Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model Intercomparison of Atmospheric Cs-137 From the Fukushima Daiichi Nuclear Power Plant Accident: Simulations Based on Identical Input Data
Vise andre og tillknytning
Rekke forfattare: 212018 (engelsk)Inngår i: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 123, nr 20, s. 11748-11765Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A model intercomparison of the atmospheric dispersion of cesium-137 (Cs-137) emitted after the Fukushima Daiichi Nuclear Power Plant accident in Japan was conducted to understand the behavior of atmospheric Cs-137 in greater detail. The same meteorological data with a fine spatiotemporal resolution and an emission inventory were applied to all models to exclude the differences among the models originating from differences in meteorological and emission data. The meteorological data were used for initial, boundary, and nudging data or offline meteorological field. Furthermore, a horizontal grid with the same resolution as that of the meteorological data was adopted for all models. This setup enabled us to focus on model variability originating from the processes included in each model, for example, physical processes. The multimodel ensemble captured 40% of the atmospheric Cs-137 events observed by measurements, and the figure of merit in space for the total deposition of Cs-137 exceeded 80. The lower score of the atmospheric Cs-137 than that of the deposition originated from the difference in timing between observed and simulated atmospheric Cs-137. Our analyses indicated that meteorological data were most critical for reproducing the atmospheric Cs-137 events. The results further revealed that differences in Cs-137 concentrations among the models originated from deposition and diffusion processes when the meteorological field was simulated reasonably well. The models with small deposition fluxes produced higher scores for atmospheric Cs-137, and those with strong diffusion succeeded in capturing the high Cs-137 concentrations observed; however, they also tended to overestimate the concentrations.

sted, utgiver, år, opplag, sider
2018. Vol. 123, nr 20, s. 11748-11765
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-163725DOI: 10.1029/2018JD029144ISI: 000452000300029OAI: oai:DiVA.org:su-163725DiVA, id: diva2:1278966
Tilgjengelig fra: 2019-01-15 Laget: 2019-01-15 Sist oppdatert: 2019-01-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Sato, YousukeTerada, HiroakiKondo, HiroakiQuélo, Denisvon Schoenberg, Pontus
Av organisasjonen
I samme tidsskrift
Journal of Geophysical Research - Atmospheres

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf