Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF)
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Assuit University, Egypt.
Number of Authors: 32018 (English)In: Dyes and pigments, ISSN 0143-7208, E-ISSN 1873-3743, Vol. 159, p. 491-498Article in journal (Refereed) Published
Abstract [en]

Photoluminescent textiles emitted light in ultraviolet (UV)-radiation region has advanced a variety of applications including military and police clothes. The current study reports the preparation of photoluminescent viscose fabrics incorporated lanthanide metal-organic framework (Ln-MOF) and their applications for self-cleaning. In situ growth of Ln (Eu3+, Tb3+) MOF into viscose fabrics were achieved using Ln (NO3)(3) and 1,2,4,5-benzenetetracarboxylic dianhydride as organic ligand. The in-growth Ln-MOF within fabrics were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray, and fluorescence spectroscopy. Under the UV lamb (345 nm), Eu-MOF@viscose fabric and Tb-MOF@viscose fabric visually emitted red and green color, respectively. The excitation-emission spectra showed the spectra for the D-5(0)-> F-7(0.4) transitions and D-5(4)-> F-7(5) transitions in case of Eu-MOF and Tb-MOF@viscose fabrics, respectively. The photoluminescent properties of Ln-MOF@viscose fabrics were enhanced after reactive dying process. The self-cleaning functions of Ln-MOF@viscose fabrics were estimated through studying the photo-degradation of Rhodamine B (RhB) dye over the fabrics. After 120 min irradiation time, the photo-degradation of RhB dye was 85-97%, indicating high performance of Ln-MOF@viscose fabric. The materials are promising for advanced applications including protective clothing, textile-based sensors, smart tagging and tickets.

Place, publisher, year, edition, pages
2018. Vol. 159, p. 491-498
Keywords [en]
Viscose fabric, Ln-MOF, Photoluminescent, Self-cleaning, Photocatalysis, Dye degradation
National Category
Chemical Sciences Chemical Engineering Materials Engineering
Identifiers
URN: urn:nbn:se:su:diva-160176DOI: 10.1016/j.dyepig.2018.07.026ISI: 000442333700058OAI: oai:DiVA.org:su-160176DiVA, id: diva2:1251953
Available from: 2018-09-28 Created: 2018-09-28 Last updated: 2018-09-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Emam, Hossam E.Abdelhamid, Hani Nasser
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Dyes and pigments
Chemical SciencesChemical EngineeringMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf