Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
Vise andre og tillknytning
Rekke forfattare: 62018 (engelsk)Inngår i: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 6, nr 12, s. 17160-17167Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air-water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Youngs modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.

sted, utgiver, år, opplag, sider
2018. Vol. 6, nr 12, s. 17160-17167
Emneord [en]
Hybrid cellular material, Low weight, Air-drying, 3D printing, Nanocellulose, GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-163581DOI: 10.1021/acssuschemeng.8b04549ISI: 000452344900130OAI: oai:DiVA.org:su-163581DiVA, id: diva2:1278436
Tilgjengelig fra: 2019-01-14 Laget: 2019-01-14 Sist oppdatert: 2022-05-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Voisin, Hugo P.Gordeyeva, KorneliyaBergström, Lennart

Søk i DiVA

Av forfatter/redaktør
Voisin, Hugo P.Gordeyeva, KorneliyaBergström, Lennart
Av organisasjonen
I samme tidsskrift
ACS Sustainable Chemistry and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 139 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf