Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantum Chemical Studies of Enzymatic Reaction Mechanisms
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Computer modeling of enzymes is a valuable complement to experiments. Quantum chemical studies of enzymatic reactions can provide a detailed description of the reaction mechanism and elucidate the roles of various residues in the active site. Different reaction pathways can be analyzed, and their feasibility be established based on calculated energy barriers.

In the present thesis, density functional theory has been used to study the active sites and reaction mechanisms of three different enzymes, cytosine deaminase (CDA) from Escherichia coli, ω-transaminase from Chromobacterium violaceum (Cv-ωTA) and dinitrogenase reductase-activating glycohydrolase (DraG) from Rhodospirillum rubrum. The cluster approach has been employed to design models of the active sites based on available crystal structures. The geometries and energies of transition states and intermediates along various reaction pathways have been calculated, and used to construct the energy graphs of the reactions.

In the study of CDA (Paper I), two different tautomers of a histidine residue were considered. The obtained reaction mechanism was found to support the main features of the previously proposed mechanism. The sequence of the events was established, and the residues needed for the proton transfer steps were elucidated.

In the study of Cv-ωTA (Paper II and Paper III), two active site models were employed to study the conversion of two different substrates, a hydrophobic amine and an amino acid. Differences and similarities in the reaction mechanisms of the two substrates were established, and the role of an arginine residue in the dual substrate recognition was confirmed.

In the study of DraG (Paper IV), two different substrate-binding modes and two different protonation states of an aspartate residue were considered. The coordination of the first-shell ligands and the substrate to the two manganese ions in the active site was characterized, and a possible proton donor in the first step of the proposed reaction mechanism was identified.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Organic Chemistry, Stockholm University , 2017. , s. 64
Nyckelord [en]
density functional theory, B3LYP, enzyme, cluster approach, mechanism, zinc, manganese, cytosine deaminase, ω-transaminase, dinitrogenase reductase-activating glycohydrolase, dual substrate recognition
Nationell ämneskategori
Organisk kemi
Forskningsämne
organisk kemi
Identifikatorer
URN: urn:nbn:se:su:diva-141321ISBN: 978-91-7649-764-7 (tryckt)ISBN: 978-91-7649-765-4 (digital)OAI: oai:DiVA.org:su-141321DiVA: diva2:1086730
Disputation
2017-05-23, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Anmärkning

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Tillgänglig från: 2017-04-27 Skapad: 2017-04-03 Senast uppdaterad: 2017-04-27Bibliografiskt granskad
Delarbeten
1. Reaction Mechanism of Zinc-Dependent Cytosine Deaminase from Escherichia coli: A Quantum-Chemical Study
Öppna denna publikation i ny flik eller fönster >>Reaction Mechanism of Zinc-Dependent Cytosine Deaminase from Escherichia coli: A Quantum-Chemical Study
2014 (Engelska)Ingår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, nr 21, s. 5644-5652Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The reaction mechanism of cytosine deaminase from Escherichia coli is studied using density functional theory. This zinc-dependent enzyme catalyzes the deamination of cytosine to form uracil and ammonia. The calculations give a detailed description of the catalytic mechanism and establish the role of important active-site residues. It is shown that Glu217 is essential for the initial deprotonation of the metal-bound water nucleophile and the subsequent protonation of the substrate. It is also demonstrated that His246 is unlikely to function as a proton shuttle in the nucleophile activation step, as previously proposed. The steps that follow are nucleophilic attack by the metal-bound hydroxide, protonation of the leaving group assisted by Asp313, and C-N bond cleavage. The calculated overall barrier is in good agreement with the experimental findings. Finally, the calculations reproduce the experimentally determined inverse solvent deuterium isotope effect, which further corroborates the suggested reaction mechanism.

Nationell ämneskategori
Organisk kemi
Forskningsämne
organisk kemi
Identifikatorer
urn:nbn:se:su:diva-105913 (URN)10.1021/jp501228s (DOI)000336771100003 ()
Forskningsfinansiär
VetenskapsrådetKnut och Alice Wallenbergs Stiftelse
Anmärkning

AuthorCount:3;

Tillgänglig från: 2014-07-08 Skapad: 2014-07-08 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
2. A quantum chemical study of the ω-transaminase reaction mechanism
Öppna denna publikation i ny flik eller fönster >>A quantum chemical study of the ω-transaminase reaction mechanism
2015 (Engelska)Ingår i: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, nr 31, s. 8453-8464Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

ω-Transaminases are valuable tools in biocatalysis due to their stereospecificity and their broad substrate range. In the present study, the reaction mechanism of Chromobacterium violaceum ω-transaminase is investigated by means of density functional theory calculations. A large active site model is designed based on the recent X-ray crystal structure. The detailed energy profile for the half-transamination of (S)-1-phenylethylamine to acetophenone is calculated and the involved transition states and intermediates are characterized. The model suggests that the amino substrate forms an external aldimine with the coenzyme pyridoxal-5′-phosphate (PLP), through geminal diamine intermediates. The external aldimine is then deprotonated in the rate-determining step, forming a planar quinonoid intermediate. A ketimine is then formed, after which a hemiaminal is produced by the addition of water. Subsequently, the ketone product is obtained together with pyridoxamine-5′-phosphate (PMP). In the studied half-transamination reaction the ketone product is kinetically favored. The mechanism presented here will be valuable to enhance rational and semi-rational design of engineered enzyme variants in the development of ω-transaminase chemistry.

Nationell ämneskategori
Organisk kemi
Forskningsämne
organisk kemi
Identifikatorer
urn:nbn:se:su:diva-120490 (URN)10.1039/c5ob00690b (DOI)000358733100011 ()
Forskningsfinansiär
VetenskapsrådetKnut och Alice Wallenbergs Stiftelse
Tillgänglig från: 2015-09-10 Skapad: 2015-09-10 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
3. Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase
Öppna denna publikation i ny flik eller fönster >>Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase
2017 (Engelska)Ingår i: ACS Omega, E-ISSN 2470-1343, Vol. 2, nr 3, s. 890-898Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

ω-Transaminases are attractive biocatalysts for the production of chiral amines. These enzymes usually have a broad substrate range. Their substrates include hydrophobic amines as well as amino acids, a feature referred to as dual-substrate recognition. In the present study, the reaction mechanism for the half-transamination of L-alanine to pyruvate in (S)-selective Chromobacterium violaceum ω-transaminase is investigated using density functional theory calculations. The role of a flexible arginine residue, Arg416, in the dual-substrate recognition is investigated by employing two active-site models, one including this residue and one lacking it. The results of this study are compared to those of the mechanism of the conversion of (S)-1-phenylethylamine to acetophenone. The calculations suggest that the deaminations of amino acids and hydrophobic amines follow essentially the same mechanism, but the energetics of the reactions differ significantly. It is shown that the amine is kinetically favored in the half-transamination of L-alanine/pyruvate, whereas the ketone is kinetically favored in the half-transamination of (S)-1-phenylethylamine/acetophenone. The calculations further support the proposal that the arginine residue facilitates the dual-substrate recognition by functioning as an arginine switch, where the side chain is positioned inside or outside of the active site depending on the substrate. Arg416 participates in the binding of L-alanine by forming a salt bridge to the carboxylate moiety, whereas the conversion of (S)-1-phenylethylamine is feasible in the absence of Arg416, which here represents the case in which the side chain of Arg416 is positioned outside of the active site.

Nationell ämneskategori
Organisk kemi
Forskningsämne
organisk kemi
Identifikatorer
urn:nbn:se:su:diva-141316 (URN)10.1021/acsomega.6b00376 (DOI)000399309700015 ()
Forskningsfinansiär
VetenskapsrådetKnut och Alice Wallenbergs Stiftelse
Tillgänglig från: 2017-04-03 Skapad: 2017-04-03 Senast uppdaterad: 2017-05-29Bibliografiskt granskad
4. Insights from Quantum Chemical Calculations into Active Site Structure and Reaction Mechanism of Manganese-Dependent Dinitrogenase Reductase-Activating Glycohydrolase
Öppna denna publikation i ny flik eller fönster >>Insights from Quantum Chemical Calculations into Active Site Structure and Reaction Mechanism of Manganese-Dependent Dinitrogenase Reductase-Activating Glycohydrolase
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Organisk kemi
Forskningsämne
organisk kemi
Identifikatorer
urn:nbn:se:su:diva-141319 (URN)
Tillgänglig från: 2017-04-03 Skapad: 2017-04-03 Senast uppdaterad: 2017-04-03Bibliografiskt granskad

Open Access i DiVA

Quantum Chemical Studies of Enzymatic Reaction Mechanisms(17642 kB)69 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 17642 kBChecksumma SHA-512
0c87e28bfa2e3f3ca3a36c8aa88028eabcd706126201376fc887fbff5929fe355e3d0c220b5dc47c00e5b0cd50cd37052c665c283afa8dff4071cddfc89940e5
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Manta, Bianca
Av organisationen
Institutionen för organisk kemi
Organisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 73 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 944 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf