Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustainable Design for the Direct Fabrication and Highly Versatile Functionalization of Nanocelluloses
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
Number of Authors: 62017 (English)In: Global Challenges, E-ISSN 2056-6646, Vol. 1, no 7, article id 1700045Article in journal (Refereed) Published
Abstract [en]

This study describes a novel sustainable concept for the scalable direct fabrication and functionalization of nanocellulose from wood pulp with reduced energy consumption. A central concept is the use of metal-free small organic molecules as mediators and catalysts for the production and subsequent versatile surface engineering of the cellulosic nanomaterials via organocatalysis and click chemistry. Here, organoclick chemistry enables the selective functionalization of nanocelluloses with different organic molecules as well as the binding of palladium ions or nanoparticles. The nanocellulosic material is also shown to function as a sustainable support for heterogeneous catalysis in modern organic synthesis (e.g., Suzuki cross-coupling transformations in water). The reported strategy not only addresses obstacles and challenges for the future utilization of nanocellulose (e.g., low moisture resistance, the need for green chemistry, and energy-intensive production) but also enables new applications for nanocellulosic materials in different areas.

Place, publisher, year, edition, pages
2017. Vol. 1, no 7, article id 1700045
Keywords [en]
click chemistry, heterogeneous catalysis, nanocellulose, organocatalysis
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-152660DOI: 10.1002/gch2.201700045ISI: 000419793400002OAI: oai:DiVA.org:su-152660DiVA, id: diva2:1183124
Available from: 2018-02-15 Created: 2018-02-15 Last updated: 2022-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Tai, Cheuk-Wai

Search in DiVA

By author/editor
Tai, Cheuk-Wai
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Global Challenges
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 284 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf