this publication in new window or tab >>Automation, hyphenation and multidimensional chromatography for PAH analysis: Analytical techniques to simplify sample complexity
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

One group of organic environmental pollutants which are potentially hazardous to human health is polycyclic aromatic hydrocarbons (PAHs). These compounds consist of two or more benzene rings in their structure among which benzo[a]pyrene (B[a]P) is classified as a human carcinogen. In order to generate accurate data for PAHs, reliable analytical methods are a prerequisite for PAH monitoring in the environment and cancer risk assessments. However, there are several analytical challenges in PAH analysis because they are a large number of compounds with different physical and chemical properties and occur at varying concentration levels, often in complex matrices. Thus, this thesis aimed at tackling these difficulties in PAH analysis using various analytical techniques such as automation, hyphenation and multidimensional chromatography, particularly to increase the detectability and separation efficiency of PAHs in complex matrices. Furthermore, analytical methods were also presented as a tool for toxicological studies.

A fully automated two-dimensional (2D)-liquid chromatography (LC)/2D-gas chromatography system was developed to enable the online sample clean-up, separation and detection, initially with two flame ionization detectors (FIDs) (Paper I). The introduction of mass selective detectors (MSDs) instead of two FIDs further advanced the original 2D system, improving the detectability and selectivity in PAH analysis (Paper II). The PAH levels were determined in two standard reference materials (SRMs) from the National Institute of Standards and Technology (NIST), i.e. urban dust (SRM 1649a) and diesel particulate extract (SRM 1975). The measured PAH levels were in good agreement with those obtained from FID- and MSD-based systems and reported by NIST (Paper I and II). Additionally, the PAH determination was done in particulates from wood burning, which also showed comparable results between FID and MSD systems (Paper II). The FID-based system showed slightly better separation efficiency owing to the use of hydrogen as carrier gas instead of helium and similar detectability to that of MSD (Paper I). However, the MSD-based system was advantageous to detecting late-eluting PAHs and separating interfering peaks in complex matrices (Paper II).

Paper III presented an online LC system for B[a]P-selective fractionation as a tool for studying biological interactions. Fractions could be obtained from Stockholm air particulate matter (PM) extract with or without B[a]P. The selective fractionation was achieved using serial LC columns of two pyrenyl phases, resulting in more than 90% of B[a]P in the B[a]P-containing fraction. An analytical method for identification and quantification of benz[j]aceanthrylene (B[j]A) in air PM was developed and described in paper IV. B[j]A is rarely measured due to its low abundance but is known to have high carcinogenic potential. The determination of B[j]A in air PM from Stockholm (Sweden) and Limeira (Brazil), was done together with a series of toxicological studies. The measurement and toxicological data showed an increased number of estimated cancer cases from air PM exposure when levels of B[j]A were taken into account.

In conclusion, this thesis presents various analytical approaches to obtain more accurate PAH data as well as the possibilities of using them in toxicological research.

Place, publisher, year, edition, pages
Stockholm: Department of Environmental Science and Analytical Chemistry, Stockholm University, 2018. p. 88
Keywords
polycyclic aromatic hydrocarbon, PAH, benzo[a]pyrene, B[a]P, carcinogenicity, cancer risk assessment, complex matrix, automation, hyphenation, multidimensional chromatography, two-dimensional, method translation, online fractionation, benz[j]aceanthrylene, B[j]A, relative potency factor
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-159716 (URN)978-91-7797-336-2 (ISBN)978-91-7797-337-9 (ISBN)
Public defence
2018-10-19, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2018-09-26 Created: 2018-09-04 Last updated: 2022-02-26Bibliographically approved
Lim, H., Ahmed, T. M., Bergvall, C. & Westerholm, R. (2017). Automated clean-up, separation and detection of polycyclic aromatic hydrocarbons in particulate matter extracts using a 2D-LC/2D-GC system: a method translation from two FIDs to two MS detectors. Analytical and Bioanalytical Chemistry, 409(24), 5619-5629
Open this publication in new window or tab >>Automated clean-up, separation and detection of polycyclic aromatic hydrocarbons in particulate matter extracts using a 2D-LC/2D-GC system: a method translation from two FIDs to two MS detectors
2017 (English)In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 409, no 24, p. 5619-5629Article in journal (Refereed) Published
Abstract [en]

An online two-dimensional (2D) liquid chromatography/2D gas chromatography system with two mass-selective detectors has been developed on the basis of a previous system with two flame ionization detectors. The method translation involved the change of carrier gas from hydrogen to helium, column dimension and detectors. The 2D system with two mass-selective detectors was validated with use of polycyclic aromatic hydrocarbon (PAH) standards and two standard reference materials from air and diesel exhaust. Furthermore, the system was applied to a real sample, wood smoke particulates. The PAH values determined correlated well with the previous data and those from the National Institute of Standards and Technology. The system enhanced the benefits of the previous system, which were limited by the low detectability and lack of mass selectivity. This study shows an automated 2D system that is valid for PAH analysis of complex environmental samples directly from crude extracts.

Keywords
Polycyclic aromatic hydrocarbon, Multidimensional gas chromatography, Standard reference material, Wood smoke particulates, Long-term stability
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-147893 (URN)10.1007/s00216-017-0509-1 (DOI)000409295300002 ()
Available from: 2017-10-23 Created: 2017-10-23 Last updated: 2022-03-23Bibliographically approved
Dreij, K., Mattsson, Å., Jarvis, I. W. H., Lim, H., Hurkmans, J., Gustafsson, J., . . . Stenius, U. (2017). Cancer Risk Assessment of Airborne PAHs Based on in Vitro Mixture Potency Factors. Environmental Science and Technology, 51(15), 8805-8814
Open this publication in new window or tab >>Cancer Risk Assessment of Airborne PAHs Based on in Vitro Mixture Potency Factors
Show others...
2017 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 51, no 15, p. 8805-8814Article in journal (Refereed) Published
Abstract [en]

Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants associated with adverse human health effects including cancer. However, the risk of exposure to mixtures is difficult to estimate, and risk assessment by whole mixture potency evaluations has been suggested. To facilitate this, reliable in vitro based testing systems are necessary. Here, we investigated if activation of DNA damage signaling in vitro could be an endpoint for developing whole mixture potency factors (MPFs) for airborne PAHs. Activation of DNA damage signaling was assessed by phosphorylation of Chid and H2AX using Western blotting. To validate the in vitro approach, potency factors were determined for seven individual PAHs which were in very good agreement with established potency factors based on cancer data in vivo. Applying the method using Stockholm air PAH samples indicated MPFs with orders of magnitude higher carcinogenic potency than predicted by established in vivo-based potency factors. Applying the MPFs in cancer risk assessment suggested that 45.4 (6% of all) cancer cases per year in Stockholm are due to airborne PAHs. Applying established models resulted in <1 cancer case per year, which is far from expected levels. We conclude that our in vitro based approach for establishing MPFs could be a novel method to assess whole mixture samples of airborne PAHs to improve health risk assessment.

National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-147140 (URN)10.1021/acs.est.7b02963 (DOI)000406982600064 ()28650627 (PubMedID)
Available from: 2017-09-25 Created: 2017-09-25 Last updated: 2022-02-28Bibliographically approved
Masala, S., Lim, H., Bergvall, C., Johansson, C. & Westerholm, R. (2016). Determination of semi-volatile and particle-associated polycyclic aromatic hydrocarbons in Stockholm air with emphasis on the highly carcinogenic dibenzopyrene isomers. Atmospheric Environment, 140, 370-380
Open this publication in new window or tab >>Determination of semi-volatile and particle-associated polycyclic aromatic hydrocarbons in Stockholm air with emphasis on the highly carcinogenic dibenzopyrene isomers
Show others...
2016 (English)In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 140, p. 370-380Article in journal (Refereed) Published
Abstract [en]

The concentrations of polycyclic aromatic hydrocarbons (PAHs) have been determined in the gaseous phase and in various particulate matter (PM) size fractions at different locations in and outside of Stockholm, Sweden, representative of street level, urban and rural background. The focus has been on the seldom determined but highly carcinogenic dibenzopyrene isomers (DBPs) dibenzo[a,I]pyrene, dibenzo [a,e]pyrene, dibenzo[a,i]pyrene and dibenzo[a,h]pyrene. PAHs with 3 rings were found to be mainly associated with the vapor phase (>90%) whereas PAHs with 5-6 rings were mostly associated with particulate matter (>92%) and the 4-ringed PAHs partitioned between the two phases. PAH abundance was determined to be in the order street level > urban background > rural background with the PM10 street level 2010 mean of benzo[a]pyrene (B[a]P) reaching 0.24 ng/m(3), well below the EU annual limit value of 1 ng/m(3). In addition, higher PAH concentrations were found in the sub-micron particle fraction (PM1) as compared to the super -micron fraction (PM1-10) with the abundance in PM1 varying between 57 and 86% of the total PAHs. The B[a]P equivalent concentrations derived for DB[a,l]P and total DBPs exceeded 1-2 and 2-4 times, respectively, that of B[a]P at the four sampling sites; therefore underestimation of the cancer risk posed by PAHs in air could be made if the DBPs were not considered in risk assessment using the toxic equivalency approach, whilst the high correlation (p < 0.001) found in the relative concentrations supports the use of B[a]P as a marker substance for assessment of the carcinogenic risk associated to PAHs. However, the big difference in concentration ratios of B[a]P and the DBPs between the present study and some literature data calls for further research to evaluate the temporal and spatial invariance of the B[a]P/DBP ratios.

Keywords
Ambient air, Particulate matter, PAH, Benzo[a]pyrene, Benzo[a]pyrene equivalence, Dibenzo[a, l]pyrene, Toxicity
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-133369 (URN)10.1016/j.atmosenv.2016.06.007 (DOI)000380083200033 ()
Available from: 2016-09-12 Created: 2016-09-06 Last updated: 2022-02-23Bibliographically approved
Lim, H., Mattsson, Å., Jarvis, I. W. H., Bergvall, C., Bottai, M., Morales, D. A., . . . Dreij, K. (2015). Detection of Benz[j]aceanthrylene in Urban Air and Evaluation of Its Genotoxic Potential. Environmental Science and Technology, 49(5), 3101-3109
Open this publication in new window or tab >>Detection of Benz[j]aceanthrylene in Urban Air and Evaluation of Its Genotoxic Potential
Show others...
2015 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 49, no 5, p. 3101-3109Article in journal (Refereed) Published
Abstract [en]

Benz[j]aceanthrylene (B[j]A) is a cyclopenta-fused polycyclic aromatic hydrocarbon with strong mutagenic and carcinogenic effects. We have identified B[j]A in air particulate matter (PM) in samples collected in Stockholm, Sweden and in Limeira, Brazil using LC-GC/MS analysis. Determined concentrations ranged between 1.57 and 12.7 and 19.6-30.2 pg/m(3) in Stockholm and Limeira, respectively, which was 11-30 times less than benzo[a]pyrene (B[a]P) concentrations. Activation of the DNA damage response was evaluated after exposure to B[j]A in HepG2 cells in comparison to B[a]P. We found that significantly lower concentrations of B[j]A were needed for an effect on cell viability compared to B[a]P, and equimolar exposure resulted in significant more DNA damage with B[j]A. Additionally, levels of gamma H2AX, pChk1, p53, pp53, and p21 proteins were higher in response to B[j]A than B[a]P. On the basis of dose response induction of pChk1 and gamma H2AX, B[j]A potency was 12.5- and 33.3-fold higher than B[a]P, respectively. Although B[j]A levels in air were low, including B[j]A in the estimation of excess lifetime cancer risk increased the risk up to 2-fold depending on which potency factor for B[j]A was applied. Together, our results show that B[j]A could be an important contributor to the cancer risk of air PM.

National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-116630 (URN)10.1021/es505458g (DOI)000350611100065 ()25625372 (PubMedID)
Note

AuthorCount:11;

Available from: 2015-04-27 Created: 2015-04-22 Last updated: 2022-02-23Bibliographically approved
Lim, H., Bergvall, C., Jarvis, I., Mattsson, Å., Dreij, K., Stenius, U. & Westerholm, R. (2014). Benzo[a]pyrene-specific online high-performance liquid chromatography fractionation of air particulate extracts–A tool for evaluating biological interactions. Journal of Chromatography A, 1355, 100-106
Open this publication in new window or tab >>Benzo[a]pyrene-specific online high-performance liquid chromatography fractionation of air particulate extracts–A tool for evaluating biological interactions
Show others...
2014 (English)In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1355, p. 100-106Article in journal (Refereed) Published
Abstract [en]

Benzo[a]pyrene (B[a]P) is a known human carcinogen and is commonly used as a surrogate for assessing the carcinogenic risk posed by complex mixtures of polycyclic aromatic hydrocarbons (PAHs) present in air particulate matter (PM). However, studies have shown that using B[a]P as a surrogate may underestimate the carcinogenic potential of PAH mixtures, as the risk assessment approach does not consider interaction effects. Thus, toxicological studies using B[a]P to assess its carcinogenic potential in environmentally derived complex mixtures, as opposed to single compound experiments, could improve risk assessment. The intention of the present study was to develop an online HPLC fractionation system for the selective removal of B[a]P from air PM extracts. Two serial pyrenylethyl (PYE) columns enabled selective separation of B[a]P from its isomers and other PAHs as well as a short fractionation cycle of 30 minutes. One run consisted of three collection steps: the first fraction contained PAHs eluting earlier than B[a]P, the second contained B[a]P and the last contained later-eluting PAHs. The selectivity and recovery of the system was investigated using extracts of Stockholm air PM samples. The overall recovery for all PAHs was approximately 80%, and the system proved to be selective, as it removed 94% of B[a]P and less than 3% of benzo[b]fluoranthene from the complex PAH mixture. Exposing human cells to blanks generated by the fractionation system did not induce cytotoxicity or DNA damage signalling. In conclusion, the online HPLC system was selective for B[a]P fractionation whilst minimising run-to-run variation and allowing repeated fractionations for larger samples due to its relatively short run time

National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-104502 (URN)10.1016/j.chroma.2014.05.082 (DOI)000340302500011 ()
Available from: 2014-06-08 Created: 2014-06-11 Last updated: 2022-02-23Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-4309-8282

Search in DiVA

Show all publications