Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamics of the K-B Proton Pathway in Cytochrome ba(3) from Thermus thermophilus
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. University of Bern, Switzerland.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Vise andre og tillknytning
Rekke forfattare: 82017 (engelsk)Inngår i: Israel Journal of Chemistry, ISSN 0021-2148, Vol. 57, nr 5, s. 424-436Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The ba(3) cytochrome c oxidase from Thermus thermophilus is a B-type oxygen-reducing heme-copper oxidase and a proton pump. It uses only one proton pathway for transfer of protons to the catalytic site, the K-B pathway. It was previously shown that the ba(3) oxidase has an overall similar reaction sequence to that in mitochondrial-like A-type oxidases. However, the timing of loading the pump site, and formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated variants in which two amino acids of the K-B proton pathway leading to the catalytic site were exchanged; Tyr-248 (located approximate to 23 angstrom below the active site towards the cytoplasm) in subunit I (Y248T) and Glu-15 (approximate to 26 angstrom below the active site, approximate to 16 angstrom from Tyr-248) in subunit II (E15(II)Q). Even though the overall catalytic turnover in these two variants is similar and very low (<1% of wildtype), the substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site. The results indicate that the Glu-15(II) is the only essentially crucial residue of the K-B pathway, but that the Tyr-248 also plays a distinct role in defining an internal proton donor and controlling the dynamics of proton transfer to the pump site and the catalytic site.

sted, utgiver, år, opplag, sider
2017. Vol. 57, nr 5, s. 424-436
Emneord [en]
heme-copper oxidases, cytochrome c oxidase, proton transfer, electron transfer, membrane protein, respiration, redox reaction, metalloprotein, cytochrome aa(3), cytochrome cbb(3)
HSV kategori
Forskningsprogram
biokemi
Identifikatorer
URN: urn:nbn:se:su:diva-144708DOI: 10.1002/ijch.201600136ISI: 000401329000009OAI: oai:DiVA.org:su-144708DiVA, id: diva2:1128034
Tilgjengelig fra: 2017-07-21 Laget: 2017-07-21 Sist oppdatert: 2022-02-28bibliografisk kontrollert
Inngår i avhandling
1. Proton pathways in energy conversion: K-pathway analogs in O2- and NO-reductases
Åpne denne publikasjonen i ny fane eller vindu >>Proton pathways in energy conversion: K-pathway analogs in O2- and NO-reductases
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Oxygen and nitric oxide reductases are enzymes found in aerobic and anaerobic respiration, respectively. Both enzyme groups belong to the superfamily of Heme-Copper Oxidases, which is further divided into several subgroups: oxygen-reducing enzymes into A-, B- and C-type and nitric oxide reductases into qNORs and cNORs. Oxygen reducing enzymes use the energy released from oxygen reduction to take up electrons and protons from different sides of the membrane. Additionally, protons are pumped. These processes produce a membrane potential, which is used by the ATP-synthase to produce ATP, the universal energy currency of the cell. Nitric oxide reductases are not known to conserve the energy from nitric oxide reduction, although the reaction is highly exergonic.

Here, the detailed mechanism of a B-type oxidase is studied with special interest in an element involved in proton pumping (proton loading site, PLS). The study supports the hypothesis that the PLS is protonated in one and deprotonated in the consecutive step of the oxidative catalytic cycle, and that a proton is pumped during the final oxidation phase. It further strengthens the previous suggestion that the PLS is a cluster instead of a single residue or heme propionate. Additionally, it is proposed that the residue Asp372, which is in vicinity of the heme a3 propionates previously suggested as PLS, is part of this cluster. In another study, we show that the Glu15II at the entry of the proton pathway in the B-type oxidase is the only crucial residue for proton uptake, while Tyr248 is or is close to the internal proton donor responsible for coupling proton pumping to oxygen reduction.

The thesis also includes studies on the mechanism and electrogenicity of qNOR. We show that there is a difference in the proton-uptake reaction between qNOR and the non-electrogenic homolog cNOR, hinting at a different reaction mechanism. Further, studies on a qNOR from a different host showed that qNOR is indeed electrogenic. This surprising result opens up new discussions on the evolution of oxygen and nitric oxide reductases, and about how energy conservation can be achieved.

sted, utgiver, år, opplag, sider
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2017. s. 66
Emneord
heme-copper oxidase, cytochrome c oxidase, membrane protein, respiration, electron transfer, proton transfer, redox reaction, metalloprotein, non-heme iron, cytochrome ba3, flow-flash, carbon monoxide, liposome, respiratory control ratio
HSV kategori
Forskningsprogram
biokemi
Identifikatorer
urn:nbn:se:su:diva-147267 (URN)978-91-7649-986-3 (ISBN)978-91-7649-987-0 (ISBN)
Disputas
2017-11-09, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

Tilgjengelig fra: 2017-10-17 Laget: 2017-09-20 Sist oppdatert: 2022-02-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

von Ballmoos, ChristophSmirnova, IrinaPoiana, FedericaGonska, NathalieBrzezinski, PeterÄdelroth, Pia

Søk i DiVA

Av forfatter/redaktør
von Ballmoos, ChristophSmirnova, IrinaPoiana, FedericaGonska, NathalieBrzezinski, PeterÄdelroth, Pia
Av organisasjonen
I samme tidsskrift
Israel Journal of Chemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 151 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf