Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The sweet detection of rolling circle amplification: Glucose-based electrochemical detection of virus nucleic acid
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).ORCID-id: 0000-0003-3746-3693
Vise andre og tillknytning
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Infectious diseases remain a constant threat on a global scale by recurring pandemics. Rapid and portable diagnostics hold the promise to tackle the spreading of diseases and decentralizing healthcare to point-of-care needs. Ebola, a hypervariable RNA virus causing fatalities of up to 90% for recent outbreaks in Africa, demands immediate attention for bedside diagnostics. Nucleic acid amplification technology (NAAT) has proven to be a powerful tool for the control of outbreak with high sensitivity and specificity. However, NAAT is mostly based on amplification methods that require specialized instrumentation and trained personnel, such as PCR with sophisticated detectors. Here, we present an isothermal padlock probe-based assay for the detection of pathogens coupled with a glucose oxidase (GOx)-based electrochemical approach as the read-out. The assay design is based on rolling circle amplification (RCA) upon magnetic beads, connecting the RCA products (RCPs) via streptavidin-biotin bridges to GOx needed for the electrochemical measurement with externally provided glucose. The RCPs forming on the surface of beads are imaged using scanning electron microscopy, and the presence of the GOx to the RCP complex is confirmed using atomic force microscopy. Parameters such as the choice of buffers, concentrations of glucose and GOx and measurement time were optimized, as well as the mode of addition of glucose was tested. 125 μg/mL of GOx with 5 mM glucose using PBS as washing buffer, monitored for 15 min were chosen as the optimized conditions. The effect of temperature was tested and found to be critical at 37 °C for enhanced performance of the sensor. Finally, we evaluate the analytical performance of our sensor system by using cell culture isolate and clinical samples of Ebola virus. The study provides a proof-of-concept of simple and portable molecular diagnostics for emerging pathogens, beneficial especially for resource-limited settings. 

Emneord [en]
Molecular diagnostics, Infectious diseases, Ebola virus disease, RCA, Glucose Oxidase, Glucose sensing
HSV kategori
Forskningsprogram
biokemi
Identifikatorer
URN: urn:nbn:se:su:diva-167377OAI: oai:DiVA.org:su-167377DiVA, id: diva2:1299592
Tilgjengelig fra: 2019-03-27 Laget: 2019-03-27 Sist oppdatert: 2020-01-23bibliografisk kontrollert
Inngår i avhandling
1. Padlock Probe-Based Nucleic Acid Amplification Tests: Point-of-care Diagnostics of Infectious Diseases
Åpne denne publikasjonen i ny fane eller vindu >>Padlock Probe-Based Nucleic Acid Amplification Tests: Point-of-care Diagnostics of Infectious Diseases
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Recent advancements in molecular biology and biotechnology have pushed the field of molecular diagnostics much further to benefit the society towards smart access for rapid and simplified health care. In this context, point-of-care (PoC) technologies that bring the inventions in diagnostics closer to bedside settings draw attention. This becomes all the more relevant in the case of infectious diseases which pose the major burden, in terms of mortality and economic loss, especially for third world developing countries with resource-limited settings (RLS). Moreover, emerging and re-emerging viruses, known for their rapid mutation rates, demand huge attention in terms of timely diagnosis and the need for effective treatments. Hence, appropriate and accurate tests to detect the pathogens with enhanced sensitivity and specificity would be needed to bridge the gap between bioanalytics and clinics.

This research work is an attempt to combine the tools and techniques required for the development of such efficient PoC technologies to combat infectious diseases. Among available nucleic acid-based amplification tests, padlock probing and isothermal rolling circle amplification are used to benefit from the advantages they offer for diagnostic applications, in terms of specificity, multiplexability, single molecule detection, high throughput, compatibility with various read-out platforms and inexpensive digital quantification.

In the first paper, simultaneous detection of RNA and DNA forms of adenovirus is shown to study the spatio-temporal expression patterns in both lytic and persistent infections. In situ quantification of viral DNA as well as transcripts with single cell resolution has been achieved. In the second paper, novel probe design strategy has been presented for the development of molecular assays to detect hypervariable RNA viruses. This approach becomes helpful in targeting rapidly evolving viruses by using mutation-tolerant probes for RCA. Third paper demonstrates simple RCA for rapid detection of Ebola virus in clinical samples, followed by a multiplexed detection with other re-emerging tropical viruses, namely Zika and Dengue. This study also includes a simple easy-to-operate pump-free membrane enrichment read-out, combined together with microscopy for digital quantification of the products. In the fourth paper, near point-of-care glucose sensor-based RCP detection has been proposed for Ebola virus detection. All these attempts clearly bring RCA closer to PoC settings for molecular diagnostics of virus infections.

sted, utgiver, år, opplag, sider
Department of Biochemistry and Biophysics, Stockholm University, 2019
Emneord
Nucleic Acid Amplification, Isothermal Amplification Methods, Padlock Probes, Rolling Circle Amplification, Molecular Diagnostics, Infectious Disease Diagnostics, Virus, Point-of-Care
HSV kategori
Forskningsprogram
biokemi
Identifikatorer
urn:nbn:se:su:diva-167374 (URN)978-91-7797-576-2 (ISBN)978-91-7797-577-9 (ISBN)
Disputas
2019-05-15, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Merknad

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.

Tilgjengelig fra: 2019-04-17 Laget: 2019-03-27 Sist oppdatert: 2020-05-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Ciftci, SibelNeumann, FelixNilsson, Mats
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 354 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf