Open this publication in new window or tab >>Show others...
2019 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 487, no 2, p. 1689-1708Article in journal (Refereed) Published
Abstract [en]
We study the formation and evolution of a sample of Lyman break galaxies in the epoch of reionization by using high-resolution (similar to 10 pc), cosmological zoom-in simulations part of the SERRA suite. In SERRA, we follow the interstellar medium thermochemical non-equilibrium evolution and perform on-the-fly radiative transfer of the interstellar radiation field (ISRF). The simulation outputs are post-processed to compute the emission of far infrared lines ([C II], [N II], and [O III]). At z = 8, the most massive galaxy, 'Freesia', has an age t(star) similar or equal to 409 Myr, stellar mass M-star similar or equal to 4.2 x 10(9)M(circle dot), and a star formation rate (SFR), SFR similar or equal to 11.5M(circle dot) yr(-1), due to a recent burst. Freesia has two stellar components (A and B) separated by similar or equal to 2.5 kpc; other 11 galaxies are found within 56.9 +/- 21.6 kpc. The mean ISRF in the Habing band is G = 7.9G(0) and is spatially uniform; in contrast, the ionization parameter is U = 2(-2)(+20) x 10(-3), and has a patchy distribution peaked at the location of star-forming sites. The resulting ionizing escape fraction from Freesia is f(esc) similar or equal to 2 per cent. While [C II] emission is extended (radius 1.54 kpc), [O III] is concentrated in Freesia-Lambda (0.85 kpc), where the ratio Sigma([O III])/Sigma([C II]) similar or equal to 10. As many high-z galaxies, Freesia lies below the local [C II]-SFR relation. We show that this is the general consequence of a starburst phase (pushing the galaxy above the Kennicutt-Schmidt relation) that disrupts/photodissociates the emitting molecular clouds around star-forming sites. Metallicity has a sub-dominant impact on the amplitude of [C II]-SFR deviations.
Keywords
methods: numerical, galaxies: evolution, galaxies: formation, galaxies: high-redshift, galaxies: ISM, infrared: general
National Category
Physical Sciences
Identifiers
urn:nbn:se:su:diva-171982 (URN)10.1093/mnras/stz1383 (DOI)000474919700014 ()
2019-09-032019-09-032022-02-26Bibliographically approved