Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An algorithm for computing the topological Euler characteristic of complex projective varieties
Stockholm University, Faculty of Science, Department of Mathematics.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We present an algorithm for the symbolic and numerical computation of the degrees of the Chern-Schwartz-MacPherson classes of a closed subvariety of projective space P^n. As the degree of the top Chern-Schwartz-MacPherson class is the topological Euler characteristic, this also yields a method to compute the topological Euler characteristic of projective varieties. The method is based on Aluffi's symbolic algorithm to compute degrees of Chern-Schwartz-MacPherson classes, a symbolic method to compute degrees of Segre classes, and the regenerative cascade by Hauenstein, Sommese and Wampler. The new algorithm complements the existing algorithms. We also give an example for using a theorem by Huh to compute an invariant from algebraic statistics, the maximum likelihood degree of an implicit model.

National Category
Geometry
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:su:diva-87357OAI: oai:DiVA.org:su-87357DiVA, id: diva2:602960
Available from: 2013-02-04 Created: 2013-02-04 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Topics in Computational Algebraic Geometry and Deformation Quantization
Open this publication in new window or tab >>Topics in Computational Algebraic Geometry and Deformation Quantization
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of two parts, a first part on computations in algebraic geometry, and a second part on deformation quantization. More specifically, it is a collection of four papers. In the papers I, II and III, we present algorithms and an implementation for the computation of degrees of characteristic classes in algebraic geometry. Paper IV is a contribution to the field of deformation quantization and actions of the Grothendieck-Teichmüller group.

In Paper I, we present an algorithm for the computation of degrees of Segre classes of closed subschemes of complex projective space. The algorithm is based on the residual intersection theorem and can be implemented both symbolically and numerically.

In Paper II, we describe an algorithm for the computation of the degrees of Chern-Schwartz-MacPherson classes and the topological Euler characteristic of closed subschemes of complex projective space, provided an algorithm for the computation of degrees of Segre classes. We also explain in detail how the algorithm in Paper I can be implemented numerically. Together this yields a symbolical and a numerical version of the algorithm.

Paper III describes the Macaulay2 package CharacteristicClasses. It implements the algorithms from papers I and II, as well as an algorithm for the computation of degrees of Chern classes.

In Paper IV, we show that L-infinity-automorphisms of the Schouten algebra T_poly(R^d) of polyvector fields on affine space R^d which satisfy certain conditions can be globalized. This means that from a given L-infinity-automorphism of T_poly(R^d) an L-infinity-automorphism of T_poly(M) can be constructed, for a general smooth manifold M. It follows that Willwacher's action of the Grothendieck-Teichmüller group on T_poly(R^d) can be globalized, i.e., the Grothendieck-Teichmüller group acts on the Schouten algebra T_poly(M) of polyvector fields on a general manifold M.

Place, publisher, year, edition, pages
Stockholm: Department of Mathematics, Stockholm University, 2013. p. 20
Keywords
Segre classes, Chern-Schwartz-MacPherson classes, topological Euler characteristic, computational algebraic geometry, numerical algebraic geometry, numerical homotopy methods, deformation quantization, polyvector fields, Fedosov quantization, Grothendieck-Teichmüller group
National Category
Geometry
Research subject
Mathematics
Identifiers
urn:nbn:se:su:diva-87399 (URN)978-91-7447-623-1 (ISBN)
Public defence
2013-03-11, room 14, house 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Accepted.

Available from: 2013-02-14 Created: 2013-02-05 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Jost, Christine

Search in DiVA

By author/editor
Jost, Christine
By organisation
Department of Mathematics
Geometry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf