Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An asymmetric St. Petersburg game with trimming
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
Rekke forfattare: 22018 (engelsk)Inngår i: Advances in Applied Probability, ISSN 0001-8678, E-ISSN 1475-6064, Vol. 50, nr A, s. 115-129Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Let S-n, n >= 1, be the successive sums of the payoffs in the classical St. Petersburg game. The celebrated Feller weak law states that S-n/(n log(2) n) ->(P) 1 as n ->infinity. In this paper we review some earlier results of ours and extend some of them as we consider an asymmetric St. Petersburg game, in which the distribution of the payoff X is given by P(X = sr(k-1)) = pq(k-1), k = 1, 2,..., where p + q = 1 and s, r > 0. Two main results are extensions of the Feller weak law and the convergence in distribution theorem of Martin-Lof (1985). Moreover, it is well known that almost-sure convergence fails, though Csorgo and Simons (1996) showed that almost-sure convergence holds for trimmed sums and also for sums trimmed by an arbitrary fixed number of maxima. In view of the discreteness of the distribution we focus on 'max-trimmed sums', that is, on the sums trimmed by the random number of observations that are equal to the largest one, and prove limit theorems for simply trimmed sums, for max-trimmed sums, as well as for the 'total maximum'. Analogues with respect to the random number of summands equal to the minimum are also obtained and, finally, for joint trimming.

sted, utgiver, år, opplag, sider
2018. Vol. 50, nr A, s. 115-129
Emneord [en]
St. Petersburg game, sums of independent and identically distributed random variables, Feller's weak law of large numbers, convergence along subsequences, convergence in distribution, trimmed sum
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-166856DOI: 10.1017/apr.2018.74ISI: 000457454600012OAI: oai:DiVA.org:su-166856DiVA, id: diva2:1294319
Tilgjengelig fra: 2019-03-07 Laget: 2019-03-07 Sist oppdatert: 2019-03-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Martin-Löf, Anders
Av organisasjonen
I samme tidsskrift
Advances in Applied Probability

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 6 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf