CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt175",{id:"formSmash:upper:j_idt175",widgetVar:"widget_formSmash_upper_j_idt175",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt182_j_idt191",{id:"formSmash:upper:j_idt182:j_idt191",widgetVar:"widget_formSmash_upper_j_idt182_j_idt191",target:"formSmash:upper:j_idt182:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Decomposition of perverse sheavesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2018. , p. 38
##### Keywords [en]

Sheaf cohomology, hyperplane arrangements, D-modules
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-155464ISBN: 978-91-7797-308-9 (print)ISBN: 978-91-7797-309-6 (electronic)OAI: oai:DiVA.org:su-155464DiVA, id: diva2:1200324
##### Public defence

2018-06-14, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt640",{id:"formSmash:j_idt640",widgetVar:"widget_formSmash_j_idt640",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt648",{id:"formSmash:j_idt648",widgetVar:"widget_formSmash_j_idt648",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt655",{id:"formSmash:j_idt655",widgetVar:"widget_formSmash_j_idt655",multiple:true});
##### Funder

Sida - Swedish International Development Cooperation Agency
##### Note

##### List of papers

This PhD thesis consists in three papers in which we describe irreducibility conditions and the number of factors in a composition series of certain perverse sheaves. We study some particular cases, providing examples and showing how to explicitly use perverse sheaves to obtain precise results. The aim is to add to the class of concrete applications of perverse sheaves and exploit their role in the cohomology of hyperplane arrangements. In the three papers the perverse sheaves considered are given by the derived direct image of locally constant sheaves defined in the complement U of a hyperplane arrangement. In Paper I, we start with a locally constant rank 1 sheaf on U and use a category equivalence, developed by MacPherson and Vilonen, to obtain a criterion for the irreducibility in terms of a multi-index that determines the locally constant sheaf. We then determine the number of decomposition factors when the irreducibility conditions are not satisfied. In Paper II we consider the constant sheaf on U, show that the number of decomposition factors of the direct image is given by the Poincaré polynomial of the hyperplane arrangement, and furthermore describe them as certain local cohomology sheaves and give their multiplicity. In Paper III, we use the Riemann-Hilbert correspondence and D-module calculations to determine a condition describing when the direct image of a locally constant sheaf contains a decomposition factor as a perverse sheaf that has support on a certain flat of the hyperplane arrangement.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.

Available from: 2018-05-22 Created: 2018-04-24 Last updated: 2018-05-23Bibliographically approved1. Decomposition of perverse sheaves on plane line arrangements$(function(){PrimeFaces.cw("OverlayPanel","overlay1199349",{id:"formSmash:j_idt745:0:j_idt754",widgetVar:"overlay1199349",target:"formSmash:j_idt745:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Length and decomposition of the cohomology of the complement to a hyperplane arrangement$(function(){PrimeFaces.cw("OverlayPanel","overlay1199351",{id:"formSmash:j_idt745:1:j_idt754",widgetVar:"overlay1199351",target:"formSmash:j_idt745:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Support of decomposition factors of direct images of line bundles on the open complement of a hyperplane configuration$(function(){PrimeFaces.cw("OverlayPanel","overlay1199360",{id:"formSmash:j_idt745:2:j_idt754",widgetVar:"overlay1199360",target:"formSmash:j_idt745:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1908",{id:"formSmash:j_idt1908",widgetVar:"widget_formSmash_j_idt1908",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1961",{id:"formSmash:lower:j_idt1961",widgetVar:"widget_formSmash_lower_j_idt1961",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1962_j_idt1964",{id:"formSmash:lower:j_idt1962:j_idt1964",widgetVar:"widget_formSmash_lower_j_idt1962_j_idt1964",target:"formSmash:lower:j_idt1962:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});