Open this publication in new window or tab >>2019 (English)In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 147, no 3, p. 1081-1095Article in journal (Refereed) Published
Abstract [en]
Extending work of Pichorides and Zygmund to the d-dimensional setting, we show that the supremum of L-p-norms of the Littlewood-Paley square function over the unit ball of the analytic Hardy spaces H-A(p) (T-d) blows up like (p-1)(-d) as p -> 1(+). Furthermore, we obtain an Llog(d) L-estimate for square functions on H-A(1) (T-d). Euclidean variants of Pichorides' theorem are also obtained.
Keywords
Square function, Marcinkiewicz multipliers, L-p-estimates
National Category
Mathematical Analysis
Identifiers
urn:nbn:se:su:diva-164780 (URN)10.1090/proc/14251 (DOI)000455239400017 ()
2019-01-182019-01-182022-02-26Bibliographically approved