Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards the cold atom analog false vacuum
Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). University College London, U.K..ORCID-id: 0000-0002-2519-584X
Rekke forfattare: 42018 (engelsk)Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 7, artikkel-id 014Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Analog condensed matter systems present an exciting opportunity to simulate early Universe models in table-top experiments. We consider a recent proposal for an analog condensed matter experiment to simulate the relativistic quantum decay of the false vacuum. In the proposed experiment, two ultra-cold condensates are coupled via a time-varying radio-frequency field. The relative phase of the two condensates in this system is approximately described by a relativistic scalar field with a potential possessing a series of false and true vacuum local minima. If the system is set up in a false vacuum, it would then decay to a true vacuum via quantum mechanical tunnelling. Should such an experiment be realized, it would be possible to answer a number of open questions regarding non-perturbative phenomena in quantum field theory and early Universe cosmology. In this paper, we illustrate a possible obstruction: the time-varying coupling that is invoked to create a false vacuum for the long-wavelength modes of the condensate leads to a destabilization of shorter wavelength modes within the system via parametric resonance. We focus on an idealized setup in which the two condensates have identical properties and identical background densities. Describing the system by the coupled Gross-Pitaevskii equations (GPE), we use the machinery of Floquet theory to perform a linear stability analysis, calculating the wavenumber associated with the first instability band for a variety of experimental parameters. However, we demonstrate that, by tuning the frequency of the time-varying coupling, it may be possible to push the first instability band outside the validity of the GPE, where dissipative effects are expected to damp any instabilities. This provides a viable range of experimental parameters to perform analog experiments of false vacuum decay.

sted, utgiver, år, opplag, sider
2018. nr 7, artikkel-id 014
Emneord [en]
Nonperturbative Effects, Solitons Monopoles and Instantons, Effective Field Theories
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-158341DOI: 10.1007/JHEP07(2018)014ISI: 000437355000014OAI: oai:DiVA.org:su-158341DiVA, id: diva2:1238912
Tilgjengelig fra: 2018-08-15 Laget: 2018-08-15 Sist oppdatert: 2022-03-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Braden, JonathanPeiris, Hiranya V.

Søk i DiVA

Av forfatter/redaktør
Braden, JonathanPeiris, Hiranya V.
Av organisasjonen
I samme tidsskrift
Journal of High Energy Physics (JHEP)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 342 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf