Open this publication in new window or tab >>Show others...
2019 (English)In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 875, no 1, article id 17Article in journal (Refereed) Published
Abstract [en]
We perform hydrodynamical simulations of the interaction between supernova (SN) ejecta and circumstellar medium (CSM) for SN 1993J and SN 2011dh, and calculate the radio and X-ray emissions expected from the shocked gas at late epochs (t). Considering the ejecta structure from multi-group radiation hydrodynamics simulation, we find that the observed rapid drop in radio and X-ray light curves of SN 1993J at t > 3000 days may be due to a change in the mass-loss rate ((M)over dot) similar to 6500 yr prior to the explosion of the SN. The exact epoch scales inversely with the assumed wind velocity of nu(w) = 10 km s(-1). The progenitor of this SN very likely belonged to a binary system, where, during its evolution, the primary had transferred material to the secondary. It is argued in this paper that the change in (M)over dot can happen because of a change in the mass accretion efficiency (eta) of the companion star. It is possible that before similar to 6500. (nu(w)/10 km s(-1))(-1) yr prior to the explosion, eta was high, and thus the CSM was tenuous, which causes the late-time downturn in fluxes. In the case of SN. 2011dh, the late-time evolution is found to be consistent with a wind medium with (M)over dot/nu(w) = 4 x 10(-6) M-circle dot yr(-1)/10 km s(-1). It is difficult from our analysis to predict whether the progenitor of this SN had a binary companion; however, if future observations show a similar decrease in radio and X-ray fluxes, then this would give strong support to a scenario where both SNe had undergone a similar kind of binary evolution before explosion.
Keywords
circumstellar matter, hydrodynamics, radiation mechanisms: non-thermal, radiation mechanisms: thermal, supernovae: individual (SN 1993J, SN 2011dh)
National Category
Physical Sciences
Identifiers
urn:nbn:se:su:diva-168341 (URN)10.3847/1538-4357/ab0d81 (DOI)000464039600004 ()
2019-05-082019-05-082022-02-26Bibliographically approved