Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy
Stockholm University, Faculty of Science, Department of Physical Geography.
Show others and affiliations
Number of Authors: 82019 (English)In: Dendrochronologia, ISSN 1125-7865, E-ISSN 1612-0051, Vol. 53, p. 22-31Article in journal (Refereed) Published
Abstract [en]

Ongoing climate change strongly affects high-elevation environments in the European Alps, influencing the cryosphere and the biosphere and causing widespread retreat of glaciers and changes in biomes. Nevertheless, high-elevation areas often lack long meteorological series, and global datasets cannot represent local variations well. Thus, proxy data, such as tree rings, provide information on past climatic variations from these remote sites. Although maximum latewood density (MXD) chronologies provide better temperature information than those based on tree-ring width (TRW), MXD series from the European Alps are lacking. To derive high-quality temperature information for the Rhaetian Alps, Pinus cembra L. trees sampled at approximately 2000 m a.s.l. were used to build one MXD chronology spanning from 1647 to 2015. The MXD data were significantly and highly correlated with seasonal May-September mean temperatures. The MXD chronology showed a generally positive trend since the middle of the 19th century, interrupted by short phases of climatic deterioration in the beginning of the 20th century and in the 1970s, conforming with the temperature trends. Our results underline the potential for using Pinus cembra L. MXD to reconstruct mean temperature variations, especially during the onset and latter part of the growing season, providing additional information on parts of the growing season not inferred from TRW. Future studies on MXD for this species will increase the availability of temporal and spatial data, allowing detailed climate reconstructions.

Place, publisher, year, edition, pages
2019. Vol. 53, p. 22-31
Keywords [en]
Swiss stone pine, Maximum latewood density
National Category
Biological Sciences Agricultural Science, Forestry and Fisheries Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-165634DOI: 10.1016/j.dendro.2018.10.010ISI: 000456177200004OAI: oai:DiVA.org:su-165634DiVA, id: diva2:1287043
Available from: 2019-02-08 Created: 2019-02-08 Last updated: 2019-02-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Gunnarson, Björn E.
By organisation
Department of Physical Geography
In the same journal
Dendrochronologia
Biological SciencesAgricultural Science, Forestry and FisheriesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 193 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf