Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity($)
Vise andre og tillknytning
Rekke forfattare: 112018 (engelsk)Inngår i: SAR and QSAR in environmental research (Print), ISSN 1062-936X, E-ISSN 1029-046X, Vol. 29, nr 8, s. 591-611Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Results from the Ames test are the first outcome considered to assess the possible mutagenicity of substances. Many QSAR models and structural alerts are available to predict this endpoint. From a regulatory point of view, the recommendation from international authorities is to consider the predictions of more than one model and to combine results in order to develop conclusions about the mutagenicity risk posed by chemicals. However, the results of those models are often conflicting, and the existing inconsistency in the predictions requires intelligent strategies to integrate them. In our study, we evaluated different strategies for combining results of models for Ames mutagenicity, starting from a set of 10 diverse individual models, each built on a dataset of around 6000 compounds. The novelty of our study is that we collected a much larger set of about 18,000 compounds and used the new data to build a family of integrated models. These integrations used probabilistic approaches, decision theory, machine learning, and voting strategies in the integration scheme. Results are discussed considering balanced or conservative perspectives, regarding the possible uses for different purposes, including screening of large collection of substances for prioritization.

sted, utgiver, år, opplag, sider
2018. Vol. 29, nr 8, s. 591-611
Emneord [en]
prediction of mutagenicity, Ames test, ensembles of models, integrating SAR and QSAR, naive Bayes, Dempster-Shafer theory, self-organizing neural networks, GMDH
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-160284DOI: 10.1080/1062936X.2018.1497702ISI: 000442692500003PubMedID: 30052064OAI: oai:DiVA.org:su-160284DiVA, id: diva2:1248994
Tilgjengelig fra: 2018-09-18 Laget: 2018-09-18 Sist oppdatert: 2018-09-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Norinder, Ulf
Av organisasjonen
I samme tidsskrift
SAR and QSAR in environmental research (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 719 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf