Change search
Link to record
Permanent link

Direct link
Rodriguez-Lopez, SalvadorORCID iD iconorcid.org/0000-0002-7882-4013
Alternative names
Publications (10 of 17) Show all publications
Arias, S. & Rodríguez-López, S. (2024). Bilinear pseudodifferential operators with symbol in BSm1,1 on Triebel-Lizorkin spaces with critical Sobolev index. Collectanea Mathematica (Universitat de Barcelona), 75(2), 567-591
Open this publication in new window or tab >>Bilinear pseudodifferential operators with symbol in BSm1,1 on Triebel-Lizorkin spaces with critical Sobolev index
2024 (English)In: Collectanea Mathematica (Universitat de Barcelona), ISSN 0010-0757, E-ISSN 2038-4815, Vol. 75, no 2, p. 567-591Article in journal (Refereed) Published
Abstract [en]

In this paper we obtain new estimates for bilinear pseudodiferential operators with symbol in the class , when both arguments belong to Triebel-Lizorkin spaces of the type . The inequalities are obtained as a consequence of a refnement of the classical Sobolev embedding ↪bmo(ℝn), where we replace bmo(ℝn) by an appropriate subspace which contains L(ℝn). As an application, we study the product of functions on when 1 < p < ∞, where those spaces fail to be multiplicative algebras.

Keywords
Sobolev embeddings, Bilinear pseudodifferential operators, Product of functions, Local bmo, Triebel-Lizorkin spaces of generalised smoothness
National Category
Mathematical Analysis
Identifiers
urn:nbn:se:su:diva-216724 (URN)10.1007/s13348-023-00400-0 (DOI)000956006900001 ()2-s2.0-85150291793 (Scopus ID)
Available from: 2023-04-27 Created: 2023-04-27 Last updated: 2025-02-08Bibliographically approved
Bergfeldt, A., Rodríguez-López, S., Rule, D. & Staubach, W. (2023). Multilinear oscillatory integrals and estimates for coupled systems of dispersive PDEs. Transactions of the American Mathematical Society, 376(11), 7555-7601
Open this publication in new window or tab >>Multilinear oscillatory integrals and estimates for coupled systems of dispersive PDEs
2023 (English)In: Transactions of the American Mathematical Society, ISSN 0002-9947, E-ISSN 1088-6850, Vol. 376, no 11, p. 7555-7601Article in journal (Refereed) Published
Abstract [en]

We establish sharp global regularity of a class of multilinear oscillatory integral operators that are associated to nonlinear dispersive equations with both Banach and quasi-Banach target spaces. As a consequence we also prove the (local in time) continuous dependence on the initial data for solutions of a large class of coupled systems of dispersive partial differential equations.

Keywords
Multilinear oscillatory integral operators, systems of dispersive PDEs
National Category
Mathematical Analysis
Identifiers
urn:nbn:se:su:diva-225653 (URN)10.1090/tran/8991 (DOI)001120955900001 ()2-s2.0-85174891882 (Scopus ID)
Available from: 2024-01-22 Created: 2024-01-22 Last updated: 2024-03-08Bibliographically approved
Arias, S. & Rodríguez-López, S. (2022). Endpoint Estimates For Bilinear Pseudodifferential Operators With Symbol In Bs1,1M. Journal of Mathematical Analysis and Applications, 515(1), Article ID 126453.
Open this publication in new window or tab >>Endpoint Estimates For Bilinear Pseudodifferential Operators With Symbol In Bs1,1M
2022 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 515, no 1, article id 126453Article in journal (Refereed) Published
Abstract [en]

In this paper we establish some endpoint estimates for bilinear pseudodifferential operators with symbol in the class BS, involving the space of functions with local bounded mean oscillation bmo(Rn). As a consequence we also obtain an endpoint estimate of Kato-Ponce type.

Keywords
Bilinear pseudodifferential operators, Local bmo, Triebel-Lizorkin spaces of generalised smoothness, Kato-Ponce inequalities
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
urn:nbn:se:su:diva-206959 (URN)10.1016/j.jmaa.2022.126453 (DOI)000833524600002 ()2-s2.0-85133495391 (Scopus ID)
Available from: 2022-06-30 Created: 2022-06-30 Last updated: 2025-02-08Bibliographically approved
Bakas, O., Pott, S., Rodríguez-López, S. & Sola, A. (2022). Notes on Hlog: structural properties, dyadic variants, and bilinear H1-BMO mappings. Arkiv för matematik, 60(2), 231-275
Open this publication in new window or tab >>Notes on Hlog: structural properties, dyadic variants, and bilinear H1-BMO mappings
2022 (English)In: Arkiv för matematik, ISSN 0004-2080, E-ISSN 1871-2487, Vol. 60, no 2, p. 231-275Article in journal (Refereed) Published
Abstract [en]

This article is devoted to a study of the Hardy space Hlog(Rd) introduced by Bonami, Grellier, and Ky. We present an alternative approach to their result relating the product of a function in the real Hardy space H1 and a function in BMO to distributions that belong to Hlog based on dyadic paraproducts. We also point out analogues of classical results of Hardy–Littlewood, Zygmund, and Stein for Hlog and related Musielak–Orlicz spaces.

Keywords
maximal function, real Hardy spaces, Orlicz spaces, Haar wavelets
National Category
Mathematics
Identifiers
urn:nbn:se:su:diva-212481 (URN)10.4310/ARKIV.2022.v60.n2.a2 (DOI)001001368500002 ()2-s2.0-85140486630 (Scopus ID)
Available from: 2022-12-08 Created: 2022-12-08 Last updated: 2023-06-20Bibliographically approved
Bergfeldt, A., Rodríguez-López, S. & Staubach, W. (2022). On weighted norm inequalities for oscillatory integral operators. Analysis and Mathematical Physics, 12(6), Article ID 136.
Open this publication in new window or tab >>On weighted norm inequalities for oscillatory integral operators
2022 (English)In: Analysis and Mathematical Physics, ISSN 1664-2368, E-ISSN 1664-235X, Vol. 12, no 6, article id 136Article in journal (Refereed) Published
Abstract [en]

We prove weighted norm inequalities with Muckenhoupt’s Ap-weights, for a wide class of oscillatory integral operators. As a consequence, one also obtains the boundedness of commutators of the aforementioned operators with functions in BMO.

Keywords
Oscillatory integral operators, Weighted norm inequalities, Muckenhoupt weights, Commutators with BMO
National Category
Mathematics
Identifiers
urn:nbn:se:su:diva-211040 (URN)10.1007/s13324-022-00748-9 (DOI)000873697600001 ()
Available from: 2022-11-09 Created: 2022-11-09 Last updated: 2022-11-09Bibliographically approved
Rodríguez-López, S., Rule, D. & Staubach, W. (2021). Global boundedness of a class of multilinear Fourier integral operators. Forum of mathematics sigma, 9, Article ID e14.
Open this publication in new window or tab >>Global boundedness of a class of multilinear Fourier integral operators
2021 (English)In: Forum of mathematics sigma, E-ISSN 2050-5094, Vol. 9, article id e14Article in journal (Refereed) Published
Abstract [en]

We establish the global regularity of multilinear Fourier integral operators that are associated to nonlinear wave equations on products of L-p spaces by proving endpoint boundedness on suitable product spaces containing combinations of the local Hardy space, the local BMO and the L-2 spaces.

National Category
Mathematics
Identifiers
urn:nbn:se:su:diva-192454 (URN)10.1017/fms.2021.13 (DOI)000620141200001 ()
Available from: 2021-04-22 Created: 2021-04-22 Last updated: 2022-02-25Bibliographically approved
Israelsson, A., Rodríguez-López, S. & Staubach, W. (2021). LOCAL AND GLOBAL ESTIMATES FOR HYPERBOLIC EQUATIONS IN BESOV-LIPSCHITZ AND TRIEBEL-LIZORKIN SPACES. Analysis & PDE, 14(1), 1-44
Open this publication in new window or tab >>LOCAL AND GLOBAL ESTIMATES FOR HYPERBOLIC EQUATIONS IN BESOV-LIPSCHITZ AND TRIEBEL-LIZORKIN SPACES
2021 (English)In: Analysis & PDE, ISSN 2157-5045, E-ISSN 1948-206X, Vol. 14, no 1, p. 1-44Article in journal (Refereed) Published
Abstract [en]

We establish optimal local and global Besov-Lipschitz and Triebel-Lizorkin estimates for the solutions to linear hyperbolic partial differential equations. These estimates are based on local and global estimates for Fourier integral operators that span all possible scales (and in particular both Banach and quasi-Banach scales) of Besov-Lipschitz spaces B-p,q(s)(R-n) and certain Banach and quasi-Banach scales of Triebel-Lizorkin spaces F-p,q(s)(R-n).

Keywords
Besov-Lipschitz spaces, Triebel-Lizorkin spaces, Fourier integral operators, hyperbolic equations
National Category
Mathematics
Identifiers
urn:nbn:se:su:diva-192800 (URN)10.2140/apde.2021.14.1 (DOI)000621038600001 ()
Available from: 2021-05-03 Created: 2021-05-03 Last updated: 2022-02-25Bibliographically approved
Arias, S. & Rodríguez-López, S. (2021). Some endpoint estimates for bilinear Coifman-Meyer multipliers. Journal of Mathematical Analysis and Applications, 498(2), Article ID 124972.
Open this publication in new window or tab >>Some endpoint estimates for bilinear Coifman-Meyer multipliers
2021 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 498, no 2, article id 124972Article in journal (Refereed) Published
Abstract [en]

In this paper we establish mapping properties of bilinear Coifman-Meyer multipliers acting on the product spaces H-1 (R-n) x bmo(R-n) and L-p (R-n) x bmo(R-n), with 1 < p < infinity. As application of these results, we obtain some related Kato-Poncetype inequalities involving the endpoint space bmo(R-n), and we also study the pointwise product of a function in bmo(R-n) with functions in H-1 (R-n), h(1) (R-n) and L-p(R-n), with 1 < p < infinity.

Keywords
Bilinear multipliers, Local bmo, Bilinear paraproducts, Kato-Ponce inequalities, Product of functions
National Category
Mathematics
Identifiers
urn:nbn:se:su:diva-192010 (URN)10.1016/j.jmaa.2021.124972 (DOI)000620924700014 ()
Available from: 2021-04-14 Created: 2021-04-14 Last updated: 2025-02-08Bibliographically approved
Bakas, O., Rodríguez-López, S. & Sola, A. (2019). Multi-parameter extensions of a theorem of Pichorides. Proceedings of the American Mathematical Society, 147(3), 1081-1095
Open this publication in new window or tab >>Multi-parameter extensions of a theorem of Pichorides
2019 (English)In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 147, no 3, p. 1081-1095Article in journal (Refereed) Published
Abstract [en]

Extending work of Pichorides and Zygmund to the d-dimensional setting, we show that the supremum of L-p-norms of the Littlewood-Paley square function over the unit ball of the analytic Hardy spaces H-A(p) (T-d) blows up like (p-1)(-d) as p -> 1(+). Furthermore, we obtain an Llog(d) L-estimate for square functions on H-A(1) (T-d). Euclidean variants of Pichorides' theorem are also obtained.

Keywords
Square function, Marcinkiewicz multipliers, L-p-estimates
National Category
Mathematical Analysis
Identifiers
urn:nbn:se:su:diva-164780 (URN)10.1090/proc/14251 (DOI)000455239400017 ()
Available from: 2019-01-18 Created: 2019-01-18 Last updated: 2022-02-26Bibliographically approved
Castro, A. J., Rodríguez-López, S. & Staubach, W. (2019). Transference of local to global L-2 maximal estimates for dispersive partial differential equations. Journal of Mathematical Analysis and Applications, 471(1-2), 411-422
Open this publication in new window or tab >>Transference of local to global L-2 maximal estimates for dispersive partial differential equations
2019 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 471, no 1-2, p. 411-422Article in journal (Refereed) Published
Abstract [en]

In this paper we give an elementary proof for transference of local to global maximal estimates for dispersive PDEs. This is done by transferring local L-2 estimates for certain oscillatory integrals with rough phase functions, to the corresponding global estimates. The elementary feature of our approach is that it entirely avoids the use of the wave packet techniques which are quite common in this context, and instead is based on scalings and classical oscillatory integral estimates.

Keywords
Oscillatory integrals, Maximal-function estimates, Dispersive equations, Schrodinger equation
National Category
Mathematics
Identifiers
urn:nbn:se:su:diva-163819 (URN)10.1016/j.jmaa.2018.10.082 (DOI)000452581100022 ()
Available from: 2019-01-10 Created: 2019-01-10 Last updated: 2022-02-26Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-7882-4013

Search in DiVA

Show all publications