Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sorptive Capacities of Nonpolymeric Plant Lipids for Hydrophobic Chemicals Determined by Passive Dosing
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Stockholm Univ, Dept Environm Sci & Analyt Chem ACES, Svante Arrhenius Vag 8, SE-11418 Stockholm, Sweden.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.ORCID iD: 0000-0003-2562-7339
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Environmental Science and Analytical Chemistry. Lipidor AB, Karolinska Institutet Science Park, Sweden.
Show others and affiliations
Number of Authors: 52019 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 53, no 3, p. 1278-1286Article in journal (Refereed) Published
Abstract [en]

Vegetation plays an important role in the partitioning, transport, and fate of semivolatile hydrophobic organic chemicals (HOCs) in the environment. Leaf/air partition ratios (K-leaf/air) of HOCs are highly variable for different plant species. The differences cannot be fully explained by the fraction of lipids in the leaves or the thickness of the cuticle. Our goal was to elucidate the importance of non polymeric lipids in determining K-leaf/air To do this, we extracted organic matter from 7 plant species using solvents that do not extract the polymeric lipids cutin and cutan, to yield extractable organic matter (EOM). We used passive dosing to determine the partition ratios of selected HOCs between the EOM of the leaves and our reference lipid, olive oil (K-EOM/olive oil) In addition, we measured analogous partition ratios for three lipid standards. Proton nuclear magnetic resonance (NMR) spectroscopy was used to characterize the composition of lipids. Differences in K-EOM/olive oil of two polychlorinated biphenyls and four chlorinated benzenes were below a factor of 2 in the plant species studied, indicating that the reported differences in K-leaf/air are not caused by differences in the sorptive capacities of nonpolymeric lipids or that our EOM is not representative of all nonpolymeric leaf lipids.

Place, publisher, year, edition, pages
2019. Vol. 53, no 3, p. 1278-1286
National Category
Environmental Engineering Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-166545DOI: 10.1021/acs.est.8b05656ISI: 000458220600025PubMedID: 30681829OAI: oai:DiVA.org:su-166545DiVA, id: diva2:1293429
Available from: 2019-03-04 Created: 2019-03-04 Last updated: 2019-03-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bolinius, Damien JohannMacLeod, MatthewIadaresta, FrancescoHolmbäck, Jan
By organisation
Department of Environmental Science and Analytical Chemistry
In the same journal
Environmental Science and Technology
Environmental EngineeringEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf